
Algorithms and Data Structures II.
Test2 (example exercises)

23 Minimum Spanning Trees

23.1 Kruskal's algorithm

23.1-1 As you have seen in the classroom, illustrate the run of Kruskal's
algorithm on the following graph1. Finally, draw the MST calculated by the
algorithm.

1 � 2, 2; 5, 1. 2 � 1, 2; 6, 0.
3 � 4, 4; 6, 1; 7, 1. 4 � 3, 4; 7, 3; 8, 2.
5 � 1, 1; 6, 1. 6 � 2, 0; 3, 1; 5, 1; 7, 2.
7 � 3, 1; 4, 3; 6, 2; 8, 1. 8 � 4, 2; 7, 1.

23.1-2 Given class Edge{ +u, v : N+; +w : R }. The objects of this class can
represent edges of weighted graphs where w(u, v) = w. Arrays G and T have
the element type Edge. Array G represents a weighted undirected connected
graph. It consists of the edges of the graph. It is non-decreasing according
to the weights of the edges. It has m elements. Array T has n1 elements
where n1 = n− 1 and n is the number of vertices of the graph.

Write the structogram of the procedure Kruskal(G, T) which calculates
an MST of graph G and puts the edges of this MST into the array T in
O(m ∗ log n) time.

23.2 Prim's algorithm

23.2-1 As you have seen in the classroom, illustrate the run of Prim's algo-
rithm on the following graph. Draw the minimum spanning tree represented
by the �nal π and d values.

1 � 2, 2; 5, 1. 2 � 1, 2; 6, 0.
3 � 4, 4; 6, 1; 7, 1. 4 � 3, 4; 7, 3; 8, 2.
5 � 1, 1; 6, 1. 6 � 2, 0; 3, 1; 5, 1; 7, 2.
7 � 3, 1; 4, 3; 6, 2; 8, 1. 8 � 4, 2; 7, 1.

23.2-2a Suppose that we represent the weighted undirected connected graph
G = (V,E) as an adjacency matrix. Give a simple implementation of Prim's
algorithm for this case that runs in O(|V |2) time.

1u � v1, w1; . . . vn, wn. means that the graph has the undirected edges (u, v1), . . . (u, vn)
with weights w1, . . . wn.

1

23.2-2b Suppose that we represent the weighted undirected connected graph
G = (V,E) with adjacency lists. Give a simple implementation of Prim's
algorithm for this case that runs in O(|V |2) time.

23.2-2c* Suppose that we represent the graph G = (V,E) with adjacency
lists. Give a sophisticated implementation of Prim's algorithm for this case
that runs in O(|E| ∗ log |V |) time.

Hint: Use a binary minimum heap to represent the priority queue of the
vertexes (organized according to the d values of the vertexes). When we
decrease d(v) for a vertex v, it must be compared with its parent in the
heap (concerning their d attributes), and they possibly must be swapped,
recursively. Therefore, we need an indexing array to know the place of each
vertex in the heap.

2

24 Single-Source Shortest Paths

24.1 Queue-based Bellman-Ford algorithm
(The Queue-based Bellman-Ford algorithm is also known as Tar-

jan`s breadth-�rst scanning algorithm, and Shortest Path Faster
Algorithm (SPFA).)

24.1-1 As you have seen in the classroom, illustrate the run of the Queue-

based Bellman-Ford algorithm on the directed graph below2, using vertex z
as the source. Draw the shortest-paths tree represented by the �nal π and d
values.

Now, change the weight of edge (z, x) to 4 and run the algorithm again,
using s as the source.

s → t, 6; y, 7. t → x, 5; y, 8; z,−4.
x → t,−2. y → x,−3; z, 9.
z → s, 2;x, 7.

24.1-2a Suppose that we represent the graph G = (V,E) as an adjacency
matrix. Give a simple implementation of the Queue-based Bellman-Ford

algorithm for this case that runs in O(|V |3) time.

24.1-2b Suppose that we represent the graph G = (V,E) with adjacency lists.
Give a simple implementation of the Queue-based Bellman-Ford algorithm for
this case that runs in O(|V | ∗ |E|) time.

24.2 Single-source shortest paths in directed acyclic graphs
(DAGs)

24.2-1 As you have seen in the classroom, illustrate the run of the DAG single

source shortest paths algorithm on the directed graph below, using vertex s
as the source.

r → s, 5; t, 3. s → t, 2;x, 6. t → x, 7; y, 4; z, 2.
x → y,−1; z, 1. y → z,−2. z.

24.2-2 Replace edge �y → z,−2� with the edge �y → s,−2� in the graph
above. As you have seen in the classroom, illustrate the run of the DAG

single source shortest paths algorithm on the resulting graph, using vertex r
as the source.

2u → v1, w1; . . . vn, wn. means that the graph has the directed edges (u, v1), . . . (u, vn)
with weights w1, . . . wn.

3

24.1-3a Suppose that we represent the graph G = (V,E) as an adjacency
matrix. Give a simple implementation of the DAG single source shortest

paths algorithm for this case that runs in O(|V |2) time.

24.1-3b Suppose that we represent the graph G = (V,E) with adjacency
lists. Give a simple implementation of the DAG single source shortest paths

algorithm for this case that runs in O(|V |+ |E|) time.

24.3 Dijkstra's algorithm

24.3-1 As you have seen in the classroom, illustrate the run of Dijkstra's
algorithm on the directed graph below, �rst using vertex s as the source and
then using vertex z as the source. Draw the shortest-paths tree represented
by the �nal π and d values.

s → t, 3; y, 6. t → x, 8; y, 2. x → z, 2.
y → t, 1;x, 4; z, 6. z → s, 3;x, 7.

24.3-2 Give a simple example of a directed graph with some positive-weight
edges and a negative-weight edge for which Dijkstra's algorithm produces an
inconsistent answer.

24.3.3a Suppose that we represent the graph G = (V,E) as an adjacency
matrix. Give a simple implementation of Dijkstra's algorithm for this case
that runs in O(|V |2) time.

24.3.3b Suppose that we represent the graph G = (V,E) with adjacency lists.
Give a simple implementation of Dijkstra's algorithm for this case that runs
in O(|V |2) time.

24.3.3c* Suppose that we represent the graph G = (V,E) with adjacency
lists. Give a sophisticated implementation of Dijkstra's algorithm for this
case that runs in O((|V |+ |E|) ∗ log |V |) time.

Hint: Use a binary minimum heap to represent the priority queue of the
vertexes (organized according to the d values of the vertexes). When we
decrease d(v) for a vertex v, it must be compared with its parent in the
heap (concerning their d attributes), and they possibly must be swapped,
recursively. Therefore, we need an indexing array to know the place of each
vertex in the heap.

4

25 All-Pairs Shortest Paths

25.2 The Floyd-Warshall algorithm

25.2-1 As you have seen in the classroom, illustrate the run of the Floyd-
Warshall algorithm on the weighted graph below. Show the matrix pairs
(D(0),Π(0)), . . . , (D(4),Π(4)). Finally, draw the shortest path trees represented
by the rows of the last pair of matrices.

1 2 3 4
1 0 5 3 1
2 5 0 1 ∞
3 3 1 0 1
4 1 ∞ 1 0

25.2.2 As you have seen in the classroom, illustrate the run of Warshall's
transitive-closure algorithm on the unweighted, directed graph below.
Show the matrices T (0), . . . , T (4).

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 0 0 1
4 1 0 0 0

5

