
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 1, 2010

DCGS FOR PARSING AND ERROR HANDLING

TIBOR ÁSVÁNYI

Abstract. The available texts on standard Definite Clause Grammars
(DCGs) are just about analysing correct input texts and generating the
appropriate outputs. Therefore, their example programs simply say no on
texts containing syntactical faults.

In this paper we concentrate on the parsing problem, handling the pos-
sible formal deficiencies of the input texts, using standard DCGs (shortly:
DCGs). We describe a methodology, in order to develop DCGs parsing
input texts while giving appropriate messages, if syntax errors are found
in them. In our approach, we give the semantics of the correct input texts,
and the semantics of the erroneous input texts together.

In this paper we suppose that the reader is familiar with the Prolog lan-
guage, especially with standard DCGs, and has some practical knowledge,
how to write readable and effective programs in Prolog.

1. Introduction

In the logic programming community, logic grammars are widely used
while solving compiler writing or natural language processing problems. Some
logic granmmars (like DCGs [5]) support top-down, others (like AID [2]) sup-
port bottom-up parsing of the input. Some of them support deterministic
parsing and have built-in facilities to handle the deficiencies of the input [4],
others (like DCGs) support indeterministic parsing and do not have built-ins
to handle errors.

Received by the editors: 15. February 2011.
2010 Mathematics Subject Classification. 94-02, 94-04.
1998 CR Categories and Descriptors. D. Software [D.1 PROGRAMMING TECH-

NIQUES]: D.1.6 Logic Programming – Logic Grammars; F. Theory of Computation [F.3
LOGICS AND MEANINGS OF PROGRAMS]: F.3.2 Semantics of Programming
Languages – Program analysis; F. Theory of Computation [F.4 MATHEMATICAL
LOGIC AND FORMAL LANGUAGES]: F.4.2 Grammars and Other Rewriting Sys-
tems – Parsing .

Key words and phrases. logic grammar, Definite Clause Grammar, DCG, parsing,
context-free description, context-dependent information, error hadling, error semantics, full
semantics.

1

2 TIBOR ÁSVÁNYI

DCGs [5] are a popular extension of the logic programming language Prolog [1].
It adds the power of Prolog to context-free grammars. This means that DCGs
provide top-down, left-to-right parsing, in accordance with the backtracking
mechanism of Prolog [6].

Through their parameters, the rules may pass structural, context-depen-
dent, and semantic information. Ambiguities and different interpretations of
input texts can be expressed in an elegant and natural way. DCGs can be
used for analysing and/or for generating sentences. Therefore, translators and
compilers can be implemented without unnecessary efforts: The parser DCG
may build an inner representation of the input, and the generator DCG may
produce the required output.

According to our interest, we develop a method, in order to write parsers
handling correct and erroneous input texts as well. For case of simplicity, the
semantics of both kinds of input texts will be defined by Prolog terms.
The semantics of the erroneous input texts will be called error se-
mantics.

We suppose that we are over the tokenizing process, and our input text is
represented by a proper list [3] of lexical elements (tokens) [7].

Now, the main phases of constructing a parser are the following:
(1) Describe the set of correct input texts using a DCG.
(2) Add cuts in a safe manner – “as early as possible” –, exactly into the

positions where it is already known that the containing DCG rule is
responsible for analysing the actual part of the input.

(3) Add default rules for error handling and error recovery.
The first “to do” – describing the set of correct input texts – has the following
steps:

(1) Give a partial description by a context-free grammar.
(2) Add context-dependent, syntactical information.
(3) Add semantical information.

We can add the cuts during this process when it is convenient; but we add the
rules for error handling normally after.

We will present our method through a small example, and structure this
paper according to the phases and steps of completing the parser. (The parser
was tested in SICStus Prolog 4.1.3. [8])

2. The example language

Let us have a series of definitions of integer constants. The later may
depend on the earlier. Each constant is defined by a simple binary operation

DCGS FOR PARSING AND ERROR HANDLING 3

depending on two predefined (symbolic or literal) constants. The possible op-
erations are: addition, substraction, multiplication, integer divison, modulus,
that is +,-,*,//,mod. Each constant definition is terminated by a dot.
For example:
a = 1+1.
a_1 = a-1.
b = 3*a.
c3 = b//a. %% integer division
d = b mod 4.

u = u*4. %% u depends on undefined constant (not allowed)
d = a+1. %% d is redefined constant (not allowed)

3. Describing correct inputs

In this section we detail the first “to do” outlined in the Inroduction.
First we give a partial description of our example language by a context-
free grammar. Next we extend this description with the context-dependent,
syntactical properties. At last we add the appropriate semantical information.

3.1. Partial, context-free desription. First we give a context-free desrip-
tion. In this step, we are unaware of the context dependent properties: unde-
fined and redefined constants are still allowed.
constants --> constdef, !, constants.
constants --> [].

constdef --> const, [=], expr, [’.’].
expr --> operand, operator, operand.

operator --> [Op], { op(Op) }.
op(+). op(-). op(*). op(//). op(mod).

operand --> [Y], { integer(Y), ! }.
operand --> id.

const --> id.
id --> [Id], {is_id(Id)}.

is_id(Id) :-
atom(Id), atom_codes(Id,[C1|Cs]),
lower_case_letter_code(C1),
\+ (member(K,Cs), \+id_code(K)).

4 TIBOR ÁSVÁNYI

id_code(K) :-
(lower_case_letter_code(K) -> true
; upper_case_letter_code(K) -> true
; digit_code(K) -> true
; K == 0’_
).

lower_case_letter_code(K) :- 0’a =< K, K =< 0’z.
upper_case_letter_code(K) :- 0’A =< K, K =< 0’Z.
digit_code(K) :- 0’0 =< K, K =< 0’9.

One can see, that the necessary cuts – in the “as early as possible” style –
have already been inserted.

3.2. Adding context-dependent, syntactical information. In order to
handle undefined and redefined constants, we have to store the list of constant
names defined up till now – in a parameter:
constants --> constants([]).

% Bs is the list of constant identifiers defined up till now.
% C is the identifier of the first constant described
% by this very rule:
constants(Bs) --> constdef(Bs,C), !, constants([C|Bs]).
constants(_Bs) --> [].

constdef(Bs,Id) --> const(Bs,Id), [=], expr(Bs), [’.’].

expr(Bs), [’.’] --> operand(Bs), operator, operand(Bs), [’.’].

operator --> [Op], { op(Op) }.
op(+). op(-). op(*). op(//). op(mod).

operand(_Bs) --> [Y], { integer(Y), ! }.
% If an operand of an expression is an id,
% it must have been defined before:
operand(Bs) --> id(Y), { member(Y,Bs) -> true }.

% The constant should not have been defined before:
const(Bs,Id) --> id(Id), { \+member(Id,Bs) }.

id(Id) --> [Id], {is_id(Id)}. % Predicate is_id/1 is unchanged.

DCGS FOR PARSING AND ERROR HANDLING 5

The grammar still simply says yes, if the series of constant definitions is
syntactically correct, or no otherwise.

3.3. Adding semantical information. The semantics will be a proper list
of equalities of the form Id=Value, that is, the values of the different constants
are given – in the original order:
% Constants is the list representing the semantics.
constants(Constants) -->

constants([],Cs), {reverse(Cs,Constants)}.

:- use_module(library(lists), [reverse/2]).

% List Bs represents the semantics of the constants
% defined up to this point -- in reversed order, and
% C is the semantics of the actual constant.
constants(Bs,Cs) --> constdef(Bs,C), !, constants([C|Bs],Cs).
constants(Bs,Bs) --> [].

constdef(Bs,Id=Val) -->
const(Bs,Id), [=], expr(Bs,Expr), [’.’],
{ catch(Val is Expr, _, fail) }.
% In case of zero divisor or arithmetic overflow,
% this rule must fail.

expr(Bs,Expr), [’.’] -->
operand(Bs,X), operator(Op), operand(Bs,Y), [’.’],
{ Expr =.. [Op,X,Y] }.

% X and Y are the values of the operands.

operator(Op) --> [Op], { op(Op) }.
op(+). op(-). op(*). op(//). op(mod).

operand(_Bs,X) --> [Y], { integer(Y), !, X = Y }.
operand(Bs,X) --> id(Y), { member(Y=Z,Bs) -> X = Z }.

const(Bs,Id) --> id(Id), { \+member(Id=_Z,Bs) }.

6 TIBOR ÁSVÁNYI

id(Id) --> [Id], {is_id(Id)}. % Predicate is_id/1 is unchanged.

Using this DCG, we can receive the semantics of a series of constants, that
is, the values of those constants, for example:
| ?- _Tokens = [a,=,1,+,1,., a_1,=,a,-,1,., b,=,3,*,a,.,

c3,=,b,//,a,., d,=,b,mod,4,.],
constants(Defs,_Tokens,[]).

Defs = [a=2, a_1=1, b=6, c3=3, d=2]

But, if there is some error, we receive not much information:
| ?- _Tokens = [a,=,1,+,a,.], constants(Defs,_Tokens,[]).
no

Using our method of step-by-step refinement of the DCG, we arrived at
the point where the known texts about standard DCGs stop. We believe, this
method have made the way easier.

4. Adding error semantics

At last we add the error alternatives, that is, rules for error handling.
In general, if L is a language over an alphabet, then the error semantics

is the semantics of the complementer of L. We propose that the error seman-
tics should be represented by Prolog terms following a notational convention
developed for L. We will call them error terms.

In our example, the semantics of a list of input tokens is a list of equal-
ities, and of error terms. If a correct constant definition is found, then its
semantics is an equality of the form learnt in the previous section. If no more
constant definition is found, but the appropriate token list is still nonempty,
then the last element of the list representing the semantics have this form:
error(constants,RemainingTokens).

In general, an error term has the form error(Id,Context): Id refers to
the type and level of the error, and Context refers to the textual context of
the error.

If an erroneous constant definition is found, then Id refers to the source(s)
of the error(s). Provided that the equality can be recognised on the token list,
Context is an equality, where the correct components are given as usually, but
the erroneous components are given with error terms. If the equality cannot
be recognised on the token list, Context is just a token list, closed by the dot
sign finishing the constant definition.

DCGS FOR PARSING AND ERROR HANDLING 7

constants(Constants) -->
constants([],Cs), {reverse(Cs,Constants)}.

:- use_module(library(lists), [reverse/2]).

constants(Bs,Cs) --> constdef(Bs,C), !, constants([C|Bs],Cs).
constants(Bs,Cs) -->

nonempty(Tokens), !, {Cs=[error(constants,Tokens)|Bs]}.
constants(Bs,Bs) --> [].

nonempty([T|Ts]) --> [T], anything(Ts).
anything([T|Ts]) --> [T], !, anything(Ts).
anything([]) --> [].

In constdef(Bs,C) below, the condition atom(Id) means that Id is not
an error term, that is, it can be defined as a constant. If Expr contains an er-
ror term, its evaluation raises an exception. [Otherwise numerical errors (zero
divisor, arithmetic overflow) are still possible, but here is only the general
error(expression,Id=Expr) notation for them, in order to reduce complex-
ity.]
constdef(Bs,C) -->

const(Bs,Id), [=], expr(Bs,Expr), [’.’], !,
{ atom(Id), catch(Val is Expr, _, fail) -> C = (Id=Val)
; atom(Id) -> C = error(expression,Id=Expr)
; catch(Val is Expr, _, fail) ->

C = error(constant,Id=Val)
; C = error(constant_and_expression,Id=Expr)
}.

% Basic problem with the constant definition:
constdef(_Bs,error(constdef_syntax,Ts)) -->

constdef_error(Ts).

constdef_error([’.’]) --> [’.’], !.
constdef_error([X|Xs]) --> [X], constdef_error(Xs).

As usually, at the level of expr(Bs,Expr), only the basic structure of the
exression is checked:

8 TIBOR ÁSVÁNYI

expr(Bs,Expr), [’.’] -->
operand(Bs,X), operator(Op), operand(Bs,Y), [’.’], !,
{ atom(Op) -> Expr =.. [Op,X,Y] % Op is a legal operator
; Expr = [X,Op,Y] % Op is not a legal operator
}

% Basic problem with the struct of the expression:
expr(_Bs,error(expression_syntax,Ts)) -->

expression_error(Ts).

expression_error([]), [’.’] --> [’.’], !.
expression_error([X|Xs]) --> [X], !, expression_error(Xs).
expression_error([]) --> [].

operator(Operator) --> [Op],
{ op(Op) -> Operator = Op
; Operator = error(operator,Op)
}.

op(+). op(-). op(*). op(//). op(mod).

operand(_Bs,X) --> [Y], { integer(Y), !, X = Y }.
operand(Bs,X) --> id(Y), !,

{ member(Y=Z,Bs) -> X = Z
; X = error(undefined,Y)
}.

operand(_Bs,X) --> [Y], { X = error(operand_syntax,Y) }.

At last we describe the analysis of the name of the constant being defined.
const(Bs,Id) --> id(Y), !,

{ member(Y=_Z,Bs) -> Id = error(redefined,Y)
; Id = Y
}.

const(_Bs,error(non_id_constant_symbol,X)) --> [X].

id(Id) --> [Id], {is_id(Id)}. % Predicate is_id/1 is unchanged.

One finds each kind of error terms in the answer to the following Prolog
question:

DCGS FOR PARSING AND ERROR HANDLING 9

| ?- _Tokens = [a,=,1,+,1,., ’A1’,=,a,-,1,., b,=,3,*,’A’,.,
c3,=,b,//,a,., a,=,b,rem,4,., 6,=,b,.],

constants(Defs,_Tokens,[]).

Defs = [a=2,
error(constant,error(non_id_constant_symbol,’A1’)=1),
error(expression,b=3*error(operand_syntax,’A’)),
error(expression,c3=error(undefined,b)//2),
error(constant_and_expression,

error(redefined,a)=
[error(undefined,b),error(operator,rem),4]),

error(constant_and_expression,
error(non_id_constant_symbol,6)=
error(expression_syntax,[b]))]

5. Conclusion

We have seen general guidelines on how to develop a DCG, in order to parse
an input text regarding a language L, while we give the internal, semantical
representation of this input, if it is correct or not.

Surely, this is a programming methodology – a kind of structured pro-
gramming – specialised for DCGs.

Our achievements can be summarised as follows.

• Step-by-step refinement of a DCG makes its development easier.
• Error handling with DCGs is natural if we add error alternatives to

the rules describing the language.
• Provided that T is an abc, and L ⊆ T ∗ is the language to be described;

when we add error alternatives to the original rules describing L, we
augment the semantics of L with the semantics of T ∗ \ L, which is
called the error semantics of L.

At last, the semantics of the whole T ∗ is given. It can be called the full
semantics of L over T . The author believes, this is a novel approach to writing
parsers in general.

There is a much more complex example here:

http://aszt.inf.elte.hu/~asvanyi/pl/cm/pas/

Future work could show the usefulness of this approach through its appli-
cation to practical programming languages. Another possibility is to give the
full semantics of languages using other approaches to semantics.

10 TIBOR ÁSVÁNYI

6. Acknowledgement

The European Union and the European Social Fund have provided finan-
cial support to the project under the grant agreement no. TÁMOP 4.2.1./B-
09/KMR-2010-0003.

References

[1] P. Deransart, A.A. Ed-Dbali, L. Cervoni, Prolog: The Standard (Reference Manual),
Springer-Verlag, 1996.

[2] Ulf Nilsson, AID: An Alternative Implementation of DCGs, New Generation Computing,
No 4, Vol 4 (1986), pp. 383-399.

[3] Richard O’Keefe, The Craft of Prolog, The MIT Press, 1990.
[4] Jukka Paakki, A practical implementation of DCGs, Lecture Notes in Computer Science,

Volume 477/1991, Springer(1991), pp. 224-225.
[5] F. Pereira, D. Warren, Definite clause grammars for language analysis, Artificial Intelli-

gence, Elsevier, 1980.
[6] L. Sterling, E. Shapiro, The Art of Prolog (Second Edition), The MIT Press, London,

England, 1994.
[7] David H. D. Warren, Logic programming and compiler writing, Software: Practice and

Experience, Volume 10 Issue 2, Copyright: 2010 John Wiley & Sons, Ltd. (Published
Online: 27 Oct 2006) pp. 97-125.

[8] Documentation for SICStus Prolog 4, Swedish Institute of Computer Science, Kista,
Sweden, 2010.
(http://www.sics.se/isl/sicstuswww/site/documentation.html)

Faculty of Informatics, Eötvös Loránd University, Budapest XI. Pázmány
Péter sétány 1/C, H-1117, HUNGARY

E-mail address: asvanyi@inf.elte.hu

