
Algorithms and Data Structures II.
Exercises

1

22 Elementary Graph Algorithms

22.1 Representations of graphs

22.1-1 Given an adjacency-list representation of a directed graph, how long
does it take to compute the out-degree of every vertex? How long does it
take to compute the in-degrees?

22.1-2 Give an adjacency-list representation for a complete binary tree on 7
vertexes. Give an equivalent adjacency-matrix representation. Assume that
vertexes are numbered from 1 to 7 as in a binary heap.

22.1-3 The transpose of a directed graph G = (V,E) is the graph GT =
(V,ET), where ET = {(v, u) ∈ V × V : (u, v) ∈ E}. Thus, GT is G with
all its edges reversed. Describe e�cient algorithms for computing GT from
G, for both the adjacency-list and adjacency-matrix representations of G.
Analyze the running times of your algorithms.

Note: A multi-graph is like an undirected graph, but it can have both multiple
edges between vertexes and self-loops. In the big-O notation, a set stands
for its size, for example: O(V + E) = O(|V |+ |E|).

22.1-4 Given an adjacency-list representation of a multi-graph G = (V,E),
describe an O(V +E)-time algorithm to compute the adjacency-list represen-
tation of the �equivalent� undirected graph G′ = (V,E ′), where E ′ consists
of the edges in E with all multiple edges between two vertexes replaced by a
single edge and with all self-loops removed.

22.1-5 The square of a directed graph G = (V,E) is the graph G2 = (V,E2)
such that (u, v) ∈ E2 if and only G contains a path with at most two edges
between u and v. Describe e�cient algorithms for computing G2 from G for
both the adjacency-list and adjacency-matrix representations of G. Analyze
the running times of your algorithms.

22.1-6* Most graph algorithms that take an adjacency-matrix representation
as input require time Ω(V 2), but there are some exceptions. Show how to
determine whether a directed graph G contains a universal sink � a vertex
with in-degree |V |− 1 and out-degree 0 � in time O(V), given an adjacency
matrix for G.

2

22.2 Breadth-�rst search

Note: Each graph-searching algorithm selects a vertex in an indeterministic
way at some points. When you illustrate its run, you should always select
the vertex with the smallest index in such cases.

22.2-1 Present breadth-�rst search on the directed graphs below1, using the
given vertex as source. As you have seen it in the classroom, illustrate the
run of the algorithm. For each vertex, show the discovery/�nishing times,
the d and π values; and for all the times, show the transformations of the
queue. Draw the breadth-�rst tree represented by the �nal π values.

22.2-1a Source vertex: 3

1 → 2; 4. 2 → 5. 3 → 5; 6.
4 → 2. 5 → 4. 6.

22.2-1b Source vertex: 5

1 → 4. 2 → 1; 3; 5. 3.
4 → 2; 5. 5 → 3; 4. 6 → 3; 5.

22.2-2 Illustrate the run of the breadth-�rst search on the undirected graph
below2, using vertex 4 as the source.

1 � 2; 5. 2 � 1; 6. 3 � 4; 6; 7. 4 � 3; 7; 8.
5 � 1. 6 � 2; 3; 7. 7 � 3; 4; 6; 8. 8 � 4; 7.

22.2-3 Show that using a single bit to store each vertex color su�ces by
arguing that the BFS procedure would produce the same result provided
that the gray and black nodes are not distinguished.

22.2-4 What is the running time of BFS if we represent its input graph by
an adjacency matrix and modify the algorithm to handle this form of input?

22.2-5 Argue that in a breadth-�rst search, the value u.d assigned to a vertex
u is independent of the order in which the vertexes appear in each adjacency
list. Using the graph in exercise 22.2-2 as an example, show that the breadth-
�rst tree computed by BFS can depend on the ordering within adjacency
lists.

1u→ v1; . . . vn. means that the graph has the directed edges (u, v1), . . . (u, vn).
2u � v1; . . . vn. means that the graph has the undirected edges (u, v1), . . . (u, vn).

3

22.3 Depth-�rst search

22.3-1 Make a 3-by-3 chart with row and column labels WHITE, GRAY, and
BLACK. In each cell (i, j), indicate whether, at any point during a depth-
�rst search of a directed graph, there can be an edge from a vertex of color
i to a vertex of color j . For each possible edge, indicate what edge types
it can be. Make a second such chart for depth-�rst search of an undirected
graph.

22.3-2 Show how depth-�rst search works on the graph below. Assume that
in the indeterministic cases the DFS procedure considers the vertexes in
alphabetical order. Show the discovery and �nishing times for each vertex,
and show the classi�cation of each edge.

q → s; t; w. r → u; y. s → v. t → x; y.
u → y. v → w. w → s. x → z.
y → q. z → x.

22.3-5a Argue that when DFS discovers an edge (u, v), v is
- white, i� (u, v) is a tree edge
- gray, i� (u, v) is a back edge
- black, i� (u, v) is a forward or cross edge
with respect to the depth-�rst forest computed by the DFS.

22.3-5b How can we distinguish the forward and cross edges with respect to
the discovery times of u and v?

22.3-5c How can we classify the edges (as tree, back, forward, and cross edges)
with respect to only the discovery and �nishing times of the vertexes?

22.3-7 Rewrite the procedure DFS, using a stack to eliminate recursion.

22.3-10 Modify the pseudo-code for depth-�rst search so that it prints out
every edge in the directed graph G, together with its type.

22.3-11 Explain how a vertex u of a directed graph G can end up in a depth-
�rst tree containing only u, even though u has both incoming and outgoing
edges in G.

22.3-12 Show that we can use a depth-�rst search of an undirected graph G
to identify the connected components of G, and that the depth-�rst forest
contains as many trees as G has connected components. More precisely, show
how to modify depth-�rst search so that it assigns to each vertex v an integer

4

label v.cc between 1 and k, where k is the number of connected components
of G, such that u.cc = v.cc if and only if u and v are in the same connected
component.

22.4 Topological sort

22.4-1 Show the ordering of vertexes produced by TOPOLOGICAL-SORT
when it is run on the DAG below, under the assumption of Exercise 22.3-2.

q → s; t; w. r → u; y. s → v. t → x; y.
u → y. v → w. w. x → y; z.
y. z → v.

22.4-2 Give a linear-time (O(V +E)) algorithm that takes as input a directed
acyclic graph G = (V,E) and two vertexes s and t, and returns the number
of simple paths from s to t in G. For example, the directed acyclic graph
below contains exactly four simple paths from vertex p to vertex u: pqu,
pqsvu, prsvu, and prtvu. (Your algorithm needs only to count the simple
paths, not list them.)

p → q; r. q → s; u. r → s; t. s → v.
t → v. u. v → u.

22.4-3 Give an algorithm that determines whether or not a given undirected
graph G = (V,E) contains a cycle. Your algorithm should run in O(V) time,
independent of |E|.

22.4-5 Another way to perform topological sorting on a directed acyclic graph
G = (V,E) is to repeatedly �nd a vertex of in-degree 0, output it, and remove
it and all of its outgoing edges from the graph. Explain how to implement
this idea so that it runs in time O(V +E). What happens to this algorithm
if G has cycles?

(Hint: For each u ∈ V : u.ind := the in-degree of u. H := {u ∈ V :
u.ind = 0}. In a loop, while H is not empty, remove an element of H, output
it, decrease the ind attributes of its adjacent vertexes by one, and put those
with zero ind value into H. })

5

23 Minimum Spanning Trees

23.1 Kruskal's algorithm

23.1.1 Show how the spanning forest of the graph is transformed while pro-
cessing each edge of the graph in exercise 23.2.1 using Kruskal's algorithm.

23.2 Prim's algorithm

23.2.1 Show the d and π values that result from running Prim's algorithm
on the undirected graph below3, using vertex 2 as source. As you have seen
it in the classroom, illustrate the run of the algorithm. Show the initial d
and π values. Then line by line show the vertex selected for expansion, and
the d and π values of the vertexes after the expansion4. Draw the minimum
spanning tree represented by the �nal π and d values5.

1 � 2, 2; 5, 1. 2 � 1, 2; 6, 0.
3 � 4, 4; 6, 1; 7, 1. 4 � 3, 4; 7, 3; 8, 2.
5 � 1, 1; 6, 1. 6 � 2, 0; 3, 1; 5, 1; 7, 2.
7 � 3, 1; 4, 3; 6, 2; 8, 1. 8 � 4, 2; 7, 1.

23.2-2a Suppose that we represent the graph G = (V,E) as an adjacency
matrix. Give a simple implementation of Prim's algorithm for this case that
runs in O(V 2) time.

23.2-2b Suppose that we represent the graph G = (V,E) as an adjacency list.
Give a simple implementation of Prim's algorithm for this case that runs in
O(V 2) time.

23.2-2c* Suppose that we represent the graph G = (V,E) as an adjacency
list. Give a sophisticated implementation of Prim's algorithm for this case
that runs in O((V + E) lg V) time.

Hint: Use a binary minimum heap to represent the priority queue of the
vertexes (organized according to the d values of the vertexes) . When we
decrease v.d for a vertex v, it must be compared with its parent in the heap

3u � v1, w1; . . . vn, wn. means that the graph has the undirected edges (u, v1), . . . (u, vn)
with weights w1, . . . wn.

4Given an undirected graph G = (V,E), and a subtree T = (U,A), where U ⊂ V ,
A ⊂ U × U , and A ⊂ E. Let v ∈ V \ U . The attribute v.d is the minimum weight of any
edge connecting v to a vertex in the tree; by convention, v.d =∞ if there is no such edge
(v.d is also called v.key).

5In the output of Prim's algorithm v.d is the weight of the edge (v.π, v) in the minimum
spanning tree, except for the root r of the tree (r.d = 0).

6

(with respect to their d attributes), and they possibly must be swapped,
recursively. Therefore, we need an indexing array in order to know the place
of each vertex in the heap.

7

24 Single-Source Shortest Paths

24.1 Queue-based Bellman-Ford algorithm
<http://algs4.cs.princeton.edu/44sp/>

<https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm>

(The Queue-based Bellman-Ford algorithm is also known as Tarjan`s
breadth-�rst scanning algorithm, and Shortest Path Faster Algo-
rithm (SPFA).)

24.1-1 Run the Queue-based Bellman-Ford algorithm on the directed graph
below6, using vertex z as the source.

As you have seen it in the classroom, illustrate the run of the algorithm.
Show the initial d and π values, and the initial queue. Show the num-

bering of each pass of the algorithm. During each pass, when expanding
(scanning) a vertex makes change, show the new d and π values of its suc-
cessor vertices, and the queue after the expansion. Provided that during
the expansion of a vertex more vertices are put into the queue, they are
put there in alphabetical order (or in the order of their indexes). Draw the
shortest-paths tree represented by the �nal π and d values.

Now, change the weight of edge (z, x) to 4 and run the algorithm again,
using s as the source.

s→ t, 6; y, 7. t→ x, 5; y, 8; z,−4.
x→ t,−2. y → x,−3; z, 9.
z → s, 2;x, 7.

24.1.2a Suppose that we represent the graph G = (V,E) as an adjacency
matrix. Give a simple implementation of the Queue-based Bellman-Ford
algorithm for this case that runs in O(V 3) time.

24.1.2b Suppose that we represent the graph G = (V,E) as an adjacency list.
Give a simple implementation of the Queue-based Bellman-Ford algorithm
for this case that runs in O(V E) time.

24.2 Single-source shortest paths in directed acyclic graphs

24.2-1 Run DAG-SHORTEST-PATHS on the directed graph below, using
vertex r as the source.

r → s, 5; t, 3. s→ t, 2;x, 6. t→ x, 7; y, 4; z, 2.
x→ x,−1; z, 1. y → z,−2. z.

6u → v1, w1; . . . vn, wn. means that the graph has the directed edges (u, v1), . . . (u, vn)
with weights w1, . . . wn.

8

24.3 Dijkstra's algorithm

24.3-1 Show the d and π values that result from running Dijkstra's algorithm
on the directed graph below, using vertex z as source.

Run Dijkstra's algorithm on the directed graph below, �rst using vertex
s as the source and then using vertex z as the source.

As you have seen it in the classroom, illustrate the run of the algorithm.
When the algorithm is indeterministic, prefer the vertex with lower index.

Show the initial d and π values. Then line by line show the vertex selected
for expansion, and the new d and π values of the vertexes after the expansion.
Draw the shortest-paths tree represented by the �nal π and d values.

s→ t, 3; y, 6. t→ x, 8; y, 2. x→ z, 2.
y → t, 1;x, 4; z, 6. z → s, 3;x, 7.

24.3-2 Give a simple example of a directed graph with negative-weight edges
for which Dijkstra's algorithm produces incorrect answers.

24.3.3a Suppose that we represent the graph G = (V,E) as an adjacency
matrix. Give a simple implementation of Dijkstra's algorithm for this case
that runs in O(V 2) time.

24.3.3b Suppose that we represent the graph G = (V,E) as an adjacency list.
Give a simple implementation of Dijkstra's algorithm for this case that runs
in O(V 2) time.

24.3.3c* Suppose that we represent the graph G = (V,E) as an adjacency
list. Give a sophisticated implementation of Dijkstra's algorithm for this case
that runs in O((V + E) lg V) time.

Hint: Use a binary minimum heap to represent the priority queue of the
vertexes (organized according to the d values of the vertexes) . When we
decrease v.d for a vertex v, it must be compared with its parent in the heap
(with respect to their d attributes), and they possibly must be swapped,
recursively. Therefore, we need an indexing array in order to know the place
of each vertex in the heap.

9

25 All-Pairs Shortest Paths

25.2 The Floyd-Warshall algorithm

25.2-1 Run the Floyd-Warshall algorithm on the
weighted graph below. Show the matrix pairs
(D(0),Π(0)), . . . , (D(4),Π(4)).

1 2 3 4
1 0 5 3 1
2 5 0 1 ∞
3 3 1 0 1
4 1 ∞ 1 0

25.2.2 Run Warshall's transitive-closure algorithm on the
unweighted, directed graph below. Show the matrices
T (0), . . . , T (4).

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0

10

13.x AVL trees

13.x-1 Given an initially empty AVL tree t. As you have seen it in the
classroom, illustrate the insertion of numbers 1 2 7 3 5 6 8 9 4 into t in the
given order.

Starting with the resulting AVL tree t, illustrate the deletion of numbers
1 3 4 8 9 2 from t in the given order.

Redraw the tree after each insertion/deletion. If balancing is required,
show which subtree must be balanced, and after each balancing also redraw
the tree. On each drawing show the balances of the nodes in the manner you
have seen at the lectures.

13.x-2 Draw an AVL tree with 12 nodes which has the maximum height of
all 12-node balanced trees. Give an example sequence of the keys, in which
order the keys of the nodes inserted into an initially empty AVL tree, we
receive the tree drawn.

11

18.x B+ trees

18.x Textual representation of B+ trees:
Here we omit the satellite data of the B+ trees. We illustrate only their
structure and keys. The textual form of a leaf of a B+ tree: [k1, . . . , kb]
where each kj is a key. The textual form of a nonleaf subtree of a B+ tree:
(T1s1T2 . . . sd−1Td) where each Ti is a subtree, and each sj is a split-key.

If d = 4, a leaf looks like [k1, k2] or [k1, k2, k3], and an internal node looks
like (T1s1T2) or (T1s1T2s2T3) or (T1s1T2s2T3s3T4).

However, if the B+ tree consist of a single node, its root is also its only
leaf which may contain even a single key which looks like [k]. The empty B+
tree is �.

(We may use curly brackets instead of normal brackets, normal brackets
instead of square brackets, and so on. We use di�erent kind of brackets in
order to increase readability.)

18.x-1 Let us suppose that we have the following B+ tree of degree 4.
([1,4,9] 16 [1,25])

As you have seen it in the classroom, illustrate the insertion of numbers 20,
13, 15, 10, 11, 12 into it, in the given order.

18.x-2 Let us suppose that we have the following B+ tree of degree 4.
{ ([1,4] 9 [9,10] 11 [11,12]) 13 ([13,15] 16 [16,20,25]) }

As you have seen it in the classroom, illustrate the deletion of numbers 13,
15, 1 from it, in the given order.

12

32 String Matching

32.1 The naive string-matching algorithm

32.1-1 Show the comparisons the naive string matcher makes for the pattern
P = 0001 in the text T = 000010001010001.

32.1-2 Suppose that all characters in the pattern P are di�erent. Show how
to accelerate NAIVE-STRING-MATCHER to run in time O(n) on an n-
character text T .

32.4 The Knuth-Morris-Pratt algorithm

32.4-1 Compute next[1..19] (also called prefix or π function) for the pattern
ababbabbabbababbabb.

32.4.2a Compute next[1..4] for the pattern P = 0001. Show the comparisons
the Knuth-Morris-Pratt string matcher makes for this pattern in the text
T = 000010001010001.

32.4.2b Compute next[1..5] for the pattern P = abaab. Show the comparisons
the Knuth-Morris-Pratt string matcher makes for this pattern in the text
T = aaababaabaababaab.

32.4.2c Compute next[1..6] for the pattern P = aabaab. Show the compar-
isons the Knuth-Morris-Pratt string matcher makes for this pattern in the
text T = aaabaabaabaababaab.

32.4.2d Compute next[1..6] for the pattern P = babbab. Show the compar-
isons the Knuth-Morris-Pratt string matcher makes for this pattern in the
text T = ababbabbababbababbabb.

32.4.2e Compute next[1..7] for the pattern P = ABABAKI.
Show the comparisons the Knuth-Morris-Pratt string matcher makes for this
pattern in the text
T = BABALABABATIBABABAKI.

32.4-3 Explain how to determine the occurrences of pattern P in the text T
by examining next[1..|PT |].

32.4-7 Give a linear-time algorithm to determine whether a text T is a cyclic
rotation of another string T ′. For example, arc, rca, and car are cyclic
rotations of each other.

13

32.x The Quick Search algorithm

32.x.1 Compute shift[0..1] for the pattern P = 000. Show the comparisons
the Quick Search string matcher makes for this pattern in the text T =
000010001010001.

32.x.2 Compute shift[′A′..′F ′] for the pattern
P = ABABACD. Show the comparisons the Quick Search string matcher
makes for this pattern in the text
T = BABAEABABAFDBABABACD.

32.x.3 Compute shift[′A′,′C ′,′G′,′ T ′] for the pattern
P = GCAGAGAG. Show the comparisons the Quick Search string matcher
makes for this pattern in the text
T = GCATCGCAGAGAGTATACAGTACG.

14

DC Data Compression

DC.1 The Hu�man coding
<http://en.wikipedia.org/wiki/Huffman_coding>

DC.1.1 We would like to compress the text

MATEKFELELETEMKETTESLETT

with Hu�man coding. Draw the Hu�man tree, give the Hu�man code of
each letter, the Hu�man code of the text, and the length of the latest in bits.
Show the letters of the original text in the Hu�man code of it.

DC.1.2 Solve Exercise DC.1.1 with the following text.

EMESE MAI SMSE NEM NAIV MESE

DC.2 The Lempel�Ziv�Welch (LZW) algorithm
<http://en.wikipedia.org/wiki/Lempel-Ziv-Welch>

DC.2.1 We have compressed a text with the Lempel-Ziv-Welch algorithm.
The text contains letters 'A', 'B', and 'C'. Their codes are 1, 2, and 3 in
turn. While building the dictionary, for the code of each new word the
�rst unused positive integer was selected. In this way we have received the
following code.

1 2 4 3 5 6 9 7 1

Give the original text, and the complete dictionary.

DC.2.2 Solve Exercise DC.2.1 with the following LZW code.

1 2 4 3 5 8 1 10 11 1

15

