
Algorithms and Data Structures I.

Example test 1

Tibor Ásványi
Department of Computer Science

Eötvös Loránd University, Budapest

asvanyi@inf.elte.hu

May 6, 2023

In exercise 1 of Section 1 do not write code: Illustrate the algorithms as
you saw them in the classroom. In exercises 2-5 of Section 1 and in Section
2 try to write e�cient code (structure diagrams). Deletion includes explicit
deallocation. Specify the types and modes of the formal parameters of the
functions and procedures and the return types of functions.

In the test, there will be 3 exercises about illustrating the three sorting
methods (3*10 points) and two assignments about drawing structure dia-
grams (2*15 points, one exercise on one-way lists and one about two-way
lists).

1 Introductory exercises

1a Illustrate the operation of insertion sort on the array ⟨4, 6, 2′, 8, 5, 2⟩. Il-
lustrate the last insertion in detail.

1b Illustrate merge sort on the sequence A = ⟨4, 3, 6, 2, 9, 8, 4′⟩. Illustrate
the last merge in detail. Give the result of each merge operation on the
appropriate subarray in turn. The elements should be separated by commas.

1c Illustrate merge sort on the array ⟨3; 41; 52; 26; 38; 57; 9; 49⟩. Show the
last merge in detail.

1d Illustrate quicksort on the array A = ⟨4, 3, 6, 2, 9, 8, 4⟩. We suppose that
function partition() always selects the �rst item of the current subarray as

Name: . Neptun code: .

the pivot. Give the subarrays computed by each partition(A, p, r) call. The
pivot must be distinguished by a '+' pre�x. The items are separated by
commas. For example 4,2,+5,8

1e Illustrate the operation of
function partition of quicksort on array ⟨3; 41; 52; 26; 38; 57; 9; 49⟩.
Let us suppose that the algorithm selects 41 as the pivot.

2. Let us consider the class Queue with its constructor, destructor, add(x:T),
rem():T , and length():N operations.

T (n) ∈ Θ(n) for the destructor, and T (n) ∈ Θ(1) for all the other opera-
tions must be satis�ed where n is the length of the queue.

Draw the UML box of the Queue, and the necessary structure diagrams
to implement the operations in the following cases.

2a Let us represent the queue with a private S1L. (If the list is nonempty,
an extra pointer refers to its last element.)

2b Let us represent the queue using a private one-way list with a trailer
node. (One pointer refers to the �rst node, and an extra pointer refers to the
trailer.)

2c Let us represent the queue using a private, cyclic one-way list with
a header/trailer node. (The pointer identifying the list refers to its
header/trailer node.)

2d Let us represent the queue using a private, cyclic one-way list without a
header/trailer node. (If the list is nonempty, the pointer identifying it refers
to its last node. If it is empty, it is identi�ed by a � pointer.)

3a Pointer H refers to the header of an unsorted H1L. Write function
remove_max(H) which removes an element with a maximal key from the
list and returns the address of the element removed. T (n) ∈ Θ(n) where n
is the length of the list.

3b Pointer H refers to the header of a non-increasingly sorted H1L. Write
function sorted_insert(H, x) which inserts a new element with key x into the
list, so that the list remains non-increasingly sorted. MT (n) ∈ Θ(n) where
n is the length of the list.

3c Pointer L identi�es an acyclic one-way list. Write function delete_list(L)
which removes and deallocates (deletes) all the elements of the list. T (n) ∈
Θ(n) where n is the length of the list.

Name: . Neptun code: .

4a Pointer H refers to the header of an unsorted C2L. Write function
remove_max(H) which removes an element with a maximal key from the
list and returns the address of the element removed. T (n) ∈ Θ(n) where n
is the length of the list. List modi�cations must not be done directly, only
through the procedures unlink(q), precede(q, r), and follow(p, q).

4b Pointer H refers to the header of a non-increasingly sorted C2L. Write
function sorted_insert(H, x) which inserts a new element with key x into the
list, so that the list remains non-increasingly sorted. MT (n) ∈ Θ(n) where
n is the length of the list.

4c Pointer H refers to the header of a non-increasingly sorted C2L. Write
function delete_list(H) which removes and deallocates (deletes) all the ele-
ments of the list. T (n) ∈ Θ(n) where n is the length of the list. List modi-
�cations must not be done directly, only through the procedures unlink(q),
precede(q, r), and follow(p, q).

5a Let us suppose that L, H : E1* identify two strictly increasing H1Ls.
Write procedure union_intersection(L,H:E1*) rearranging the lists so

that list L contains the sorted union of the keys found in the original lists,
and list H contains the sorted intersection of the keys found in the original
lists. Both lists must remain strictly increasing. Allocating and deallocating
objects must be avoided in this program. And keys should not be copied
from one object into another.

MTunion_intersection(nL, nH) ∈ O(nL + nH) is to be satis�ed where nL and
nH are the lengths of the lists.

To solve this problem, we can leave the common elements of the lists in
list H, and move the other items of list H into list L. (No item will be moved
from L to H.)

5b Let us suppose that L, H : E2* identify two strictly increasing C2Ls.
Write procedure union_intersection(L,H:E2*) rearranging the lists so

that list L contains the sorted union of the keys found in the original lists,
and list H contains the sorted intersection of the keys found in the original
lists. Both lists must remain strictly increasing. Allocating and deallocating
objects must be avoided in this program. And keys should not be copied
from one object into another.

MTunion_intersection(nL, nH) ∈ O(nL + nH) is to be satis�ed where nL and
nH are the lengths of the lists.

Name: . Neptun code: .

2 Set operations

Exercise 1 Let us consider the class Queue with its constructor, destructor,
add(x:Z), rem():Z, �rst():Z, length():N, and printQueue() operations.

Let us represent the queue using a private, cyclic one-way list with
a header/trailer node. (The pointer identifying the list refers to its
header/trailer node.)

T (n) ∈ Θ(n) for the destructor and printQueue(), but T (n) ∈ Θ(1) for
all the other operations must be satis�ed where n is the length of the queue.

De�ne the class Queue with the operations and representation above.
(Draw the UML box of the Queue, and the necessary structure diagrams to
implement the operations.)

Let you have two queues, Q1 and Q2 containing strictly increasing se-
quences. Let you also have queue Q3 initially empty. Put the sorted inter-
section of the content of the queues Q1 and Q2 into Q3 while emptying Q1
and Q2. MT (m,n) ∈ Θ(m+ n) where m is the original length of Q1, and n
is the original length of Q2.

Exercise 2 Let us consider the class Queue with its constructor, destructor,
add(x:Z), rem():Z, �rst():Z, length():N, and printQueue() operations.

Let us represent the queue with a private S1L. (If the list is nonempty,
an extra pointer refers to its last element.)

T (n) ∈ Θ(n) for the destructor and printQueue(), but T (n) ∈ Θ(1) for
all the other operations must be satis�ed where n is the length of the queue.

De�ne the class Queue with the operations and representation above.
(Draw the UML box of the Queue, and the necessary structure diagrams to
implement the operations.)

Let you have two queues, Q1 and Q2 containing strictly increasing se-
quences. Let you also have queue Q3 initially empty. Put the sorted union
of the content of the queues Q1 and Q2 into Q3 while emptying Q1 and Q2.
MT (m,n) ∈ Θ(m + n) where m is the original length of Q1, and n is the
original length of Q2.

Exercise 3 Let us consider the class Queue with its constructor, destructor,
add(x:Z), rem():Z, �rst():Z, length():N, and printQueue() operations.

Let us represent the queue using a private one-way list with a trailer
node. (One pointer refers to the �rst node, and an extra pointer refers to the
trailer.)

T (n) ∈ Θ(n) for the destructor and printQueue(), but T (n) ∈ Θ(1) for
all the other operations must be satis�ed where n is the length of the queue.

Name: . Neptun code: .

De�ne the class Queue with the operations and representation above.
(Draw the UML box of the Queue, and the necessary structure diagrams to
implement the operations.)

Let you have two queues, Q1 and Q2 containing strictly increasing se-
quences. Let you also have queue Q3 initially empty. Put the sorted di�er-
ence of the content of the queues Q1 and Q2 into Q3 while emptying Q1 and
Q2. MT (m,n) ∈ Θ(m + n) where m is the original length of Q1, and n is
the original length of Q2.

Exercise 4 Let us consider the class Queue with its constructor, destructor,
add(x:Z), rem():Z, �rst():Z, length():N, and printQueue() operations.

Let us represent the queue using a private, cyclic one-way list without a
header/trailer node. (If the list is nonempty, the pointer identifying it refers
to its last node. If it is empty, it is identi�ed by a � pointer.)

T (n) ∈ Θ(n) for the destructor and printQueue(), but T (n) ∈ Θ(1) for
all the other operations must be satis�ed where n is the length of the queue.

De�ne the class Queue with the operations and representation above.
(Draw the UML box of the Queue, and the necessary structure diagrams to
implement the operations.)

Let you have two queues, Q1 and Q2 containing strictly increasing se-
quences. Let you also have queue Q3 initially empty. Put the sorted symmet-
ric di�erence of the content of the queues Q1 and Q2 into Q3 while emptying
Q1 and Q2. MT (m,n) ∈ Θ(m + n) where m is the original length of Q1,
and n is the original length of Q2.

Exercise 5 H1 and H2 are strictly increasing C2Ls. Write procedure
union(H1, H2 : E2∗) which calculates the strictly increasing union of the
two lists in H1 and empties H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous We rearrange the lists only with unlink(q), precede(q, r),
follow(p, q). MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and m =
length(H2).

Exercise 6 H1 and H2 are strictly increasing C2Ls. Write procedure
intersection(H1, H2 : E2∗) which calculates the strictly increasing intersec-
tion of the two lists in H1 but does not change list H2.

We use neither memory allocation (new) nor assignment statements to
data members. But deallocate (delete) those list elements of H1 which turn
out super�uous. We rearrange the lists only with unlink(q), precede(q, r),
follow(p, q). MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and m =
length(H2).

Name: . Neptun code: .

Exercise 7 H1 and H2 are strictly increasing C2Ls. Write procedure
di�erence(H1, H2 : E2∗) which calculates the strictly increasing di�erence
of the two lists in H1 but does not change list H2.

We use neither memory allocation (new) nor assignment statements to
data members. But deallocate (delete) those list elements of H1 which turn
out super�uous. We rearrange the lists only with unlink(q), precede(q, r),
follow(p, q). MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and m =
length(H2).

Exercise 8 H1 and H2 are strictly increasing C2Ls. Write procedure
symmetricDi�erence(H1, H2 : E2∗) which calculates the strictly increasing
symmetric di�erence of the two lists in H1 and empties list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) those list elements of the lists
which turn out super�uous. We rearrange the lists only with unlink(q),
precede(q, r), follow(p, q). MT (n,m) ∈ Θ(n + m) where n = lenght(H1)
and m = length(H2).

Exercise 9 H1 and H2 are strictly increasing H1Ls. Write procedure
unionIntersection(H1, H2 : E1∗) which calculates the strictly increasing
union of the two lists in H1 and the strictly increasing intersection of them
in H2.

We use neither memory allocation (new) nor deallocation (delete) state-
ments, nor assignment statements to data members. MT (n,m) ∈ Θ(n+m)
where n = lenght(H1) and m = length(H2).

Exercise 10 H1 and H2 are strictly increasing H1Ls. Write procedure
union(H1, H2 : E1∗) which calculates the strictly increasing union of the
two lists in H1 and empties H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and
m = length(H2).

Exercise 11 H1 and H2 are strictly increasing H1Ls. Write procedure
intersection(H1, H2 : E1∗) which calculates the strictly increasing intersec-
tion of the two lists in H1 but does not modify list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and
m = length(H2).

Name: . Neptun code: .

Exercise 12 H1 and H2 are strictly increasing H1Ls. Write procedure
di�erence(H1, H2 : E1∗) which calculates the strictly increasing di�erence
of the two lists in H1 but does not modify list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and
m = length(H2).

Exercise 13 H1 and H2 are strictly increasing H1Ls. Write procedure
symmetricDi�erence(H1, H2 : E1∗) which calculates the strictly increasing
symmetric di�erence of the two lists in H1 and empties list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n + m) where n = lenght(H1) and
m = length(H2).

Exercise 14 H1 and H2 are unsorted C2Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure union(H1, H2 : E2∗) which calculates the unsorted union
of the two lists in H1 and empties H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. We rearrange the lists only with unlink(q), precede(q, r),
follow(p, q). MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and m =
length(H2).

Exercise 15 H1 and H2 are unsorted C2Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure intersection(H1, H2 : E2∗) which calculates the unsorted
intersection of the two lists in H1 but does not change list H2.

We use neither memory allocation (new) nor assignment statements to
data members. But deallocate (delete) those list elements of H1 which turn
out super�uous. We rearrange the lists only with unlink(q), precede(q, r),
follow(p, q). MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and m =
length(H2).

Exercise 16 H1 and H2 are unsorted C2Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure di�erence(H1, H2 : E2∗) which calculates the unsorted
di�erence of the two lists in H1 but does not change list H2.

We use neither memory allocation (new) nor assignment statements to
data members. But deallocate (delete) those list elements of H1 which turn

Name: . Neptun code: .

out super�uous. We rearrange the lists only with unlink(q), precede(q, r),
follow(p, q). MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and m =
length(H2).

Exercise 17 H1 and H2 are unsorted C2Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure symmetricDi�erence(H1, H2 : E2∗) which calculates the
unsorted symmetric di�erence of the two lists in H1 and empties list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) those list elements of the lists
which turn out super�uous. We rearrange the lists only with unlink(q),
precede(q, r), follow(p, q). MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1)
and m = length(H2).

Exercise 18 H1 and H2 are unsorted C2Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure unionIntersection(H1, H2 : E2∗) which calculates the
unsorted union of the two lists in H1 and the unsorted intersection of them
in H2.

We use neither memory allocation (new) nor deallocation (delete) state-
ments nor assignment statements to data members. We rearrange the lists
only with unlink(q), precede(q, r), follow(p, q). MT (n,m) ∈ Θ(n ∗m) where
n = lenght(H1) and m = length(H2).

Exercise 19 H1 and H2 are unsorted H1Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure unionIntersection(H1, H2 : E1∗) which calculates the
unsorted union of the two lists in H1 and the unsorted intersection of them
in H2.

We use neither memory allocation (new) nor deallocation (delete) state-
ments, nor assignment statements to data members. MT (n,m) ∈ Θ(n ∗m)
where n = lenght(H1) and m = length(H2).

Exercise 20 H1 and H2 are unsorted H1Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure union(H1, H2 : E1∗) which calculates the unsorted union
of the two lists in H1 and empties H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and
m = length(H2).

Name: . Neptun code: .

Exercise 21 H1 and H2 are unsorted H1Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure intersection(H1, H2 : E1∗) which calculates the unsorted
intersection of the two lists in H1 but does not modify list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and
m = length(H2).

Exercise 22 H1 and H2 are unsorted H1Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure di�erence(H1, H2 : E1∗) which calculates the unsorted
di�erence of the two lists in H1 but does not modify list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and
m = length(H2).

Exercise 23 H1 and H2 are unsorted H1Ls, with no duplicated key in H1,
no duplicated key in H2. (H1 and H2 may have common keys.)

Write procedure symmetricDi�erence(H1, H2 : E1∗) which calculates the
unsorted symmetric di�erence of the two lists in H1 and empties list H2.

We use neither memory allocation (new) nor assignment statements
to data members. But deallocate (delete) the list elements which turn
out super�uous. MT (n,m) ∈ Θ(n ∗ m) where n = lenght(H1) and
m = length(H2).

