
Attribute Grammar-based Language Extensions

for Java?

Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and Derek Bodin

Department of Computer Science and Engineering
University of Minnesota

Minneapolis, MN 55455, USA
evw,krishnan,bodin,schwerdf@cs.umn.edu

Abstract. This paper describes the Java Language Extender frame-
work, a tool that allows one to create new domain-adapted languages
by importing domain-specific language extensions into an extensible im-
plementation of Java 1.4. Language extensions may define the syntax,
semantic analysis, and optimizations of new language constructs. Java
and the language extensions are specified as higher-order attribute gram-
mars. We describe several language extensions and their implementation
in the framework. For example, one embeds the SQL database query lan-
guage into Java and statically checks for syntax and type errors in SQL
queries. The tool supports the modular specification of composable lan-
guage extensions so that programmers can import into Java the unique
set of extensions that they desire. When extensions follow certain restric-
tions, they can be composed without requiring any implementation-level
knowledge of the language extensions. The tools automatically compose
the selected extensions and the Java host language specification.

1 Introduction

One impediment in developing software is the wide semantic gap between the
programmer’s high-level (often domain specific) understanding of a problem’s
solution and the relatively low-level language in which the solution must be
encoded. General purpose languages provide features such as classes, gener-
ics/parametric polymorphism, and higher-order functions that programmers can
use to specify abstractions for a given problem or problem domain, but these
provide only the functionality of the desired abstractions. Domain-specific lan-
guages (DSLs) can be employed to provide this functionality, but they can also
provide domain-specific language constructs (new syntax) for the abstractions.
These constructs raise the level of abstraction of the language to that of the
specific domain and thus help to reduce the semantic gap. As importantly, do-
main specific languages also provide domain-specific optimizations and analyses
that are either impossible or quite difficult to specify for programs written in

? This work is partially funded by NSF CAREER Award #0347860, NSF CCF Award
#0429640, and the McKnight Foundation.

general purpose languages. But problems often cross multiple domains and no
language will contain all of the general-purpose and domain-specific features
needed to address all of the problem’s aspects, thus the fundamental problem
remains — programmers cannot “say what they mean” but must encode their
solution ideas as programming idioms at a lower level of abstraction. This process
is time-consuming and can be the source of errors.

The Java Language Extender: The Java Language Extender (JLE) is a lan-
guage processing tool that addresses this fundamental problem. It supports the
creation of extended, domain-adapted variants of Java by adding domain-specific
language extensions to an extensible implementation of Java 1.4. An extended
language defined by this process has features that raise the level of abstraction
to that of a particular problem. These features may be new language constructs,
semantic analyses, or optimizing program transformations, and are packaged as
modular language extensions. Language extensions can be as simple as a the
Java 1.5 for-each loop or the more sophisticated set of SQL language constructs
that statically check for syntax and type errors in SQL queries. We have also
developed domain-specific extensions to support the development of efficient and
robust computational geometry program and extensions that introduce condi-
tion tables (useful for understanding complex boolean expressions) from the
modeling language RSML−e. Extensions can also be general purpose in nature;
we have defined extensions that add algebraic datatypes and pattern matching
from Pizza [18], add concrete syntax for lists and hashmaps, and others that add
the automatic boxing and unboxing of Java primitive types.

JLE is an attribute grammar-based extensible language framework in which
an extensible host language is specified as a complete attribute grammar (AG)
and the language extensions are specified as attribute grammar fragments. These
are written in Silver, an attribute grammar specification language developed
to support this process. The attribute grammars define semantics of the host
language and the language extensions. Silver also supports the specification of
concrete syntax that is utilized by parser and scanner generators. The Silver
extensible compiler tools combine the AG specifications of the host language
and the programmer selected language extension to create an AG specification
for the custom extended language desired by the programmer. An attribute
grammar evaluator for this grammar implements the compiler for the extended
language. Concrete syntax specifications are similarly composed.

It is important that constructs implemented as language extensions have the
same “look-and-feel” of host language constructs. By this we mean that their
syntax should fit naturally with the host language, error messages should be re-
ported in terms of the extension constructs used by the programmer, not in terms
of their translations to some implementation as is the case with macros. Also,
extension constructs should be efficient and should thus generate efficient trans-
lations. Forwarding [24], an extension to higher-order attribute grammars [30],
facilitates the modular definition of languages and supports the implementation
of constructs that satisfy this look-and-feel criteria. It allows one to implicitly
specify the semantics of new constructs by translation to semantically equivalent

2

constructs in the host Java 1.4 language. For example, an SQL query translates
to a calls to the JDBC library. But it also allows the explicit specification of
semantics since attributes can be defined on productions defining language con-
structs to, for example, check for errors are the extension level. This is the case
with the SQL extension.

In Silver, attribute grammars are package as modules defining either a host
language or a language extension. Module names, like Java packages, are based
on Internet domains to avoid name clashes. The module edu:umn:cs:melt:java14
defines Java 1.4 and defines the concrete syntax of the language, the abstract
syntax and the semantic analyses required to do most type checking analyses
and to do package/type/expression name disambiguation. The grammar defines
most aspects of a Java compiler but it does not specify byte-code generation.
Language extensions add new constructs and their translation to Java 1.4 code;
a traditional Java compiler then converts this to byte-codes for execution. The
static analysis we perform is to support analysis of extensions and to ensure
that any statically detectable errors (such as type errors and access violations)
in the extended Java language are caught so that erroneous code is not gener-
ated. Programmers should not be expected to look at the generated Java code;
errors should be reported on the code that they write.

Of particular interest are language extensions designed to be composable

with other extensions, possibly developed by different parties. Such extensions
may be imported by a programmer into Java without requiring any implemen-
tation level knowledge of the extensions. Thus, we make a distinction between
two activities: (i) implementing a language extension, which is performed by a
domain-expert feature designer and (ii) selecting the language extensions that
will be imported into an extensible language specification in order to create an
extended language. When extensions are composable, this activity can be per-
formed by a programmer. This distinction is similar to the distinction between
library writers and library users. Thus a programmer, facing a geometric prob-
lem in which the geometric data is stored in a relational database may import
into Java both the SQL extension and the computational geometry extension
to create a unique domain-adapted version of Java that has features to support
both of these aspects of her problem.

The goal of composability does restrict the kind of features that can be added
to a language in a composable language extension. The primary determinant is
the type of transformations (global or local) that are used to translate the high-
level extension constructs into the implementation language of Java 1.4. If global
transformations are required in translating to the host language then the order
in which these reductions are made may matter and selecting this ordering would
require that the programmer has some implementation level knowledge of the
implementation of the extensions being imported. Thus, composable extensions
(which include those listed above) use primarily local transformations.

Contributions The paper shows how general purpose languages, in this case
Java 1.4, can be implemented in such a way that rich domain-specific and gen-
eral purpose language features can be imported to create new extended lan-

3

guage adapted to particular problems and domains. Two key characteristics of
the extensions presented here are that they perform semantic analysis at the
language extension level and that they are composable. Thus, it is feasible that
programmers, with no implementation-level knowledge of the extensions, can im-
port the set of extensions that address a particular problem. Note however that
JLE can also be used to define non-composable extensions introduce features
that require fundamental alteration or replacement of host language constructs.
Section 2 shows several sample language extensions, Section 3 describes the at-
tribute grammar based implementation of Java 1.4 and some selected extensions.
Section 4 shows how extensions are composed, discusses analyses of extension
specifications, and briefly described an integrated parser/scanner that support
composition of concrete syntax specifications. Section 5 describes related and
future work and concludes.

2 Sample Language Extensions

Several composable extensions have been specified and implemented for the host
Java 1.4 language and we describe several of them here. Samples uses and their
translations to the host language are given as well as short descriptions of the
unique characteristics of each extension. Others are described during the de-
scription of the Java 1.4 host language specification.

SQL: Our first extension embeds the database query language SQL into Java
allowing queries to be written in a natural syntax. The extension also statically
detects syntax and type errors in embedded queries. A previous workshop pa-
per [23] reports the details of this language extension but we discuss it here and
in Section 3.3 to describe how it interacts with and extends the environment
(symbol-table) defined in the Java attribute grammar. Figure 1 shows an ex-
ample of code written using the SQL extension to Java 1.4. The import table

construct defines the table person and its columns along with their types. For
example, the column person id has SQL type INTEGER. This information is used
to statically type check the SQL query in the using ... query construct. Thus,

public class Demo {

public static void main(String args) {

import table person [person_id INTEGER, first_name VARCHAR,

last_name VARCHAR, age INTEGER] ;

int limit = 25 ;

connection c = "jdbc:/db/testdb;";

ResultSet rs = using c query

{SELECT last_name FROM person WHERE age > {limit} } ; } }

Fig. 1. Code using the SQL extension to Java 1.4

if the column age had type VARCHAR (an SQL string type) instead of INTEGER

4

the extension would report the type error on the > expression at compile time
instead of at run-time as is done in the JDBC [32] library-based approach. The
extension translates SQL constructs to pure Java 1.4 constructs that use the
JDBC library as shown in Figure 2. Here the SQL query is passed as a Java
String to the database server for execution. When queries are written this way,
statically checking for syntax or type errors requires extracting queries from the
Java strings and reconstructing them. This is much more difficult than when the
query constructs can be examined directly as is possible in the SQL extension.

public class Demo {

public static void main(String args) {

int limit = 25 ;

Connection c = DriverManager.getConnection("jdbc:/db/testdb;");

ResultSet rs = c.createStatement().executeQuery((

"SELECT "+" last_name "+" FROM "+" person "+" WHERE "+" age "+

" > " + (limit))) ; } }

Fig. 2. Equivalent code in Java 1.4

Complex Numbers: This extension adds complex numbers as a new prim-
itive type to Java 1.4. This extension specifies the new type, means for writing
complex number literals and subtype relations with existing host language types,
for example that the new type is a super-type of the host language double type.
It also specifies productions to coerce double-valued types into the new type.
Thus, in the code fragment double d; complex c; d = 1.4; c = d + 1.7;

c = complex(1.2,2.3); written in a version of Java extended with the com-
plex number type the first assignment to c first translates to c = complex(d +

1.7,0.0); after which the complex literals translate to calls to constructors for
the Java class Complex constructor that implements the complex number type.
Finally, this extension also overloads the arithmetic operators, such as + and *.
It is further described in Section 3.2.

C++ allows operator overloading as well. But in the attribute grammar-
based extensible language approach proposed here, there are mechanisms for
optimizing new numeric types that do not exist in C++. Thus, the production
for complex add may optimize the operands before performing the addition.

Computational Geometry: More interesting opportunities for optimiza-
tion are prevalent in the domain of computational geometry and we have specified
numerical types for unbound-precision integers in a language extension [25] for
this domain. This extension was developed for a small C like language and takes
advantage of domain knowledge that unavailable in general purpose language
and library based implementations, to perform optimizations that generated C
language code 3 to 20 times faster than the equivalent code utilizing the CGAL
geometric library - typically regarded as the best C++ template library for the
domain.

5

Algebraic Datatypes: JLE
can also be used to specify gen-

algebraic class List {

case Nil;

case Cons (char, List);

public List append (List ys) {

switch (this) {

case Nil:

return ys;

case Cons (x, xs):

return new Cons (x, xs.append (ys));

}

return null; }

}

Fig. 3. Code using a version of Java extended
with Pizza-style algebraic datatypes

eral purpose language extensions.
We have written an extension
that extends Java 1.4 with Pizza-
style [18] algebraic datatypes.
Figure 3 shows code in this ex-
tended version of Java inspired
by the examples in [18]. The ex-
tension translates to this pure
Java 1.4 code the adds new Nil

and Cons subclasses of List. The
subclasses have a tag field used
to identify them as nil or cons
objects and fields on Cons for
the char and List parameters
to the Cons constructor in Fig-
ure 3 The translation of the pattern matching switch statement is a nested
if-then-else construct that uses the tag field to determine the constructor in
place of pattern matching.

3 Extensible Java and Java Extension Specifications

In this section we describe the Silver AG specifications that define the host lan-
guage Java 1.4 and describe several composable language extensions. We have
simplified some minor features of the grammar to aid presentation and to focus
on aspects that are important while specifying extensions. Thus the interac-
tion of the extensions with the type checking and environment (symbol-table)
specifications are highlighted.

In addition to the traditional AG constructs introduced by Knuth [15], Sil-
ver supports higher-order attributes [30], forwarding [24], collection attributes [3]
and various general-purpose constructs such as pattern matching and type-safe
polymorphic lists. Silver also has mechanisms for specifying the concrete syntax
of language constructs. These specifications are used to generate a parser and
scanner for the specified language. Language extensions are specified as AG frag-
ments, also written in Silver. New production define new language constructs,
new attribute declarations and definitions on productions define semantic anal-
yses such as type checking and the construction of optimized translations of
constructs (in higher-order attributes).

Silver’s module system combines the host language specification and the se-
lected language extension specifications to create the AG specification defining
the new extended language. This process is described in Section 4.1. A Silver
module names a directory, not a file, and the module consists of all Silver files
(with extension .sv) in that directory. The scope of a declaration includes all
files in the module.

6

Section 3.1 describes part of the Java 1.4 host language AG specification.
Section 3.2 describes how extensions interact with the typing and subtyping
information collected and processed by the host language AG. Section 3.3 shows
how extensions interact with and extend the environment (symbol-table) defined
by the host language AG.

Due to space considerations, these specifications are necessarily brief and
have been simplified so that the main concepts are not obscured by the details
required in building real languages.

3.1 Java attribute grammar specification

A small simplified portion of the Java 1.4 host-language AG specification is
shown in Figure 4. A Silver file consists of the grammar name, grammar import
statements (there are none here) and an unordered sequence of AG declarations.
The specification first defines a collection of non-terminal symbols; the non-
terminal CompilationUnit is the start symbol of the grammar and represents
a .java file. Nonterminals Stmt, Expr, and Type represent Java statements,
expressions, and type expressions respectively. Other nonterminals are declared
(but not shown) for class and member declarations. The nonterminal TypeRep is
used by abstract productions to represent types. Next is the declaration for the
terminal symbol Id that matches identifiers with an associated regular expression
. The terminal declaration for the while-loop keyword follows and provides the
fixed string that it matches (indicated single quotes).

Concrete productions and the incident nonterminals and terminals are used
to generate a parser and scanner. The parser/scanner system is further discussed
in Section 4.3. In the specification here attribute evaluation is done on the con-
crete syntax as this simplifies the presentation. In the actual AG the concrete
syntax productions are used only to generate the abstract syntax trees over
which attribute evaluation is actually performed. Aspect productions, which are
used later, allow new attribute definitions to be added to existing concrete or
abstract productions from a different file or grammar module.

Several synthesized attributes are also defined. A pretty-print String at-
tribute pp decorates (occurs on) the nonterminals Expr, Stmt, and others. The
errors attribute is a list of Strings and occurs on nearly all nonterminals.
The typerep attribute is the representation of the type used internally for type-
checking. It is a data structure (implemented as a tree) of type TypeRep and
decorates Type and Expr nonterminals. For each nonterminal NT in the host lan-
guage there is a synthesized attribute hostNT of type NT. On a node of type NT

it holds that node’s translation to the host language. These attributes are used
to extract the host language Java 1.4 tree from the tree of an extended Java
language program. This is discussed further in the context of extensions below.

Following these are two productions, one defining the while loop, one defining
local variable declarations. The environment attributes defs and env implement
a symbol table and are described further in Section 3.3. Silver productions name
the left hand side nonterminal and right hand side parameters (terminals, nonter-
minals, or other types) and borrow the Haskell “has type” syntax :: to specify,

7

for example, that the third parameter to the while production is named cond and
is a tree of type nonterminal Expr. Attribute definitions (between curly braces)
follow the production’s signature. For the while loop the definition of the errors
attribute uses pattern matching to check that condition is of type Boolean. Pat-
tern matching in Silver is similar to pattern matching in ML and Haskell. In
Silver however, nonterminals play the role of algebraic types and productions
play the role of value constructors.

Type representations (trees of type TypeRep) are constructed by the produc-
tions doubleTypeRep and arrayTypeRep and used to create type representations
on Type nodes, as in doubleType. One attribute on a typerep is superTypes

which is a list of super types of that particular type along the means for con-
verting to the super type if runtime conversion is required. This attribute is
a collection attribute (similar to those defined by Boyland [3]). It allows as-
pect productions to contribute additional elements to the attribute value. In the
doubleTypeRep production, the superTypes attribute is given an initial value
(using the distinct assignment operator :=) of the empty list since it has no
super types in Java 1.4. The complex number extension will specify an aspect
production on doubleTypeRep and contribute to this list of super types to indi-
cate that the complex number type is a super type of double. This is described
in Section 3.2. We have elided some details here since the manner in which
type representations are implemented is not as important as how extensions can
interact with the JavaAG to define new types.

3.2 Types and subtyping in Java AG and its extensions

Types and subtyping are important aspects of Java and therefore in extensions
to Java. Thus the host language specification must provide the mechanisms for
examining the types of expressions, defining new types, specifying new subtype
relationships, and checking if one type is the subtype of another. For example,
if a new type for complex number is specified in an extension how can this new
type interact with existing host language types? How can we specify that the
Java double type is a subtype of the new complex number type? How can this
be done in a composable manner? This section shows the Java AG for examining
and creating types through the specification of two composable extensions: the
enhanced-for loop in Java 1.5 and a complex number type.

Enhanced for-loop extension: Here, we show how to add the enhanced for

loop from Java 1.5 as a composable extension to the Java 1.4 AG specifica-
tion. This extension is quite simple and not very compelling since the construct
now exists in Java 1.5. However, we discuss it because its semantics are well
understood and it illustrates several concepts in writing extensions and using
parts of the type checking infrastructure of the Java AG. The construct allows
the programmer to specify loops that iterate over the members of any array

8

grammar edu:umn:cs:melt:java14;

start nonterminal CompilationUnit ;

nonterminal Expr, Stmt, Type, TypeRep ;

terminal Id / [a-zA-Z][a-zA-Z0-9_]* / lexical precedence = 5 ;

terminal While_t ’while’ lexical precedence = 10 ;

synthesized attribute pp :: String occurs on Expr, Stmt, Type ...;

synthesized attribute errors :: [String] occurs on Expr, ... ;

synthesized attribute typerep :: TypeRep occurs on Type, Expr ;

synthesized attribute hostStmt :: Stmt occurs on Stmt ;

synthesized attribute hostExpr :: Expr occurs on Expr ;

synthesized attribute hostType :: Type occurs on Type ;

concrete production while

s::Stmt ::= ’while’ ’(’ cond::Expr ’)’ body::Stmt

{ s.pp = "while (" ++ cond.pp ++ ") \n" ++ body.pp ;

cond.env = s.env ; body.env = s.env ;

s.errors = case cond.typerep of

booleanTypeRep() => []

| _ => ["Error: condition must be boolean"]

end ++ cond.errors ++ body.errors ;

s.hostStmt = while(cond.hostExpr,body.hostStmt); }

concrete production local_var_dcl s::Stmt ::= t::Type id::Id ’;’

{ s.pp = t.pp ++ " " ++ id.lexeme ++ ";"

s.defs = [varBinding (id.lexeme, t.typerep)] ;

s.hostStmt = local_var_dcl(t.hostType,id); }

concrete production idRef e::Expr ::= id::Id

{ e.typerep = ... extacted from e.env ... ;

e.errors = ... ; e.hostExpr = idRef(id); }

synthesized attribute superTypes :: [SubTypeRes] collect with ++ ;

attribute supreTypes occurs on TypeRep ;

concrete production doubleType dt::Type ::= ’double’ ;

{ dt.pp = "double"; dt.typerep = doubleTypeRep() ; }

abstract production doubleTypeRep dtr::TypeRep ::=

{ tr.name = "double" ; tr.superTypes := [] ; }

abstract production arrayTypeRep atr::TypeRep ::= elem::TypeRep

{ tr.name = "array" ; tr.superTypes := [] ; }

Fig. 4. Simplified Java host language Silver specification.

9

ArrayList herd = ... ;

for (Cow c: herd) {

c.milk ();

}

(a)

ArrayList herd = ... ;

for (Iterator _it_0 = herd.iterator();

_it_0.hasNext();) {

Cow c = (Cow) _it_0.next(); c.milk(); }

(b)

Fig. 5. Use of enhanced-for statement (a), and its translation to Java 1.4 (b).

or expression of type Collection1 that implement the Iterator, hasNext and
next methods. Figure 5(a) shows a fragment of code that uses the enhanced
for construct. It uses forwarding to translate this code into the Java 1.4 code in
Figure 5(b) that makes explicit calls to methods in the Collection interface.

The grammar module edu:umn:cs:melt:java14:exts:foreach contains the
specification of the enhanced-for extension and defines a new production and
attribute definitions. Figure 6 shows part of the specification. This grammar im-
ports the host Java language grammar since it utilizes constructs and attribute
defined in that grammar. The concrete production enhanced for defines the
concrete syntax of the new construct and provides explicit definitions for the pp

and errors attributes. The extension does not declare any new terminal, nonter-
minals or attributes but uses those defined in the host language. The definition
of the pp attribute is straightforward and is used in the generated error message
if a type-error exists. This occurs if the type of the expression coll is not a sub-
type of the Collection interface or is not an array type. This check is realized
by examining the node (stored in local attribute st res of type SubTypeRes)
returned by the subTypeCheck function and pattern matching the type against
the arrayTypeRep() tree. The SubTypeRes node is decorated with a boolean
attribute isSubType that specifies if coll.typerep is a subtype of the TypeRep

for Java Collection interface returned by the helper function getTypeRep.

The subTypeCheck function, the SubTypeRes nonterminal, and productions
for building trees of this type are part of the Java host language AG framework
that extension writers uses to access the typing information maintained by the
host language. This use of semantic information at the language extension level
distinguishes AG based extensions from macros.

The enhanced for production also uses forwarding [24], an enhancement
to higher-order AGs, to specify the Java 1.4 tree that the node constructed
by the enhanced for production translates to. Pattern matching and st res

are used again here in determining whether the enhanced for translates to a
for loop with iterators (stored in the local attribute for with iterators) or
a for loop that increments an integer index to march across an array (stored
in the attribute for over array). The definitions of these attributes are elided
here but use host language productions and the trees t, id, coll, and body to
construct the appropriate tree as expected. The value of for with iterators

1 Java 1.5 introduces the Iterable type for use in the enhanced for loop. Since
Collection is the similar type in Java 1.4, we use it here.

10

grammar edu:umn:cs:melt:java14:exts:foreach;

import edu:umn:cs:melt:java14;

concrete production enhanced_for

f::Stmt ::= ’for’ ’(’ t::Type id::Id ’:’ coll::Expr ’)’ body::Stmt {

f.pp = ...

f.errors = if st_res.isSubType || match(e.typerep,arrayTypeRep(_)) then []

else ["Enhanced for " ++ f.pp ++ " must iterate over Collections or arrays."];

forwards to if st_res.isSubType then for_with_iterators

else case e.typerep of

arrayTypeRep(_) => for_over_array

| _ => skip() end ;

local attribute st_res :: SubTypeRes ;

st_res = subtypeCheck(coll.typerep, getTypeRep("Collection") ;

local attribute for_with_iterators :: Stmt ;

for_with_iterators = ... ;

local attribute for_over_array :: Stmt ;

for_over_array = ... ;

}

Fig. 6. Silver code that implements the enhanced for statement

for the enhanced for in Figure 5(a) can be seen in Figure 5(b).

Forwarding provides an implicit definition for all synthesized attributes not
explicitly defined by the production. When an enhanced-for node is queried
for its host Stmt attribute (its representation as a host language construct) it
forwards that query to the pure Java 1.4 construct defined in the forwards to

clause. That tree then returns its translation. The Java 1.4 tree does not simply
return a copy of itself since its children, body for example, may contain instances
of extension constructs that must be “translated away” in a similar fashion.

Complex numbers Adding a new complex number type as a language exten-
sion requires specifying new type expressions and adding new subtype relation-
ships – in this case, specifying that the Java double type is a subtype of the
introduced complex type.

So that complex numbers types can be present in, for example, local vari-
able declarations, the complex number extension grammar defines the terminal
symbol Complex t which matches the single string “complex” and the produc-
tion complexType seen in Figure 7. The complex type constructs are trans-
lated via forwarding to references to a Java class Complex that implements
complex numbers. This is packaged with the language extension. The type
representation typerep of complex numbers is constructed by the production
complexTypeRep. The production complexLiteral specifies complex number
literals. It defines such expressions to have the type (typerep) of Complex num-
bers (complexTypeRep()) and checks that r and i have the correct type. The

11

grammar edu:umn:cs:melt:java14:exts:complex ;

import edu:umn:cs:melt:java14;

terminal Complex_t ’complex’ ;

concrete production complexType t::Type ::= ’complex’

{ t.typerep = complexTypeRep(); forwards to ‘‘Complex number class’’ }

concrete production complex_literal

c::Expr ::= ’complex’ ’(’ r::Expr ’,’ i::Expr ’)’

{ c.pp = "complex (" ++ r.pp ++ "," ++ i.pp ++ ")" ;

c.errors = ... check that r and i have type double ... ;

forwards to ‘‘new Complex(r, i)’’ ; }

abstract production complexTypeRep tr::TypeRep ::=

{ d.superTypes := [mkComplexToComplex()] ; }

aspect production doubleTypeRep d::TypeRep ::=

{ d.superTypes <- [mkDoubleToComplex()] ; }

abstract production mkDoubleToComplex t::SubTypeRes ::=

{ t.isSubType = true ; t.supertype = complexTypeRep() ;

t.converted = complex_literal(‘‘complex’’, ‘‘(’’, t.toConvert,

‘‘,’’, ‘‘0.0’’, ‘‘)’’); }

Fig. 7. Portion of complex number language extension specification.

definition of the errors attribute is omitted here but it uses pattern matching
as was done earlier in the while loop in Figure 4.

Adding new subtype relationships: To achieve a natural, close integration of the
extension and the host language, the host language AG provides mechanisms
for specifying new subtype relations and means for run-time conversion. Host
language productions like the assignment production utilize this information to
implement the complex number translation steps illustrated in Section 2.

The aspect production doubleTypeRep in Figure 7 adds a new super type
to Java doubles. This is realized by contributing a new super type element (of
type SubTypeRes) (constructed by production mkDoubleToComplex) to the col-
lection attribute superTypes that decorate TypeReps. The information in each
super type in doubleTypeRep’s superTypes is used by the Java AG function
subTypeCheck to determine if doubleTypeRep is a subtype of another specified
type. If so, the function returns the super type (SubTypeRes) tree, which in-
cludes functionality for run-time conversion, if needed. The mkDoubleToComplex
production builds a tree that sets the isSubType attribute to true and the
supertype attributes to the complex number TypeRep. It plays the role of a
function that creates the Expr tree that performs the run-time conversion of a
yet-to-be-specified input double-typed Expr. The inherited attribute toConvert
plays the role of the function input and the synthesized attribute converted

plays the role of the output. It is set to the complex literal constructed from the
input double expression and the literal 0.0. The terminal symbols and literal

12

0.0 are shown as strings in the stylized definition of converted. In the actual
specification they need to properly typed terminals and Expr nonterminals.

grammar edu:umn:cs:melt:java14 ;

nonterminal SubTypeRes ;

synthesized attribute superType :: TypeRep ;

synthesized attribute converted :: Expr ;

inherited attribute toConvert :: Expr ;

concrete production assign

a::StmtExpr ::= lhs::Expr ’=’ rhs::Expr ’;’ {

a.pp = lhs.pp ++ " = " ++ rhs.pp ++ ";" ;

local attribute res :: SubTypeRes ;

res = subTypeCheck(lhs.typerep,rhs.typerep);

res.toConvert = rhs ;

a.errors = if length(a.transformed) == 1 then []

else if length(a.transformed) == 0 then [...type error...]

else [... internal error, multiple translations];

local attribute transformed :: [StmtExpr] collect with ++ ;

a.transformed := if ! res.isSubType then []

else [converted_assign(lhs, res.converted)] ;

forwards to if length (a.transformed) != 1 then skip()

else head (a.transformed) ;

}

abstract production converted_assign a::StmtExpr ::= l::Expr r::Expr {...}

Fig. 8. Portion of Java host language specification.

To see how this information is used, consider the host language assignment
production assign specified in Figure 8. It calls subTypeCheck to check if the
type of the expression on the right hand side (rhs.typerep) is a subtype of the
type of the left hand side expression (lhs.typerep). The synthesized attribute
converted and inherited attribute toConvert, both of type Expr act as the func-
tion described above that creates the expression tree whose type is lhs.typerep
and performs any run-time conversion on the rhs to give it the type of lhs. For
Java 1.4 classes, res.converted is the same tree as res.toConvert since no
source-level conversion are needed. This provide the extension point or “hook”
that language extensions that introduce new types will use.

The assign production forwards to an assignment in which the run-time con-
version is applied to the rhs tree. This assignment is created by the converted assign

production. The transformed attribute is a collection attribute that holds the
trees to which the initial assignment assign will forward. If lhs is a subtype
of rhs then the new assignment is added to the list, otherwise it is initially
empty. If transformed has exactly one element, then no errors are generated.
If it has zero elements, then the lhs and rhs are not compatible. It is possible

13

for aspect productions on assign to add new elements to transformed (as the
autoboxing/unboxing extension does below) so that if there is more than one
element, then an error is raised since a decision cannot be made as to which
one to forward to. If transformed has exactly one element, then that is what

aspect production assign a::StmtExpr ::= lhs::Expr ’=’ rhs::Expr ’;’

{ a.transformed <- if match(lhs.typerep, getTypeRep("Integer") &&

match (rhs.typerep, intTypeRep())

then [converted_assign (l, ‘‘new Integer (rhs)’’)] else []; }

Fig. 9. Portion of the autoboxing/unboxing extension specification.

assign forwards to – otherwise and error will have been raised and it forwards
to the skip statement.

Complex numbers can be implemented as reference types (so that references
instead of values are copied) or as primitive types. The extension designer makes
this decision in implementing mkComplexToComplex. The converted attribute
implement either option. Similar productions for other “copy” operations (pa-
rameter passing) exist in the Java AG and can be similarly extended.

The definition of the host language assignment is not trivial - but the com-
plexity arises because it is designed to be extended later and we want the defi-
nitions of the extensions to be the simpler ones to write. If there is no discipline
in adding new elements to the subtype relationship, then extension composition
could introduce non-trivial circular subtype relations. This can be avoided if ex-
tension writers adhere to the guideline of not adding a set of subtype relations
in which a host type as both the subtype and the supertype.

Autoboxing/unboxing Java 1.5 autoboxing and unboxing can also be added
as an extension to the Java 1.4 host language. This is done by adding to the
transformed collection attribute on the assign production in Figure 8. The
aspect production in Figure 9 adds the boxing of primitive type int to class
Integer by checking that lhs and rhs have the appropriate types. When they
do, the transformed attribute in assign will contain only the assignment con-
structed by the converted assign production and the use of the Integer class
constructor shown in the contribution to the attribute. (The <- operator adds
the value of the following expression to the collection attribute, folding up
all such values using the specified collect with operator, ++ in the case of
transformed.) Note that this production is not adding to the subtype relation-
ship, but simply overloading the assignment operator when lhs and rhs have
the specified types. Overloading of other operators is accomplished in a similar
manner.

14

nonterminal EnvItem ;

synthesized attribute env_items :: [EnvItem];

nonterminal Scope with scope_type, env_items;

synthesized attribute defs :: [EnvItem] ;

inherited attribute env :: [Scope];

abstract production varBinding

e::EnvItem ::= name::String dcl::TypeRep {...}

function addLocalScope

[Scope] ::= items::[EnvItem] enclosing_env::[Scope] {...}

-- lookUp returns typereps of name from nearest matching enclosing scope

function lookUpVar [TypeRep] ::= name::String env::[Scope] {...}

Fig. 10. The API of the JLE environment.

3.3 Using and extending the Java environment

Semantic analysis performed on a node in the syntax tree often requires in-
formation from another node. For example type-checking a variable expression
requires information from the syntax tree node where the variable was declared.
Similarly, access to an object might depend on its permission level, again set on
its declaration. Attribute grammars pass such information around the abstract
syntax tree using a combination of synthesized and inherited attributes.

In JLE, declarations for the environment are collected using the synthesized
attribute defs, a list of environment items (EnvItem). These are passed up to
the tree until a production that defines a new local scope, such as the enhanced-
for production in Figure 6. It adds the definitions to the inherited environment
attribute env that is passed down the tree for use by, for example, variable
references. In the enhanced-for production, the following attribute definition
performs this task:

body.env = addLocalScope([varBinding(id.lexeme,t.typerep)], f.env);

The varBinding production is used to create the data-structure binding the
name of the identifier to its type representation. (In practice, more information
than just the identifiers type is needed, but we’ve omitted those details here.)
Figure 10 contains a partial specification of the nonterminals, productions, and
functions used to pass declaration information to the parts of the syntax tree
where it is used. It is important that language extensions, such as the enhanced-
for, can contribute to this process.

The env attribute is a list of scopes; each stores bindings of various kinds for
a particular scope in the object program as a list of EnvItems in the attribute
env items, as seen in Figure 10. These bindings are represented by trees created
by different productions, varBinding being one example. The environment con-
tains scopes for top level declarations in the current file, declarations from other
files in the same package, single-type named imports, and on-demand imports.

15

Other scopes may be created and added to when needed, for example within
methods and inner class definitions.

While the enhanced-for loop only uses existing host language constructs for
manipulating the environment, other extensions may want to add new kinds of
information to the environment. The SQL extension extends the environment to
contain the type representations of the tables and columns defined in the import
table constructs shown above. As the environment is defined, the specifications
in the enhanced-for loop and the SQL extension work together so that an SQL
query enclosed in an enhanced-for loop can extract from the environment the
definitions added by any import table constructs.

grammar edu:umn:cs:melt:java14:exts:sql ;

import edu:umn:cs:melt:java14 ;

concrete production sqlImport

s::Stmt ::= ’import’ ’table’ t::Id ’[’ columns::SqlColTypes ’]’ ’;’ {

s.defs = [varBinding (t.lexeme, tableTypeRep (columns.defs))]; }

abstract production tableTypeRep tr::TypeRep ::= col::[EnvItem] { ... }

inherited attribute sql_env :: [EnvItem];

concrete production sqlQuery

e::Expr ::= ’using’ c::Conn ’query’ ’{’ q::SqlQuery ’}’ { ... }

concrete production sqlSelect

q::SqlQuery ::= ’SELECT’ flds::SqlExprs ’FROM’ t::Id ’WHERE’ cond::SqlExpr {

local attribute result :: [TypeRep] ;

result = lookUp (table.lexeme, q.env);

q.errors = flds.errors ++ cond.errors ++

...ensure that result has length 1 indicating precisely 1 decl for t... ;

columns = if lenght(result) == 1

then case (head(result)).typerep of

tableTypeRep (cols) => cols

| _ => []; -- error raised above.

else [] ;

flds.sql_env = columns; cond.sql_env = columns;

cond.env = q.env; }

Fig. 11. Portion of Silver specification of the SQL extension

Figure 11 shows a small portion of the Silver specification of the SQL lan-
guage extension. Of interest is that the import-table construct adds to the en-
vironment (via defs) a variable binding with a new kind of TypeRep tree con-
structed by the the production tableTypeRep defined in the SQL grammar. This
information propagates up the syntax tree through host language defined pro-
ductions to an enclosing scope-defining production that adds this information
to an inherited env attribute. From here, it flows down the tree, through the
sqlQuery construct to a sqlSelect construct which uses the lookUpVar func-

16

tion to get the list of type representations bound to t in the nearest enclosing
scope that binds t. This list should have length 1, otherwise an error is generated
and columns will be the empty list. The local attribute column is a simplified
SQL environment sql env built as a list of EnvItems that are passed to the
fields flds and condition cond.

The SQL extension uses pattern matching to extract the value for columns

from the TypeRep bound to t. The use of the production name tableTypeRep

which is defined in this grammar and is not visible to other extensions ensures
that the value extracted is what the SQL extension added in the sqlImport pro-
duction. Although other extensions may inappropriately remove bindings from
an environment they may not subtly alter its contents in a manner that is un-
detected by the SQL extension. Similarly, since the production tableTypeRep

is unknown to other extensions, any information contained in the type repre-
sentation is not accessible to other extensions. This ensures that values added
to the environment by one extension construct (SQL import-table) are passed
correctly to another construct (SQL query) even if they pass through constructs
defined in a different extension (enhanced-for). Extensions may incorrectly re-
move elements from the environment, but this type of mistake is dramatic and
tends to arise in all uses of the offending extensions.

4 Composition of Language Extensions

4.1 Composing host language and extension specifications

The declarative syntax and specifications in Silver are easily composed to form
the specification of a new extended language. In Figure 12 is the Silver specifica-
tion for Java extended with the SQL and the computational geometry extension
that implements the randomized linear perturbation (rlp) scheme for handling
data degeneracies in geometric algorithms. What the rlp extension does specif-
ically is not of interest here. This composed extended language has features to
support both the domains of relational database queries and computational ge-
ometry. The import statements import the grammar specifications in the named
Silver module. The with syntax clauses import the concrete syntax specifica-
tions from the named modules to build the parser for the extended language.
The main production is similar in intent to the C main function; here it delegates
to the main production java main in the java14 host specification. The parse

value passed to java main is the parser constructed from the concrete syntax
specifications imported into the module. This is a boiler-plate Silver specification
that can easily enough be generated from the names of the extension grammar
modules which are to be imported into the Java 1.4 host language.

4.2 Issues in Composition

Even though the process of composing language specifications, for both syn-
tax and AG-based semantics, is a straightforward union of the components and

17

grammar edu:umn:cs:melt:composed:java_sql_cg ;

import core ;

import edu:umn:cs:melt:java14 with syntax ;

import edu:umn:cs:melt:java14:exts:sql with syntax ;

import edu:umn:cs:melt:java14:exts:rlp with syntax ;

abstract production main top::Main ::= args::String

{ forwards to java_main(args, parse) ; }

Fig. 12. Composed language Silver specification.

can performed automatically, there may be no guarantee that the resulting lan-
guage specification is well-defined. For example, an undisciplined composition
of concrete syntax productions may lead to ambiguous grammars or may intro-
duce conflicts (shift-reduce or reduce-reduce) into the parse tables for LR-style
parsers. In terms of semantics, combining AG specifications may result in circular
AGs in which an attribute instance may be defined such that its value depends
on itself. If programmers are going to compose extended languages from the com-
posable, modular language extensions proposed here, then detecting or better
yet preventing these sorts of problems becomes critical. There are some analyses
that can be performed at different times that provides some assurance that the
composed language is well-defined.

The table in Figure 13 identifies tools and techniques that perform some
analysis and points in time in which they are performed. The first two analyses
listed along the top relate to syntax specifications, the last two to semantics.
Analysis can be performed by the extension designer during development, it can
be performed when the extensions are composed (perhaps by a programmer)
with the host language specification, or it can be performed dynamically – during
parsing or AG evaluation. (We do not consider analysis during execution of a
program written in an extended language.) These analyses may differ for different
tools and techniques and are thus not precisely the same (or even applicable)
for all approaches. The table is meant to provide a framework for comparing
approaches and understanding the goal of composability in extensible languages.

If an analysis can be performed when the extension designer is implementing
an extension (at design time), then information from that analysis may be used
by the designer to fix any discovered problems. Alternatively, an analysis can
be performed when the a set of extension are composed with the host language.
These analyses may prevent a programmer from using an ill-defined language,
but this analysis may be too late as the person directing the composition of the
extension may not be the extension designer and may not be able to make use
of the information to fix the problem.

A language recognizer, traditionally a scanner, exhibits lexical determinism

if for non-erroneous input it returns exactly one token. A recognizer, tradition-
ally a parser, is syntactically deterministic if for non-erroneous input it returns

18

analyses → lexical syntactic AG termination of
points in time ↓ determinism determinism non-circularity tree construction

Ext. design IPS IPS

Ext. composition Yacc Knuth [15], Vogt [30]

Parse/ AG Eval. SGLR SGLR JastAddII

Fig. 13. Analyses and points in time for analysis.

exactly one syntax tree [15, 30]. An AG specification is non-circular if for any
syntactically valid syntax tree, no attribute instance has a circular definition.
(In AGs with forwarding a similar analysis [24] that ensures that each attribute
instance will have exactly one non-circular definition (defined either explicitly or
implicitly via forwarding) is used, but the distinction is not made here and both
considered as “non-circular” analyses.) A general termination analysis may en-
sure that a finite number of trees are created (via forwarding or in higher-order
attributes in AG systems, or in term rewriting systems).

Visser’s scannerless generalized LR (GLR) parsers [28] do not have a separate
scanner but parse down to the character level. For any context free grammar
(including ambiguous ones) a GLR parser can be created that will parse any valid
phrase in the language of the grammar and return all syntax trees corresponding
to the phrase – for ambiguous grammars more than one tree may be returned
for some phrases. Thus, one does not know until parse time if a single tree
will be generated for a correct input phrase. Disambiguation filters [22] can be
written to filter out undesired trees on ambiguous parses but there is no static
guarantee for the grammar designer that the specified filters ensure syntactic
determinism. Yacc [12] is deterministic and an analysis at composition time
exists, but LALR(1) parsers are somewhat brittle in that seemingly innocuous
additions to a grammar may cause conflicts. This problem is exacerbated when
multiple extensions that add new syntax are combined. Thus, Yacc-like tools may
not be suitable for extensible languages. In Section 4.3 we describe an integrated
parsing and scanning system (IPS) that places some restrictions on the type of
concrete syntax that extension designers can specify. These ensure at extension
design that no conflicts are created when the host language syntax and syntax
from other extensions observing the restrictions are composed

For attribute evaluation circularity/definedness tests exist for standard AGs [15],
higher-order AGs [30], and AGs with forwarding [24]. These can be performed
when grammars are composed, but are in essence whole-program analyses that
require examining the entire grammar. JastAddII [6] is a Java-based AG system
that employs reference attributes [10]. These can be thought of as attributes that
contain pointers (references) to other nodes in the syntax tree and have been
shown to be especially useful in linking a variable reference node to its declara-
tion. There is no static analysis to ensure that such grammars are not circular
however and thus JastAddII uses a dynamic check. This system has also been
used to build an extensible Java 1.4 compiler and the lack of a static check may
be less critical than in the case of parsing. Adding new constructs/productions

19

tend to not add new types of attribute dependencies and thus AGs are much less
“brittle” and more easily extended than LALR(1) concrete syntax grammars.

Also of interest are analyses that ensure that a finite number of trees are con-
structed via forwarding or as higher-order attributes. Such an analysis combined
with the circularity/definedness analysis provides a guarantee of termination
during attribute evaluation.

4.3 Parser-context based lexical disambiguation

Our integrated parser/scanner system uses a standard LR parsing algorithm
that is slightly modified in the manner in which it calls the scanner: it passes
to the scanner the set of terminal symbols that are “valid lookahead” for the
current state of the parser, viz., those that have non-error entries (shift, reduce,
or accept) in the parse table for the current parser state. Simply put, the parser
passes out what it can match and gets back what does match. The scanner’s
use of the parser state for disambiguation allows the parser to determine what
terminal a certain string matches based on the context.

Crafting the concrete syntax specification of an extension that when com-
bined with the concrete syntax specification of the host language results in a
deterministic LR specification is not trivial but can be accomplished by the ex-
tension designer. Our goal, during composition of several extensions with the
host language, is to maintain the deterministic nature of the grammar. This
characteristic is maintained by restricting the type of syntax that can be added
in the extension and depends on the integrated nature of the parser and scanner.
The parser-context based lexical disambiguation is key to the process.

The analysis that an extension, say E1, will not introduce shift-reduce or
reduce-reduce conflicts in the parse table of a language composed from the host
and extensions E1 and others, say E2, ..., En is based on an examination of the
parser table of the host language and the parse table of the host composed
just with E1. The details of this analysis will appear in an upcoming technical
report [27], but the essence of the analysis is that the extension E1 is allowed to
(i) add new states in the parser table that are used solely in parsing extension
constructs and (ii) add a restricted set of items to existing host states that only
allow a shift-action to a new extension-added state. The critical characteristic

of the composed parse table is that the states are partitioned so that every state
is associated with exactly one grammar: either the host or one of the extensions.

Each production introduced by extension E that has a host nonterminal,
say H, on the left side must have a right hand side that begins with what is
called a “marking token” for that extension. The marking tokens are used to
obtain the partitioning of the parser states as described above. These are not
to be referenced elsewhere in the extension. For example, in the SQL exten-
sion the concrete production sqlQuery with signature Expr ::= ’using’ Conn

’query’ ’{’ SqlQuery ’}’ the marking token is ’using’. These productions
provide the shift-action, based on the marking token, mentioned above that take
the parser from a “host state” to an “extensions state”.

20

Additionally, restrictions are made on “back references” to host language
nonterminals on the right hand side of extension productions. If they are not
followed, the analysis is likely to fail. Each extension production with a host
nonterminal H on the right-hand side should adhere to one of these two forms:

– E → µLHµR, where µL is a host or extension terminal such that E does
not derive µLX for any X 6= HµR, and µR is a host terminal, preferably
one that would be commonly found after an H-expression, such as a right
parenthesis after a math expression.

– E → µLH, where µL is under the same restrictions as before, and the H is
when derived invariably at the end of the extension expression — e.g., the
loop body in an extension defining a the enhanced-for loop.

The goal of these restrictions is to limit the ways that extensions can affect the
host language parse table so that conflicts are not introduced. Because JLE pro-
vides mechanisms for overloading the operator symbols, the syntax specifications
of most extensions (such as the SQL extension) meet these restrictions.

But due to the partitioning of the LALR(1) DFA described above, in a
context-filtered system, most extension terminals will not show up in the same
context as a host terminal; for example, in our SQL extension, as only host states
have Java identifiers in their valid lookahead and only SQL extension states have
the keyword select, the two tokens are never together in the valid lookahead
set of any parser state. Hence, no disambiguation is needed between select and
Java identifiers. Thus, “select” can still be used as a variable name in the Java
code (but not as a column name in the SQL query.

It is worth noting that even if extensions do not pass these tests, the inte-
grated parser/scanner approach has, in our experience, been much less brittle
than standard LALR(1) approaches since it avoids many of the lexical ambi-
guities that would exist in traditional disjoint approaches. In fact the set of
grammars that are deterministic in the integrated approach is strictly larger
than those that are classified as LALR(1). Thus, performing the deterministic
check at composition time is more likely to succeed. The enhanced-for loop pro-
duction shown in Figure 6 does not meet the above restrictions because it does
not introduce an extension defined marking token but instead reuses the host
language defined ’for’ terminal. Yet in composing several different extensions
this production has not introduced any conflicts into the parser table. Additional
details are available in the technical report [27].

The key to checking for lexical determinism is the partitioning of parser
states into states associated with the host or a single extension grammar. This
restricts the type of lexical conflicts (terminals with overlapping defining regular
expressions) to one of two types. The first type is a conflict between an exten-
sion defined terminal and a host language defined terminal or another terminal
defined in the same extension. In this case, the extension writer can use several
techniques to resolve the ambiguity. IPS provides several precedence setting con-
structs and a means for writing Silver expressions to perform the disambiguation
at parse time. We will not go into these details here; the key point is that the

21

extension writer can be made aware of the ambiguity at extension design time
and fix it. This disambiguation is then maintained during composition.

The second possible type of conflict is between the marking tokens of two
different extensions. These are unavoidable and must be resolved “on the fly”
by the programmer. We introduce the notion of transparent prefixes to enable
the programmer to do this without knowledge of the language grammars. Trans-
parent prefixes allow a disambiguating prefix (typically based on the name of
the extension) to precede the actual lexeme of tokens in the program, without
being visible to the parser. This prefix then directs the scanner to recognize the
following lexeme as coming from that grammar. This approach is motivated by
the use of fully qualified names in Java in which classes with the same name
from different packages are distinguished by specifying the package name.

5 Discussion

5.1 Related Work

There have been many efforts to build tools for extensible compilers for Java
and other languages. Some of these, like the JLE, are attribute grammar-based.
Others are based on traditional rewrite systems or pass-based processors.

Attribute Grammar Based Tools: Much previous work has investigated the use of
attribute grammars as framework for the modular specifications of languages [8,
13, 7, 1, 20]. There are also several well-developed AG-based language specifica-
tion tools: such as LRC [16], JastAddII [6], and Eli [9]. These systems implement
transformations in different ways, some are functional while others are object-
oriented. They do not support forwarding and thus the modularity and ease-
of-composition of language features specified as AG fragments is achieved by
writing attribute definitions that “glue” new fragments into the host language
AG. JastAddII and Eli do not have the general purpose features of pattern
matching and polymorphic lists in Silver and instead use a “back-door” to their
implementation languages (Java and C) for general-purpose computations.

JastAddII [6] is based on rewritable reference attribute grammars and has
been used to develop an extensible Java 1.5 compiler [5]. To the best of our
knowledge Silver and JastAddII are the only AG systems that allow for the
implicit specification of semantics by translation to a host language. JastAddII
does so by the application of (destructive) rewrite rules. But since rewriting
of a subtree takes place before attributes may be accessed from the that tree,
one cannot both explicitly and implicitly specify a construct’s semantics. For
example, consider the enhanced-for loop extension described in Section 3.2. With
JastAdd II, any semantic analysis is performed only after rewriting is done and
the equivalent host language for-loop is generated. Thus all semantics are implicit
(except for the attributes that are computed during rewriting that may be used
to guide rewriting). With forwarding, rewriting is non-destructive. Extensions
and forwards-to trees exist side-by-side allowing some semantics to be specified
explicitly by the extension while others are specified implicitly via forwarding. On

22

the other hand, the rewrite rules in JastAddII are more general than forwarding
and can be used in a wider of variety of language processing applications, such
as using rewrite rules to implement optimizing transformations. In Silver, such
transformations must be encoded as definitions of higher-order attributes.

Other Approaches to Extensibility: Embedded domain-specific languages [11]
and macro systems (traditional syntactic, hygienic and programmable [31]) allow
the addition of new constructs to a language but lack an effective way to specify
semantic analysis and report domain specific error messages. Meta-object pro-
tocol systems [14] provide limited opportunities to add new language constructs
but can perform abstract syntax based optimizations and check for certain errors,
as can some modern macro systems, e.g. [2]. Traditional pass-based approaches
such as Polyglot [17] require an explicit specification of the order in which analy-
sis and translation passes are performed on the syntax tree. Requiring this level
of implementation level detail to compose extensions is what we hope to avoid.

JavaBorg is an extensible Java tool that uses MetaBorg [4], an embedding
tool that allows one to extend a host language by adding concrete syntax for
objects. It is based on the Stratego/XT rewriting system [29] that allows for the
specification of conditional abstract syntax tree rewriting rules to process pro-
grams. In addition, it allows for the specification of composable rewrite strategies
that allow the user to program the manner in which the rewrites are performed.
These rewrites can be used to perform generative as well as optimizing transfor-
mations – both general purpose and domain-specific. Rules and strategies may
be bundled into libraries and composed. MetaBorg is well-suited for performing
transformative optimizations since its rewrites are destructive and performed
in-place. However, specifying semantic analyses like error checking, even when
using dynamically generated rules [19], is less straight forward than using at-
tributes. It is also not clear that different extensions can be so easily combined.
MetaBorg uses scannerless GLR parsers [28].

Intentional Programming originated in Microsoft Research and proposed for-
warding in a non-attribute grammar setting. More recent work [21] still employs
generative programming techniques but it is not clear if forwarding is still used.

5.2 Ongoing and Future Work

JLE aims to report all errors that the traditional Java compiler would report.
As of this writing there are two types of errors that are not yet reported. The
first is Java definite assignment errors. We have built an extension to Silver
that constructs control flow graphs for imperative programs and performs data
flow analysis by model checking these graphs [26]. We are currently adding the
necessary Silver specifications that use this extension to construct an extensible
data-flow analysis framework that extension writers can use in analysis of lan-
guage extension constructs. Second, a relatively few productions in the Java AG
specification only propagate the errors attribute up the syntax tree but do not
add their own errors. These are currently being completed.

23

Although many new Java 1.5 constructs can be specified as modular language
extensions to Java 1.4 we have not yet done this for generics. The effect of adding
generics is felt throughout the design of Java 1.5 and it is unclear if they can be
“translated away” to Java 1.4 constructs via primarily local transformations.

We are also investigating additional analyses on AG-based extension specifi-
cations to provide some level of assurance that composed language specifications
are well-defined. To mention just one, we are investigating analysis to check for
the termination of tree construction via forwarding as described in Section 4.2.
One analysis extracts rewrite rules from the attribute grammar specification
in such a way that if the rewrite rules can be shown to terminate, then for-
warding will terminate. From a production p of the form X → X1...Xn that
forwards to a tree of the form p′(X1, ..., Xn) (where p′ is a tree with “holes” for
X1, ..., Xn) we extract the rewrite rule p(X1, ..., Xn) → p′(X1, ..., Xn). We have
used approaches that place orderings on term constructors (productions in AGs)
to show that forwarding terminates for some simple AG specifications extending
this to more general AG specifications. The important point is that AGs provide
a high-level domain-specific “vocabulary” for these types of analyses - that the
specifications are at a higher level of abstraction means they can be more easily
analyzed than if they were written in a general purpose language like Java.

5.3 Conclusion

One reasons that libraries are a successful means for introducing new abstrac-
tions, either as new classes in object oriented languages or higher-order functions
in functional languages, is that the programmer can freely import the set of li-
braries that address his or her particular problem at hand. It is our belief that for
language extension techniques (either those proposed here or others described
in Section 5.1) to have real-world impact they must be composable in a manner
that is similar to libraries. In this paper we have shown that it is possible to im-
plement languages and composable language extensions so that new, customized,
domain-adapted languages can be created from the host language and selected
language extensions with no implementation level knowledge of the extension.

An important area of future work centers on means for ensuring, either by
analysis of specifications or by restricting the types of extensions that can be
described, that language extensions that have the look-and-feel of the host lan-
guage can be easily composed by the programmer. We have also proposed a few
analyses that begin this exploration but there is much work to be done.

References

1. S. R. Adams. Modular Grammars for Programming Language Prototyping. PhD
thesis, University of Southampton, Department of Elec. and Comp. Sci., UK, 1993.

2. D. Batory, D. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-
specific languages. In Proc. 5th Intl. Conf. on Software Reuse. IEEE, 2–5 1998.

3. J. T. Boyland. Remote attribute grammars. J. ACM, 52(4):627–687, 2005.

24

4. M. Bravenboer and E. Visser. Concrete syntax for objects: domain-specific lan-
guage embedding and assimilation without restrictions. In Proc. of OOPSLA ’04
Conf., pages 365–383, 2004.

5. T. Ekman. Extensible Compiler Construction. PhD thesis, Lund University, Lund,
Sweeden, 2006.

6. T. Ekman and G. Hedin. Rewritable reference attributed grammars. In Proc. of
ECOOP ’04 Conf., pages 144–169, 2004.

7. R. Farrow, T. J. Marlowe, and D. M. Yellin. Composable attribute grammars.
In 19th ACM SIGPLAN-SIGACT Symp. on Prin. of Prog. Lang., pages 223–234,
1992.

8. H. Ganzinger. Increasing modularity and language-independency in automatically
generated compilers. Science of Computer Programing, 3(3):223–278, 1983.

9. R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A
complete, flexible compiler construction system. CACM, 35:121–131, 1992.

10. G. Hedin. Reference attribute grammars. Informatica, 24(3):301–317, 2000.

11. P. Hudak. Building domain-specific embedded languages. ACM Computing Sur-
veys, 28(4es), 1996.

12. S. Johnson. Yacc - yet another compiler compiler. Technical Report 32, Bell
Laboratories, July 1975.

13. U. Kastens and W. M. Waite. Modularity and reusability in attribute grammars.
Acta Informatica, 31:601–627, 1994.

14. G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the MetaObject Protocol.
MIT Press, Cambridge, MA. USA, 1991.

15. D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,
2(2):127–145, 1968. Corrections in 5(1971) pp. 95–96.

16. M. Kuiper and S. J. Lrc — a generator for incremental language-oriented tools.
In 7th International Conference on Compiler Construction, volume 1383 of LNCS,
pages 298–301. Springer-Verlag, 1998.

17. N. Nystrom, M. R. Clarkson, and A. C. Myer. Polyglot: An extensible compiler
framework for java. In Proc. 12th International Conf. on Compiler Construction,
volume 2622 of LNCS, pages 138–152. Springer-Verlag, 2003.

18. M. Odersky and P. Wadler. Pizza into java: translating theory into practice. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 146–159. ACM Press, 1997.

19. K. Olmos and E. Visser. Composing source-to-source data-flow transformations
with rewriting strategies and dependent dynamic rewrite rules. In Proc. 14th Intl.
Conf. on Compiler Construction, volume 3443 of LNCS, pages 204–220. Springer-
Verlag, 2005.

20. J. Saraiva and D. Swierstra. Generic Attribute Grammars. In Second Workshop
on Attribute Grammars and their Applications, WAGA’99, pages 185–204. INRIA
rocquencourt, 1999.

21. C. Simonyi, M. Christerson, and S. Clifford. Intentional software. SIGPLAN Not.,
41(10):451–464, 2006.

22. M. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation filters
for scannerless generalized LR parsers. In Computational Complexity, pages 143–
158, 2002.

23. E. Van Wyk, D. Bodin, and P. Huntington. Adding syntax and static analysis to
libraries via extensible compilers and language extensions. In Proc. of LCSD 2006,
Library-Centric Software Design, 2006.

25

24. E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in
attribute grammars for modular language design. In Proc. 11th Intl. Conf. on
Compiler Construction, volume 2304 of LNCS, pages 128–142, 2002.

25. E. Van Wyk and E. Johnson. Composable language extensions for computational
geometry: a case study. In Proc. 40th Hawaii Intl’ Conf. on System Sciences, 2007.

26. E. Van Wyk and L. Krishnan. Using verified data-flow analysis-based optimizations
in attribute grammars. In Proc. Intl. Workshop on Compiler Optimization Meets
Compiler Verification (COCV), April 2006.

27. E. Van Wyk and A. Schwerdfeger. Parser context based lexical disam-
biguation. Technical report, Univ. of Minnesota, 2007. To appear. See
www.melt.cs.umn.edu/ips.

28. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

29. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program
Generation, volume 3016 of LNCS, pages 216–238. Spinger-Verlag, June 2004.

30. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-order attribute grammars. In
ACM PLDI Conf., pages 131–145, 1990.

31. D. Weise and R. Crew. Programmable syntax macros. ACM SIGPLAN Notices,
28(6), 1993.

32. S. White, M. Fisher, R. Cattell, G. Hamilton, and M. Hapner. JDBC API Tutorial
and Reference: Universal Data Access for the Java 2 Platform. Addison-Wesley
Professional, 2nd edition, 1999.

26

