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1 Notations and Basic Notions

N = {0; 1; 2; 3; . . . } = natural numbers.
Z = {· · · − 3;−2,−1; 0; 1; 2; 3; . . . } = integer numbers
R = real numbers
P = positive real numbers
P0 = nonnegative real numbers

log n =

{
log2 n if n > 0
0 if n = 0

half(n) =
⌊
n
2

⌋
, where n ∈ N

Half(n) =
⌈
n
2

⌉
, where n ∈ N

We use the structure diagram notation in our pseudo codes. We use a UML-
like notation with some C++/Java/Pascal �avour in the structure diagrams.
Main points:
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1. A program is made up of declarations. A structure diagram represents
each of them, but we do not care about their order.

2. We can declare subroutines, classes, variables and constants.

3. The subroutines (i.e., subprograms) are the functions, the procedures
(i.e., void functions), and the methods of the classes.

4. while loop is the default loop ; for loops are also used.

5. The operators ̸=,≥,≤ are written by the usual mathematical notation.
The assignment statements and the �is equal to� comparisons are writ-
ten in Pascal style. For example, x := y assigns the value of y to x,
and x = y checks their equality.

6. Only scalar parameters can be passed by value (and it is their default).
Non-scalar parameters are always passed by reference. For example,
an object cannot be passed by value, just by reference.

7. An assignment statement can copy a scalar value or a subarray of scalar
values like A[u..v] := B[p..q] where v − u = q − p. A[u..v] := x means
that each element of A[u..v] is initialized with x.

8. In the de�nitions of classes, we use a simple UML notation. The name
of the class comes in the �rst part. The data members are in the
second part, and the methods, if any, are in the third part. A �−� sign
pre�xes a private declaration/speci�cation. A �+� sign pre�xes a public
declaration/speci�cation. We use neither templates nor inheritance
(nor protected members/methods).

9. We do not use libraries.

10. We do not use exception handling.

1.1 Time complexities of algorithms

Time complexity (operational complexity) of an algorithm re�ects some ab-
stract time. We count the subroutine calls + the number of loop
iterations during the program's run. (This measure is approximately pro-
portional to the actual runtime of the program, and we can omit constant
factors here because they are helpful only if we know the programming en-
vironment [for example, (the speed of) the hardware, the operation system,
the compiler etc.]).
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We typically calculate the time complexity of an algorithm as a function
of the size of the input data structure(s) (for example, the length of the
input array). We distinguish MT (n) (Maximum Time), AT (n) (Average or
expected Time), and mT (n) (minimum Time). Clearly MT (n) ≥ AT (n) ≥
mT (n). If MT (n) = mT (n), then we can speak of a general time complexity
T (n) where T (n) =MT (n) = AT (n) = mT (n).

Typically, the time complexities of the algorithms are not calculated pre-
cisely. Only we calculate their asymptotic order or make asymptotic estima-
tion(s) using the big-O notation.

1.2 The big-O notation

De�nition 1.1 Given g : N→ R ;
g is asymptotically positive (AP), i�
there exists an N ∈ N so that g(n) > 0 for each n ≥ N .

In this chapter, we suppose that f, g, h denote asymptotically positive func-
tions of type N → R in each case because they represent time (or space)
complexity functions and these satisfy this property. Usually, it is not easy
to give such a function exactly. We make estimations.

� When we make an asymptotic upper estimate g of f , then we say that
�f is big-O g�, and write f ∈ O(g). Informally, f ∈ O(g) means that
function f is at most proportional to g. (f(n) ≤ d ∗ g(n) for some
d > 0, if n is large enough.)

� When we make an asymptotic lower estimate g of f , then we say that
�f is Omega g�, and write f ∈ Ω(g). Informally f ∈ Ω(g) means that
function f is at least proportional to g. (f(n) ≥ c∗g(n) for some c > 0,
if n is large enough.)

� When we make an asymptotic upper and lower estimate g of f , then
we say that �f is Theta g�, and write f ∈ Θ(g) which means that
f ∈ O(g) ∧ f ∈ Ω(g). In this case, we also say that the asymptotic
order of f is Θ(g).

De�nition 1.2

f ≺ g ⇐⇒ lim
n→∞

f(n)

g(n)
= 0

�f ≺ g� is read as �f is asymptotically less than g�. It can also be written
as �f ∈ o(g)� which means that

o(g) = {h |h ≺ g}
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De�nition 1.3
g ≻ f ⇐⇒ f ≺ g

�g ≻ f � is read as �g is asymptotically greater than f �. It can also be written
as �f ∈ ω(g)� which means that

ω(g) = {h |h ≻ g}

De�nition 1.4 O(g) = {f | there exist positive constants d and n0

. such that f(n) ≤ d ∗ g(n) for all n ≥ n0}

(�f ∈ O(g)� can be read as �f is at most proportional to g�.)

De�nition 1.5 Ω(g) = {f | there exist positive constants c and n0

. such that f(n) ≥ c ∗ g(n) for all n ≥ n0}

(�f ∈ Ω(g)� can be read as �f is at least proportional to g�.)

De�nition 1.6
Θ(g) = O(g) ∩ Ω(g)

(�f ∈ Θ(g)� can be read as �f is roughly proportional to g�.)

Consequence 1.7 .
f ∈ O(g) ⇐⇒ ∃d, n0 > 0, and ψ : N→ R so that limn→∞

ψ(n)
g(n)

= 0, and

f(n) ≤ d ∗ g(n) + ψ(n)

for each n ≥ n0.

Consequence 1.8 .
f ∈ Ω(g) ⇐⇒ ∃c, n0 > 0, and φ : N→ R so that limn→∞

φ(n)
g(n)

= 0 and

c ∗ g(n) + φ(n) ≤ f(n)

for each n ≥ n0.

Consequence 1.9 f ∈ Θ(g) ⇐⇒ f ∈ O(g) ∧ f ∈ Ω(g) .

Note 1.10 .

� If f ∈ O(g), we can say that g is an asymptotic upper bound of f .

� If f ∈ Ω(g), we can say that g is an asymptotic lower bound of f .
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� If f ∈ Θ(g), we can say that f and g are asymptotically equivalent.

� We never use the popular notations �f = O(g)�, �f = Ω(g)� or
�f = Θ(g)�. We think one should not use it for at least two reasons.

1. O(g), Ω(g) and Θ(g) are sets of asymptotically positive (AP) func-
tions while f is just a single AP function. Thus, the equalities
above are simply false claims.

2. Suppose one is aware that, for example, �f = O(g)� means f ∈
O(g). Still �f = O(g)� and �h = O(g)� does not imply f = h.
Similarly, according to this popular notation
�1 = Θ(1) ∧ 2 = Θ(1) ∧ 1 ̸= 2�, etc.

Theorem 1.11

lim
n→∞

f(n)

g(n)
= 0 =⇒ f ≺ g =⇒ f ∈ O(g)

lim
n→∞

f(n)

g(n)
= c ∈ P =⇒ f ∈ Θ(g)

lim
n→∞

f(n)

g(n)
=∞ =⇒ f ≻ g =⇒ f ∈ Ω(g)

Proof. The �rst and last statements follow directly from the de�nition of
the ≺ and ≻ relations. In order to prove the middle one, consider that

limn→∞
f(n)
g(n)

= c. Consequently, if n is su�ciently large,
∣∣∣f(n)g(n)

− c
∣∣∣ < c

2
.

Thus
c

2
<
f(n)

g(n)
< 2c

Because g is AP, g(n) > 0 for su�ciently large n values can multiply with it
both sides of this inequality. Therefore

c

2
∗ g(n) < f(n) < 2c ∗ g(n)

As a result, f ∈ Θ(g) □

Consequence 1.12

k ∈ N∧a0, a1, . . . , ak ∈ R∧ak > 0 =⇒ akn
k+ak−1n

k−1+· · ·+a1n+a0 ∈ Θ(nk)
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Proof.

lim
n→∞

akn
k + ak−1n

k−1 + · · ·+ a1n+ a0
nk

=

lim
n→∞

(
akn

k

nk
+
ak−1n

k−1

nk
+ · · ·+ a1n

nk
+
a0
nk

)
=

lim
n→∞

(
ak +

ak−1

n
+ · · ·+ a1

nk−1
+
a0
nk

)
=

lim
n→∞

ak + lim
n→∞

ak−1

n
+ · · ·+ lim

n→∞

a1
nk−1

+ lim
n→∞

a0
nk

=

ak + 0 + · · ·+ 0 + 0 = ak ∈ P =⇒
akn

k + ak−1n
k−1 + · · ·+ a1n+ a0 ∈ Θ(nk)

□

Property 1.13 (Relations of the di�erent classes of functions)

Θ(g) = O(g) ∩ Ω(g)

o(g) ⫋ O(g) \ Ω(g)
ω(g) ⫋ Ω(g) \O(g)

Example of the asymptotic order of AP functions:
log n ≺ n ≺ n log n ≺ n2 ≺ n2 log n ≺ n3

Property 1.14 (Transitivity)

f ∈ O(g) ∧ g ∈ O(h) =⇒ f ∈ O(h)

f ∈ Ω(g) ∧ g ∈ Ω(h) =⇒ f ∈ Ω(h)

f ∈ Θ(g) ∧ g ∈ Θ(h) =⇒ f ∈ Θ(h)

f ≺ g ∧ g ≺ h =⇒ f ≺ h

f ≻ g ∧ g ≻ h =⇒ f ≻ h

Property 1.15 (Symmetry)

f ∈ Θ(g) ⇐⇒ g ∈ Θ(f)

Property 1.16 (Exchanged symmetry)

f ∈ O(g) ⇐⇒ g ∈ Ω(f)

f ≺ g ⇐⇒ g ≻ f
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Property 1.17 (Asymmetry)

f ≺ g =⇒ ¬(g ≺ f)

f ≻ g =⇒ ¬(g ≻ f)

Property 1.18 (Re�exivity)

f ∈ O(f) ∧ f ∈ Ω(f) ∧ f ∈ Θ(f)

Consequence 1.19 (=⇒: 1.15, 1.14.3 ; ⇐=: 1.18.3)

f ∈ Θ(g) ⇐⇒ Θ(f) = Θ(g)

Property 1.20 (Relations ≺ and ≻ are irre�exive.)

¬(f ≺ f)

¬(f ≻ f)

Consequence 1.21 Since the binary relation · ∈ Θ(·) is re�exive, symmet-
ric and transitive, it gives a classi�cation of the set of asymptotically positive
functions, where f and g belong to the same equivalence class, i� f ∈ Θ(g).
In this case, function f is asymptotically equivalent to function g.

We will see that such equivalence classes can be identi�ed, and they will
be fundamental from the point of view of calculating the e�ciency of the
algorithms. For example, we have already seen that any k-degree polyno-
mial with a major positive coe�cient is asymptotically equivalent to the nk

function. (See Consequence 1.12.) The asymptotic order of such equivalence
classes can be established, and it is based on the following property.

Property 1.22

f1, g1 ∈ Θ(h1) ∧ f2, g2 ∈ Θ(h2),∧f1 ≺ f2 =⇒ g1 ≺ g2

De�nition 1.23
Θ(f) ≺ Θ(g) ⇐⇒ f ≺ g

Lemma 1.24 Sometimes the following so called L'Hospital rule can be
applied for computing limes limn→∞

f(n)
g(n)

in Theorem 1.11.

If the real extensions of the functions f and g are di�erentiable for su�ciently
large substitution values and

lim
n→∞

f(n) =∞∧ lim
n→∞

g(n) =∞∧ ∃ lim
n→∞

f ′(n)

g′(n)
=⇒

lim
n→∞

f(n)

g(n)
= lim

n→∞

f ′(n)

g′(n)
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Property 1.25 (Based on Theorem 1.11 and on Lemma 1.24.)

c, d ∈ R ∧ c < d =⇒ nc ≺ nd

c, d ∈ P0 ∧ c < d =⇒ cn ≺ dn

c, d ∈ R ∧ d > 1 =⇒ nc ≺ dn

d ∈ P0 =⇒ dn ≺ n! ≺ nn

c, d ∈ P ∧ c, d > 1 =⇒ logc n ∈ Θ(logd n)

ε ∈ P =⇒ log n ≺ nε

c ∈ R ∧ ε ∈ P =⇒ nc log n ≺ nc+ε

Proof. In order to prove that ε ∈ P =⇒ log n ≺ nε, we need the
L'Hospital rule, i.e. Lemma 1.24.

lim
n→∞

log n

nε
= log e lim

n→∞

lnn

nε
= log e lim

n→∞

ln′ n

(nε)′
=

log e

ε
lim
n→∞

1
n

nε−1
=

=
log e

ε
lim
n→∞

1

nε
=

log e

ε
0 = 0

□

Consequence 1.26

Θ(log n) ≺ Θ(n) ≺ Θ(n ∗ log n) ≺ Θ(n2) ≺ Θ(n2 ∗ log n) ≺ Θ(n3)

Property 1.27
(Function classes O(·),Ω(·),Θ(·), o(·), ω(·) are closed for the following ops.)

f ∈ O(g) ∧ c ∈ P =⇒ c ∗ f ∈ O(g)

f ∈ O(h1) ∧ g ∈ O(h2) =⇒ f + g ∈ O(h1 + h2)

f ∈ O(h1) ∧ g ∈ O(h2) =⇒ f ∗ g ∈ O(h1 ∗ h2)

f ∈ O(g) ∧ φ : N→ R ∧ lim
n→∞

φ(n)

f(n)
= 0 =⇒ f + φ ∈ O(g)

(Similarly for function classes Ω(·),Θ(·), o(·), ω(·).)

Property 1.28

max(f, g) ∈ Θ(f + g) where max(f, g)(n) = max(f(n), g(n)) (n ∈ N)
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Proof. Because f and g are AP, f(n) > 0 and g(n) > 0 for su�ciently large
n ∈ N values, and

max(f(n), g(n)) =
f(n) + g(n)

2
+
|f(n)− g(n)|

2
∧

f(n) + g(n)

2
+
|f(n)− g(n)|

2
≤ f(n) + g(n)

2
+
f(n) + g(n)

2
= f(n) + g(n)

∧ f(n) + g(n)

2
+
|f(n)− g(n)|

2
≥ 1

2
∗ (f(n) + g(n))

=⇒ 1

2
∗ (f(n) + g(n)) ≤ max(f(n), g(n)) ≤ 1 ∗ (f(n) + g(n))

=⇒ max(f, g) ∈ Θ(f + g)

□

1.3 Note on time complexity measures

We measure each algorithm's e�ciency by counting the subroutine calls +
iterations. (The nonrecursive calls may be omitted.) Counting the key com-
parisons also works in case of comparison sorts (like insertion sort, merge
sort, heap sort, quicksort, etc.) because the two measures have the same
asymptotic order. But counting the subroutine calls + iterations is more
general because it can be applied to each algorithm. Thus, we use this one.
Otherwise, we should �nd a good running time measure for each algorithm
that is not a comparison sort. Therefore, we use this universal measure of
time complexity: we count the subroutine calls + iterations for all the algo-
rithms.

1.4 Space complexities of algorithms

Space complexity of an algorithm is an abstract measure of the algorithm's
space (i.e. memory) requirements.

It depends on the depth of the subroutine calls and the sizes of the data
structures (like arrays, linked lists, trees, etc.) generated or needed by that
algorithm. The size of the input is typically excluded from the space require-
ments.

We typically calculate the space complexity of an algorithm as a function of
the size of the input data structure(s) (for example, the length of the input
array).
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Even if the input size is the same, an algorithm's di�erent runs may need
di�erent amounts of space. Thus, we distinguish MS(n) (Maximum Space
complexity), AS(n) (Average or expected Space complexity), and mS(n)
(minimum Space complexity). Clearly MS(n) ≥ AS(n) ≥ mS(n). If
MS(n) = mS(n), then we can speak of a general space complexity S(n)
where S(n) =MS(n) = AS(N) = mS(n).

Typically, the space complexities of the algorithms are not calculated
precisely. Only we calculate their asymptotic order or make asymptotic esti-
mation(s) using the big-O notation.

Clearly, for any algorithm, mS(n) ∈ Ω(1). Thus, provided that
MS(n) ∈ O(1), it follows that MS(n), AS(n),mS(n) ∈ Θ(1).

De�nition 1.29 An algorithm works in-place,
i� MS(n) ∈ O(1) is satis�ed for it.

De�nition 1.30 An algorithm works non-strictly in-place,
i� MS(n) ∈ O(log n) is satis�ed for it.

Notice that this later de�nition is based on the fact that although
limn→∞ log(n) = ∞, still function log(n) grows very-very slowly. For ex-
ample log2 10

3 < 10, log2 10
6 < 20, log2 10

9 < 30, log2 10
12 < 40.
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2 Elementary Data Structures and Data Types

A data structure (DS) is a way to store and organise data to facilitate access
and modi�cations. No single data structure works well for all purposes, so it
is essential to know the strengths and limitations of several of them ([1] 1.1).

A data type (DT) is a data structure + its operations.
An abstract data type (ADT) is a mathematical or informal structure

+ its operations described mathematically or informally.
A representation of an ADT is an appropriate DS.
An implementation of an ADT is some program code of its operations.

[1] Chapter 10; [6] 4.1 - 4.4.2; [3] 3-5

2.1 Arrays, memory allocation and deallocation

The most common data type is the array. It is a �nite sequence of data. Its
data elements can be accessed and updated directly and e�ciently through
indexing. Most programming languages support arrays. We can access any
element of an array in Θ(1) time.

In this book, arrays must be declared in the following way.

A,Z : T[n]

In this example, A and Z are two arrays of element type T and of size n.
In our model, the array data structure is an array object containing its size

and elements, and it is accessed through a so-called array pointer containing
its memory address. The operations of the array can
� read its size like A.length and Z.length: A.length = Z.length = n here,
� access (read and write) its elements through indexing as usual, for example,
A[i] and Z[j] here.
Arrays are indexed from 0.

If an object or variable is created by declaring it, it is deleted automat-
ically when the subroutine containing it �nishes. Then, the memory area
reserved by it can be reused for other purposes.

If we want to declare array pointers, we can do it the following way.

P : T[]

Now, given the declarations above, after the assignment statement P := Z,
P and Z refer to the same array object, P [0] is identical with Z[0], and so
on, P [n− 1] is identical with Z[n− 1].
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Array objects can be created (i.e. allocated) dynamically, like in C++,
but our array objects always contain their size, unlike in C++. For example,
the statement

P := new T[m]

creates a new array object, pointer P refers to it, P.length = m.

Note that any object (especially an array object) generated dynamically must
be deleted (i.e. deallocated) explicitly when the object is not needed any
more. Deletion is done, like in C++, to avoid memory leaking.

deleteP

The above statement su�ces here. It does not delete the pointer but the
pointed object. Having deleted the object, the memory area reserved by it
can be reused for other purposes.

Unfortunately, we cannot say anything about the e�ciency of memory
allocation and deallocation in general. Sometimes, these can be performed
with Θ(1) time complexity, but usually, they need much more time, and their
e�ciency is often unpredictable. Therefore, we avoid their overuse, and we
apply them only when they are essential.

Suppose we want to pass an array parameter to a subroutine. In that case, the
actual parameter must be the array identi�er, the formal parameter has to be
speci�ed as an array pointer, and the parameter passing copies the address
of the actual array object into the formal parameter. Writing an identi�er
between the square brackets is a short notation for the array's length.

The following two procedures are equivalent because in the left structure
diagram, n = A.length.�� �init(A : T[n] ; x : T)

i := 0 to n− 1

A[i] := x

�� �init(Z : T[] ; x : T)

i := Z.length− 1 downto 0

Z[i] := x

Given an array A, subarray A[u..v] denotes the following sequence of elements
of A: ⟨A[u], . . . , A[v]⟩ where u and v are valid indexes in the array. If u > v,
the subarray is empty (i.e. ⟨⟩). In this case, u or v may be an invalid index.

Given an array A, subarray A[u..v) denotes the following sequence of elements
of A: ⟨A[u], . . . , A[v − 1]⟩ where u and v − 1 are valid indexes in the array.
If u ≥ v, the subarray is empty (i.e. ⟨⟩).
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2.2 Stacks

A stack is a LIFO (Last-In, First-Out) data storage. It can be imagined as
a vertical sequence of items similar to a tower of plates on a table. We can
push a new item at the top and check or remove (i.e., pop) the topmost item.

The stack elements are stored in subarray A[0..n) in the following repre-
sentation. Provided that n > 0, A[n − 1] is the top of the stack. Provided
that n = 0, the stack is empty.

T (n) ∈ Θ(1) for each method because neither iteration nor subroutine
invocation exists in their code. The time complexities of the constructor and
the destructor depend on the new and delete expressions.

Stack
−A : T[] // T is some known type ; A.length is the max. size of the stack
−n : N // n ∈ 0..A.length is the actual size of the stack
+ Stack(m : N) {A := new T[m] ; n := 0} // create an empty stack
+ push(x : T) // push x onto the top of the stack
+ pop() : T // remove and return the top element of the stack
+ top() : T // return the top element of the stack
+ isFull() : B {return n = A.length}
+ isEmpty() : B {return n = 0}
+ setEmpty() {n := 0} // reinitialize the stack
+ ∼ Stack() { delete A }

Some operations of a Stack
Stack(4) push(5) push(3) push(7) push(2) // n=4

3 3 3 3 n=3 3 2
2 2 2 n=2 2 7 2 7
1 1 n=1 1 3 1 3 1 3
0 n=0 0 5 0 5 0 5 0 5

A A A A A

�� �Stack::push(x : T)

n < A.length

A[n] := x

n++
StackOver�ow
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�� �Stack::pop():T

n > 0

n−−
return A[n]

StackUnder�ow

�� �Stack::top():T

n > 0

return A[n− 1] StackUnder�ow

Example for a simple use of a stack: printing n input items in reversed order.
We suppose that read(x) reads from the current input the next piece of data
and write(x) prints the value of x to the current output. Treverse(n) ∈ Θ(n).�� �reverse(n : N)

v : Stack(n)

x : T

n > 0

read(x)

v.push(x)

n := n− 1

¬v.isEmpty()

write(v.pop())

2.3 Queues

A queue is a FIFO (First-In, First-Out) data storage. It can be imagined as
a horizontal sequence of items similar to a queue at the cashier's desk. We
can add a new item to the end of the queue, and we can check or remove the
�rst item.

In the following representation, the elements of the queue are stored in

⟨Z[k], Z[(k + 1) mod Z.length], . . . , Z[(k + n− 1) mod Z.length]⟩

Provided that n > 0, Z[k] is the �rst element of the queue, where n is the
length of the queue. Provided that n = 0, the queue is empty.

T (n) ∈ Θ(1) for each method because neither iteration nor subroutine
invocation exists in their code. The time complexities of the constructor and
the destructor depend on the new and delete expressions.
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Queue
−Z : T[] // T is some known type
−n : N // n ∈ 0..Z.length is the actual length of the queue
−k : N // k ∈ 0..(Z.length−1) is the starting position of the queue in array Z
+ Queue(m : N){ Z := new T[m] ; n := 0 ; k := 0 } // create an empty queue
+ add(x : T) // join x to the end of the queue
+ rem() : T // remove and return the �rst element of the queue
+ �rst() : T // return the �rst element of the queue
+ length() : N {return n}
+ isFull() : B {return n = Z.length}
+ isEmpty() : B {return n = 0}
+ ∼ Queue() { delete Z }
+ setEmpty() {n := 0} // reinitialize the queue

Some operations of a Queue
Queue(4) add(5) add(3) rem() : 5
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

5 5 3 3
k k k k

n = 0 n = 1 n = 2 n = 1

rem() : 3 add(7) add(2) add(4)
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

7 7 2 4 7 2
k k k k

n = 0 n = 1 n = 2 n = 3

�� �Queue::add(x : T)

n < Z.length

Z[(k + n) mod Z.length] := x

n++
QueueOver�ow

�� �Queue::rem() : T

n > 0

n−−
i := k

k := (k + 1) mod Z.length

return Z[i]

QueueUnder�ow

�� �Queue::�rst() : T

n > 0

return Z[k] QueueUnder�ow
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We described the methods of stacks and queues with simple codes: we applied
neither iterations nor recursions. Therefore, the time complexity of each
method is Θ(1). This is a fundamental requirement for each implementation
of stacks and queues.

Note that with linked list representations, this constraint can be guaran-
teed only if MTnew,MTdelete ∈ Θ(1).

Considering the above implementations of stacks and queues, the destruc-
tor's space complexity and each method's space complexity are also Θ(1)
because they create no data structure but use only a few temporal variables.
The space complexity of the constructor is Θ(m).
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3 Algorithms in computing: Insertion Sort

[1] Chapter 1-3; [4] Chapter 1, 2, 7

�� �insertionSort(A : T[n])

i := 1 to n− 1

A[i− 1] > A[i]

x := A[i]

A[i] := A[i− 1]

j := i− 2

j ≥ 0 ∧ A[j] > x

A[j + 1] := A[j]

j := j − 1

A[j + 1] := x

SKIP

mTIS(n) = 1 + (n− 1) = n

MTIS(n) = 1 + (n− 1) +
n−1∑
i=1

(i− 1) = n+
n−2∑
j=0

j = n+
(n− 1) ∗ (n− 2)

2

MTIS(n) =
1

2
n2 − 1

2
n+ 1

MTIS(n) ≈ (1/2) ∗ n2, if n is large.

Suppose our computer can perform
2 ∗ 109 elementary operations /second.
Considering the code of insertion sort above and counting these operations
as a function of n, we receive that mT (n) ≥ 8 ∗ n and MT (n) > 6 ∗ n2

elementary operations. Counting with mT (n) ≈ 8 ∗ n and MT (n) ≈ 6 ∗ n2,
we receive the following table on running times as lower estimates:
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5 2 7 1 4 6 8 3

2 5 7 1 4 6 8 3

2 5 7 1 4 6 8 3

1 2 5 7 4 6 8 3 (*)

1 2 4 5 7 6 8 3

1 2 4 5 6 7 8 3

1 2 4 5 6 7 8 3

1 2 3 4 5 6 7 8

(*) detailed:

1 2 5 7 4 6 8 3

x = 4

1 2 5 7 6 8 3

x = 4

1 2 5 7 6 8 3

x = 4

Figure 1: An illustration of Insertion Sort. In such examples, key = key′

for any key. This way, we demonstrate handling di�erent occurrences of the
same key. Exercise: Give a detailed illustration of the last insertion.
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n mT (n) in secs MT (n) in time
1000 8000 4 ∗ 10−6 6 ∗ 106 0.003 sec
106 8 ∗ 106 0.004 6 ∗ 1012 50 min
107 8 ∗ 107 0.04 6 ∗ 1014 ≈ 3.5 days
108 8 ∗ 108 0.4 6 ∗ 1016 ≈ 347 days
109 8 ∗ 109 4 6 ∗ 1018 ≈ 95 years

In the worst case, insertion sort is too slow to sort one million elements,
and it becomes impractical if we try to sort a huge amount of data. Let us
consider the average case:

ATIS(n) ≈ 1 + (n− 1) +
n−1∑
i=1

(
i− 1

2

)
= n+

1

2
∗
n−2∑
j=0

j =

= n+
1

2
∗ (n− 1) ∗ (n− 2)

2
=

1

4
n2 +

1

4
n+

1

2

This calculation shows that the expected or average running time of insertion
sort is roughly half of the time needed in the worst case, so even the expected
running time of insertion sort is too long to sort one million elements, and it
becomes completely impractical if we try to sort huge amount of data. The
asymptotic time complexities:

mTIS(n) ∈ Θ(n)

ATIS(n),MTIS(n) ∈ Θ(n2)

Let us note that the minimum running time is perfect. There is no chance to
sort elements faster than in linear time because each piece of data must be
checked. One may say that this best case does not have much gain because,
in this case, the items are already sorted. If the input is nearly sorted, we
can remain close to the best case, and insertion sort turns out to be the best
to sort such data.

Insertion sort is also stable: Stable sorting algorithms maintain the relative
order of records with equal keys (i.e. values). A sorting algorithm is stable
if there are two records, R and S, with the same key and R appearing before
S in the original list; R will appear before S in the sorted list. (For example,
see keys 2 and 2' in Figureinsertion-sort.) Stability is an essential property
of sorting methods in some applications.

The space complexity of insertion sort is Θ(1) because it creates no data
structure but uses only a few temporal variables.
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4 Fast sorting algorithms based on the divide

and conquer approach

In computer science, divide and conquer is an algorithm design paradigm
based on multi-branched recursion. A divide and conquer algorithm recur-
sively breaks down a problem into two or more sub-problems of the same
or related type until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution to the
original problem.

This divide and conquer technique is the basis of e�cient algorithms for
many problems, for example, sorting (e.g., quicksort, mergesort).

4.1 Merge sort

5 3 1 6 8 2 4

5 3 1 6 8 2 4

5 3 1 6 8 2 4

3 1 6 8 2 4

1 3 6 8 2 4

1 3 5 2 4 6 8

1 2 3 4 5 6 8

Figure 2: An illustration of merge sort.

The divide and conquer paradigm is often used to �nd the optimal solu-
tion to a problem. Its basic idea is to decompose a given problem into two or
more similar but simpler subproblems, to solve them in turn, and to compose
their solutions to solve the given problem. Problems of su�cient simplicity
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are solved directly. For example, to sort a given list of n keys, split it into
two lists of about n/2 keys each, sort each in turn, and interleave (i.e. merge)
both results appropriately to obtain the sorted version of the given list. (See
Figure 2.) This approach is known as the merge sort algorithm.

Merge sort is stable (preserving the input order of items with equal keys),
and its worst-case time complexity is asymptotically optimal among compar-
ison sorts. (See section 7 for details.)

�� �mergeSort(A : T[n])

B : T[n] ; B[0..n) := A[0..n)

// Sort B[0..n) into A[0..n) non-decreasingly:

ms(B,A, 0, n)

�� �ms(B,A : T[] ; u, v : N)

// Initially B[u..v) = A[u..v).

// Sort B[u..v) into A[u..v) non-decreasingly:

v − u > 1

m :=
⌊
u+v
2

⌋
ms(A,B, u,m) // Sort A[u..m) into B[u..m) non-decreasingly.

ms(A,B,m, v) // Sort A[m..v), into B[m..v) non-decreasingly.

merge(B,A, u,m, v) // merge B[u..m) and B[m..v) into A[u..v)

SKIP

Using m =
⌊
u+v
2

⌋
, A[u..m) and A[m..v) have the same length, if the length

of A[u..v) is even number; and A[u..m) is shorter by one than A[m..v), if the
length of A[u..v) is odd number; because

length(A[u..m)) = m− u =

⌊
u+ v

2

⌋
− u =

⌊
u+ v

2
− u

⌋
=

⌊
v − u
2

⌋
=

⌊
length(A[u..v))

2

⌋

24



�� �merge(B,A : T[] ; u,m, v : N)

// sorted merge of B[u..m) and B[m..v) into A[u..v)

k := u // in loop, copy into A[k]

i := u ; j := m // from B[i] or B[j]

i < m ∧ j < v

B[i] ≤ B[j]

A[k] := B[i]

i := i+ 1

A[k] := B[j]

j := j + 1

k := k + 1

i < m

A[k..v) := B[i..m) A[k..v) := B[j..v)

The stability of merge sort is ensured in the explicit loop of merge because
in the case of B[i] = B[j], B[i] is copied into A[k], and B[i] came earlier in
the input.

Merge makes l loop iterations where l = v − u is the length of the actual
subarrays A[u..v) and B[u..v). To prove this statement, consider the value
of k after the explicit merge loop. This loop �lls subarray A[u..k) and copies
one element/iteration. Thus, it iterates k−u times. In addition, the implicit
loop is hidden into A[k..v) := . . . and iterates v − k times. Therefore, the
sum of the loop iterations is (k− u) + (v− k) = v− u = l. Consequently, for
the body of procedure merge (mb) we have:

Tmb(l) = l (l = v − u)

4.1.1 The time complexity of merge sort

Merge sort is one of the fastest sorting algorithms, and there is not a big
di�erence between its worst-case and best-case (i.e. maximal and minimal)
running time. For our array sorting version, we state:

MTmergeSort(n) = mTmergeSort(n) = TmergeSort(n) ∈ Θ(n log n)

Proof: Clearly TmergeSort(0) = 2. We suppose that n > 0. First, we count
all the loop iterations of the procedure merge. Next, we count the procedure
calls of merge sort.

Loop iterations: We proved above that a single call of merge(B,A, u,m, v)
makes Tmb(l) = l iterations where l = v − u. Let us consider the levels of
recursion of procedure ms(B,A, u, v). At level 0 of the recursion, ms is
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called for the whole array A[0..n). Considering all the recursive calls and the
corresponding subarrays at a given recursion depth, at level 1, this array is
divided into two halves, at level 2 into 4 parts and so on. Let nij be the
length of the jth subarray of the form A[u..v) at level i, and let m = ⌊log n⌋.
We have:

At level 0: 2m ≤ n01 = n < 2m+1

At level 1: 2m−1 ≤ n1j ≤ 2m+1−1 (j ∈ [1..21])
At level 2: 2m−2 ≤ n2j ≤ 2m+1−2 (j ∈ [1..22])
. . .
At level i: 2m−i ≤ nij ≤ 2m+1−i (i ∈ [1..m], j ∈ [1..2i])
. . .
At level m− 1: 2 ≤ n(m−1)j ≤ 4 = 22 (j ∈ [1..2m−1])
At level m: 1 ≤ nmj ≤ 2 = 21 (j ∈ [1..2m])
At level m+ 1: n(m+1)j = 1 (j ∈ [1..(n− 2m)])

Thus, these subarrays cover the whole array at levels [0..m]. At levels [0..m),
merge is called for each subarray, but at level m, it is called only for those
subarrays with length 2, and the number of these subarrays is n−2m. Merge
makes as many iterations as the length of the actual A[u..v). Consequently,
at each level in [0..m), merge makes n iterations in all the merge calls of the
level altogether. At level m, the sum of the iterations is 2 ∗ (n − 2m), and
there is no iteration at level m+ 1. Therefore, the total of all the iterations
during the merge calls is

Tmb[0..m](n) = n ∗m+ 2 ∗ (n− 2m).

The number of procedure calls: The ms calls form a strictly binary tree.
(See section 6.2.) The leaves of this tree correspond to the subarrays with
length 1. Thus, this strictly binary tree has n leaves and n − 1 internal
nodes. Consequently, we have 2n−1 calls of ms and n−1 calls of the merge.
Adding to this the single call of mergeSort(), we receive 3n − 1 procedure
calls altogether.

And there are n iterations hidden into the initial assignment B[0..n) :=
A[0..n) in procedure mergeSort. Thus, the number of steps of mergeSort is

T (n) = (n+n∗m+2∗(n−2m))+(3∗n−1) = n∗⌊log n⌋+2∗(n−2⌊logn⌋)+4∗n−1

n ∗ log n+ 2 ∗ n ≤ n ∗ (log n− 1) + 4 ∗ n− 1 ≤ T (n) < n ∗ log n+ 6 ∗ n.
Thus T (n) ∈ Ω(n log n) (see Consequence 1.8) and T (n) ∈ O(n log n) (see
Consequence 1.7). After all we have for mergeSort(A : T[n])

T (n) ∈ Θ(n log n).
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4.1.2 The space complexity of merge sort

Considering the above merge sort code, we create the temporal array B : T[n]
in the main procedure, and we need a temporal variable for the implicit for
loop. We need Θ(n) working memory here. In addition, we have seen in the
previous subsection (4.1.1) that the number of levels of recursion is ⌊log n⌋+1
which is approximately log n, and we have a constant amount of temporal
variables at each level. Thus, we need Θ(log n) working memory inside the
call stack to control the recursion. And Θ(log n) ≺ Θ(n). These measures
do not depend on the content of the array to be sorted. For this reason, the
space complexity of this array version of merge sort is S(n) ∈ Θ(n).

4.2 Quicksort

Quicksort is a divide-and-conquer algorithm. Quicksort �rst divides a large
array into two smaller sub-arrays: the low elements and the high elements.
Quicksort can then recursively sort the sub-arrays.

The steps are:

� Pick an element, called pivot, from the array.

� Partitioning: reorder the array so that all elements with values less
than the pivot come before the pivot, while all elements with values
exceeding the pivot come after it (equal values can go either way).
After this partitioning, the pivot is in its �nal position. This is called
the partition operation.

� Recursively apply the above steps to the sub-array of elements with
smaller values and separately to the sub-array of elements with greater
values.

� The base case of the recursion is arrays of size zero or one, which are
in order by de�nition, so they never need to be sorted.

The pivot selection and partitioning steps can be done in several ways; the
choice of speci�c implementation schemes signi�cantly a�ects the algorithm's
performance. �� �quicksort(A : T[n])

QS(A, 0, n− 1)
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�� �QS(A : T[] ; p, r : N)

p < r

q := partition(A, p, r)

QS(A, p, q − 1)

QS(A, q + 1, r)

SKIP

�� �partition(A : T[] ; p, r : N) : N

i := random(p, r) // Select the pivot

swap(A[i], A[r]) // A[r] is the pivot

i := p

i < r ∧ A[i] ≤ A[r]

i := i+ 1

i < r

j := i+ 1

j < r

A[j] < A[r]

swap(A[i], A[j])

i := i+ 1
SKIP

j := j + 1

swap(A[i], A[r])

// i = r
// A[p..r) ≤ A[r]

return i

Explanation of function partition: To illustrate the operation of func-
tion partition, let us introduce the following notation:

� A[k..m) ≤ A[r], ⇐⇒ for each l ∈ [k..m), A[l] ≤ A[r]

� A[k..m) ≥ A[r], ⇐⇒ for each l ∈ [k..m), A[l] ≥ A[r]

We suppose that subarray A[p..r] is partitioned, and the pivot is the second
5, i.e. the 4th element of this subarray (with index p+3).

After the i := random(p, r) assignment:
p i r

A : 5 3 8 5 6 4 7 1
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Preparations for the �rst loop: After swap(A[i], A[r]), A[r] is the pivot.
p r

A : 5 3 8 1 6 4 7 5 pivot = A[r] = 5

If some element exceeds the pivot, the �rst loop searches for the �rst such
item. (The occurrences of index i re�ect its left-to-right movement.)

i=p i i r
A : 5 3 8 1 6 4 7 5

We have found the �rst item that is greater than the pivot.
Variable j starts at the next item.

p i j r
A : 5 3 8 1 6 4 7 5

We have cut A[p..r] into four sections:

p ≤ i < j ≤ r
A[p..i) ≤ pivot, A[i..j) ≥ pivot, A[j..r) (unchecked), A[r] (the pivot).

This is an invariant of the second loop. The �rst section, i.e. A[p..i) contains
items less or equal to the pivot, the nonempty second section, i.e. A[i..j)
contains items greater or equal to the pivot, the third section, i.e. A[j..r)
contains the unchecked items, while the last section, i.e. A[r] is the pivot.
(Notice that the items equal to the pivot may be either in the �rst or the
second section of A[p..r].)

The elements of the third section are then connected in sequence to the
�rst or second section of elements until the third section is exhausted. Finally,
the pivot is inserted between the �rst two sections. O�setting the second
section would result in unacceptably poor e�ciency. Thus, this is avoided
when attaching to the �rst section and when the �nal step is performed.
In both cases, we can prevent shifting the second section by swapping the
current element with the �rst element of the second section. The consequence
is that the quicksort algorithm is unstable.

Starting the run of the second loop, it turns out that A[j] = 1 < pivotmust be
exchanged with A[i] = 8 ≥ pivot to move A[j] into the �rst section of A[p..r]
(which contains items ≤ than the pivot), and to move A[i] (A[i] ≥ pivot) to
the end of the second section (which contains items ≥ than the pivot). (The
items to be exchanged are printed in bold.)

p i j r
A : 5 3 8 1 6 4 7 5
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Now we exchange A[i] and A[j]. Thus, the length of the �rst section of A[p..r]
(containing items ≤ than the pivot) has been increased by 1, while its second
section (containing items ≥ than the pivot) has been moved by one position.
So, we increment variables i and j by 1 to keep the loop invariant.

p i j r
A : 5 3 1 8 6 4 7 5

Now A[j] = 6 ≥ pivot = 5, so we add A[j] to the second section of A[p..r],
i.e. we increment j by 1.

p i j r
A : 5 3 1 8 6 4 7 5

And now A[j] = 4 < pivot = 5, so A[j] must be exchanged with A[i]. (The
items to be exchanged are printed in bold.)

Now we exchange A[i] and A[j]. Thus, the length of the �rst section of A[p..r]
(containing items ≤ than the pivot) has been increased by 1, while its second
section (containing items ≥ than the pivot) has been moved by one position.
So, we increment variables i and j by 1 to keep the loop invariant.

p i j r
A : 5 3 1 4 6 8 7 5

Now A[j] = 7 ≥ pivot = 5, so we add A[j] to the second section of A[p..r],
i.e. we increment j by 1.

And now j = r, therefore the third (the unknown) section of A[p..r]
disappeared.

p i j=r
A : 5 3 1 4 6 8 7 5

Now, the �rst two sections cover A[p..r), and the second section is not empty
because of invariant i < j. Thus the pivot can be put in between the items
≤ than it, and the items ≥ than it: we swap the �rst element (A[i]) of
the second section (A[i..j)) with the ,pivot,which is A[r], i.e. we perform
swap(A[i], A[r]). (We show with a �+� sign that the pivot is already at its
�nal place.)

p i j=r
A : 5 3 1 4 +5 8 7 6

The partitioning of the subarray A[p..r] has been completed. We return
the position of the pivot (i) to inform procedure Quicksort(A, p, r), which
subarrays of A[p..r] must be sorted recursively.
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In the other case of procedure partition, the pivot is a maximum of A[p..r].
This case is trivial. Let the reader consider it.

The time complexity of the function partition is linear because the two loops
perform r−p−1 or r−p iterations together.

There is a big di�erence between the best-case and worst-case time com-
plexities of quicksort. At each level of recursion, counting all the elements
in the subarrays of that level, we have to divide not more than n elements.
Therefore, the time complexity of each recursion level is O(n).

In a lucky case, at each recursion level, in the partitioning process, the
pivot divides the actual subarray into two parts of approximately equal
lengths, and the recursion depth will be about log n. Thus, the best-case time
complexity of quicksort is O(n log n). It can be proved that it is Θ(n log n).

In an unlucky case, the pivot will be the maximum or minimum of the
actual subarray in the partitioning process at each recursion level. After
partitioning, the shorter partition will be empty, but the more extended
partition will have all the elements except the pivot. Considering always
the longer subarray, at level zero, we have n elements; at level one, n − 1
elements;. . . at level i, n− i elements (i ∈ 0..(n−1)). As a result, in this case,
we have n levels of recursion, and we need approximately n− i steps only
for partitioning at level i. Consequently, the worst-case time complexity of
quicksort is Ω(n2). It can be proved that it is Θ(n2).

Fortunately, the probability of the worst case is extremely low, and the
average case is much closer to the best case. As a result,

mTquicksort(n), ATquicksort(n) ∈ Θ(n log n) ∧ MTquicksort(n) ∈ Θ(n2)

Considering its space complexity, quicksort does not use any temporal
data structure. Thus, the memory needs are determined by the number of
recursion levels. As we have seen, it is n in the worst case. And in the
best case, it is about log n. Fortunately, in the average case, it is Θ(log n).
Consequently

mSquicksort(n), ASquicksort(n) ∈ Θ(log n) ∧ MSquicksort(n) ∈ Θ(n)

It is known that insertion sort is more e�cient on short arrays than the fast
sorting methods (merge sort, heap sort, quicksort). Thus, the procedure
quicksort(A, p, r) can be optimised by switching to insertion sort on short
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subarrays. Because in the recursive calls, we determine a lot of short sub-
arrays, the speed-up can be signi�cant, although it does change neither the
time nor the space complexities.�� �QS(A : T[] ; p, r : N)

p+ c < r

q := partition(A, p, r)

QS(A, p, q − 1)

QS(A, q + 1, r)

insertionSort(A, p, r)

c ∈ N is a constant. Its optimal value depends on many factors, but usually,
it is between 20 and 50.

Exercise 4.1 How do you speed up the merge sort in a similar way?

Considering its expected running time, quicksort is one of the most ef-
�cient sorting methods. However, if (for example), by chance, the function
partition always selects the maximal or minimal element of the actual subar-
ray, it slows down. [In this case, the time complexity of quicksort is Θ(n2).]
The probability of such cases is low. However, to avoid such cases, we can
pay attention to the recursion depth and switch to heap sort (see later) when
recursion becomes too deep (for example, deeper than 2 ∗ log n). With this
optimisation, even the worst-case time complexity is Θ(n log n), and even
the worst-case space complexity is Θ(log n).
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5 Linked Lists

One-way lists can represent �nite sequences of data. They consist of zero or
more elements (i.e. nodes) where each list element contains some data and
linking information.

5.1 One-way or singly linked lists

In singly linked lists, each element contains a key and a next pointer referring
to the next element of the list. A pointer referring to the front of the list
identi�es the list. The next pointer of the last item typically contains a
so-called NULL (i.e. �) pointer1, which is the address of no object. (With
some abstraction, the nonexisting object with address � can be called a NO
object.) In this book, E1 is the element type of the di�erent kinds of one-way
lists.

E1
+key : T
. . . // satellite data may come here
+next : E1*
+E1() { next := � }

5.1.1 Simple one-way lists (S1L)

An S1L is identi�ed by a pointer referring to its �rst element, or this pointer
is � if the list is empty.

L1 = �

L1 9 16 4 1 �

L1 25 9 16 4 1 �

L1 25 9 16 4 �

Figure 3: Pointer L1 identi�es simple one-way lists at di�erent stages of an
imaginary program. In the �rst line, the S1L is empty.

1except in cyclic lists
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�� �S1L_length(L : E1*) : N

n := 0

p := L

p ̸= �
n := n+ 1

p := p→ next

return n

If n is the length of list L,
then

the loop iterates n times,
so

TS1L_length(n) = 1 + n,
therefore

TS1L_length(n) ∈ Θ(n).

5.1.2 One-way lists with header node (H1L)

The header node or simply header of a list is an extra zeroth element with
unde�ned key. A list with a header cannot be �; it always contains a header.
The pointer identifying the list always refers to its header.

L2 �

L2 4 8 2 �

L2 17 4 8 2 �

L2 17 8 2 �

Figure 4: Pointer L2 identi�es one-way lists with heather at di�erent stages
of an imaginary program. In the �rst line, the H1L is empty.

�� �H1L_length(H : E1*) : N

return S1L_length(H → next)

TH1L_length(n) ∈ Θ(n)
where n is the length of H1L H.

5.1.3 One-way lists with trailer node

Some one-way lists contain a trailer node instead of a header. A trailer node
is always at the end of such lists. The data members (key and next) of the
trailer node are typically unde�ned, and we have two pointers identifying the
list: One refers to its �rst element and the other to its trailer node. If the
list is empty, both identi�er pointers refer to its trailer node.
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Such a list is ideal for representing a queue. Its add(x : T) method copies
x into the key of the trailer node and joins a new trailer node to the end of
the list.

5.1.4 Handling one-way lists

�� �insertAtFront(&L, q : E1*)

q → next := L

L := q

�� �unlinkFirst(&L : E1*) : E1*

q := L

L := q → next

q → next := �
return q

�� �follow(p, q : E1*)

q → next := p→ next

p→ next := q

�� �unlinkNext(p : E1*) : E1*

q := p→ next

p→ next := q → next

q → next := �
return q

TinsertAtFront, TunlinkF irst, Tfollow, TunlinkNext ∈ Θ(1)

SinsertAtFront, SunlinkF irst, Sfollow, SunlinkNext ∈ Θ(1)�� �cut(L : E1* ; n : N) : E1*

p := L

n > 1

n := n− 1

p := p→ next

q := p→ next

p→ next := �
return q

�� �H1L_read() : E1*

H := v := new E1

read(x)

v := v → next := new E1

v → key := x

// satellite data may be read here

return H

Tcut(n) ∈ Θ(n) ∧ Scut(n) ∈ Θ(1)

TH1L_read(n) ∈ Θ(n) ∧ SH1L_read(n) ∈ Θ(n)

where n is the length of the list.
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5.1.5 Insertion sort of H1Ls�� �H1L_insertionSort(H : E1*)

s := H → next

s ̸= �
u := s→ next

u ̸= �
s→ key ≤ u→ key

s := u

s→ next := u→ next

p := H ; q := H → next

q → key ≤ u→ key

p := q ; q := q → next

u→ next := q ; p→ next := u

u := s→ next

SKIP

mTIS(n) ∈ Θ(n) ∧ ATIS(n),MTIS(n) ∈ Θ(n2) ∧ SIS(n) ∈ Θ(1)

where n is the length of H1L H. Clearly procedure insertionSort(H : E1*)
is stable. Like the array version of it, it also sorts in place.

5.1.6 Merge sort of S1Ls

�� �mergeSort(&L : E1*)

// L is an S1L.

n := S1L_length(L)

ms(L, n)

�� �ms(&L : E1* ; n : N)

n > 1

n1 := ⌊n
2
⌋

L2 := cut(L, n1)

ms(L, n1)

ms(L2, n− n1)
L := merge(L,L2)

SKIP
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�� �merge(L1, L2 : E1*) : E1*

L1→ key ≤ L2→ key

L := t := L1

L1 := L1→ next

L := t := L2

L2 := L2→ next

L1 ̸= � ∧ L2 ̸= �
L1→ key ≤ L2→ key

t := t→ next := L1

L1 := L1→ next

t := t→ next := L2

L2 := L2→ next

L1 ̸= �

t→ next := L1 t→ next := L2

return L

mTMS(n),MTMS(n) ∈ Θ(n log n) ∧ SMS(n) ∈ Θ(log n)

where n is the length of S1L L. Clearly procedure mergeSort(&L : E1*) is
stable. Unlike the array version of merge sort, it sorts non-strictly in place.

5.1.7 Cyclic one-way lists

The last element of the list does not contain � in its next �eld, but this
pointer points back to the beginning of the list.

If a cyclic one-way list does not contain a header node and this list is
nonempty, the next �eld of the list's last element refers to the list's �rst ele-
ment. If it is empty, it is represented by the � pointer. A pointer identifying
a nonempty, cyclic one-way list typically refers to its last element.

If a cyclic one-way list has a header node, the next �eld of the list's last
element refers to the list's header node. If the list is empty, the next �eld of
its header node refers to this header node. Notice that the header of a cyclic
list is also the trailer node of that list.

Such lists are also good choices for representing queues. Given a queue
represented by a cyclic list with a header, the add(x : T) method copies x
into the key of the trailer/header node and inserts a new trailer/header node
into the list.

5.2 Two-way or doubly linked lists

In a two-way list, each element contains a key and two pointers: a next and
a prev pointer referring to the next and previous elements of the list. A
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pointer referring to the front of the list identi�es the list.

5.2.1 Simple two-way lists (S2L)

An S2L is identi�ed by a pointer referring to its �rst element, or this pointer
is � if the list is empty.

The prev pointer of the �rst element and the next pointer of the last item
contains the � pointer.

L1 = �

L1 � 9 16

keyprev next

4 1 �

L1 � 25 9 16 4 1 �

L1 � 25 9 16 1 �

Figure 5: Pointer L1 identi�es simple two-way lists (S2L) at di�erent stages
of an imaginary program. In the �rst line list L1 is initialized to empty.

Handling S2Ls is inconvenient because all the modi�cations of an S2L
must be done di�erently at the front of a list, at the end of the list, and in
between. Consequently, we prefer cyclic two-way lists (C2L) in general. (In
hash tables, however, S2Ls are usually preferred to C2Ls.)

5.2.2 Cyclic two-way lists (C2L)

A cyclic two-way list (C2L) contains a header node (i.e. header) by default.
The list is identi�ed by a pointer referring to its header. The next �eld of
the list's last element refers to the list's header, considered a zeroth element.
The prev pointer of the list's �rst element refers to the list's header, and the
prev pointer of the list's header refers to the list's last element. If a C2L
is empty, the prev and next �elds of the list's header refer to this header.
Notice that the header of a cyclic list is also the trailer node of the list.

The element type of C2Ls follows.

E2
+prev, next : E2* // refer to the previous and next neighbour or be this
+key : T
+ E2() { prev := next := this }
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L2

L2 9 16 4 1

L2 25 9 16 4 1

L2 25 9 16 4

Figure 6: Pointer L2 identi�es cyclic two-way lists (C2L) at di�erent stages
of an imaginary program. In the �rst line list L2 is empty.

Some basic operations on C2Ls follow. Notice that these are simpler than
the appropriate operations of S2Ls. T, S ∈ Θ(1) for each of them.�� �precede(q, r : E2*)

// (∗q) will precede (∗r)
p := r → prev

q → prev := p ; q → next := r

p→ next := r → prev := q

�� �follow(p, q : E2*)

// (∗q) will follow (∗p)
r := p→ next

q → prev := p ; q → next := r

p→ next := r → prev := q

�� �unlink(q : E2*)

// remove (∗q)
p := q → prev ; r := q → next

p→ next := r ; r → prev := p

q → prev := q → next := q
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L1

L2

r

L1

L2

r

L1

L2

r

L1

L2

p r

L1

L2

p r

Figure 7: Illustrating unlink(q) and precede(q, r). Insertion is called on the
red element (∗q), and it is inserted left to (∗r) into list L2.
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5.2.3 Example programs on C2Ls

We can imagine a C2L straightened, for example.
H → [/]�[5]�[2]�[7]�[/]← H representing ⟨5; 2; 7⟩
or empty: H → [/]�[/]← H representing ⟨⟩.�� �C2L_read(&H : E2*)

H := new E2

read(x)

p := new E2

p→ key := x

precede(p,H)

�� �setEmpty(H : E2*)

p := H → prev

p ̸= H

unlink(p)

delete p

p := H → prev

H → [/]�[/]← H
H → [/]�[5]�[/]← H
H → [/]�[5]�[2]�[/]← H
H → [/]�[5]�[2]�[7]�[/]← H

TC2L_read(n), TsetEmpty(n), Tlenght(n) ∈ Θ(n)�� �insertionSort(H : E2*)

s := H → next ; u := s→ next

u ̸= H

s→ key ≤ u→ key

s := u

unlink(u)

p := s→ prev

p ̸= H ∧ p→ key > u→ key

p := p→ prev

follow(p, u)

u := s→ next

�� �length(H : E2*) : N

n := 0

p := H → next

p ̸= H

n := n+ 1

p := p→ next

return n

H → [/]�[5]�[2]�[7]�[2′]�[/]← H

H → [/]�[2]�[5]�[7]�[2′]�[/]← H

H → [/]�[2]�[5]�[7]�[2′]�[/]← H

H → [/]�[2]�[2′]�[5]�[7]�[/]← H

mTIS(n) ∈ Θ(n);ATIS(n),MTIS(n) ∈ Θ(n2) ∧ SIS(n) ∈ Θ(1)
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where n is the length of C2L H. Clearly procedure insertionSort(H : E2*)
is stable.

Example 5.1 Let us suppose that Hu and Hi are strictly increasing C2Ls.
We write procedure unionIntersection(Hu, Hi : E2∗) which calculates the
strictly increasing union of the two lists in Hu and the strictly increasing
intersection of them in Hi.

We use neither memory allocation (new) nor deallocation (delete) state-
ments nor explicit assignment statements to data members. We rearrange the
lists only with unlink(q), precede(q,r), and follow(p,q). MT (n,m) ∈ O(n+m)
and S(n,m) ∈ Θ(1) where n = lenght(Hu) and m = length(Hi).

Let us have q, r : E2∗ initialised to point to the �rst items of Hu and Hi,
respectively. For example:

Hu → [/]�[
q

2]�[4]�[6]�[/]← Hu

Hi → [/]�[1
r
]�[4]�[8]�[9]�[/]← Hi

We work with the following invariant where

key(q,H) =

{
q → key if q ̸= H
∞ if q = H

(H, q) is the sublist of the items between H and q,
[q,H) is the sublist of the items starting with q but before H.

� C2Ls Hu and Hi are strictly increasing consisting of the original bag of
list items, q is a pointer on Hu and r on Hi,

� (Hu, q) is the pre�x of the sorted union containing the keys
less than min(key(q,Hu), key(r,Hi)),

� (Hi, r) is the pre�x of the sorted intersection containing the keys
less than min(key(q,Hu), key(r,Hi)),

� [q,Hu) and [r,Hi) are still unaltered.

Illustration of the run of the program:

Hu → [/]�[
q

2]�[4]�[6]�[/]← Hu

Hi → [/]�[1
r
]�[4]�[5]�[8]�[9]�[/]← Hi

Hu → [/]�[1]�[
q

2]�[4]�[6]�[/]← Hu

Hi → [/]�[4
r
]�[5]�[8]�[9]�[/]← Hi
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Hu → [/]�[1]�[2]�[
q

4]�[6]�[/]← Hu

Hi → [/]�[4
r
]�[5]�[8]�[9]�[/]← Hi

Hu → [/]�[1]�[2]�[4]�[
q

6]�[/]← Hu

Hi → [/]�[4]�[5
r
]�[8]�[9]�[/]← Hi

Hu → [/]�[1]�[2]�[4]�[5]�[
q

6]�[/]← Hu

Hi → [/]�[4]�[8
r
]�[9]�[/]← Hi

Hu → [/]�[1]�[2]�[4]�[5]�[6]�[
q

/]← Hu

Hi → [/]�[4]�[8
r
]�[9]�[/]← Hi

Hu → [/]�[1]�[2]�[4]�[5]�[6]�[8]�[
q

/]← Hu

Hi → [/]�[4]�[9
r
]�[/]← Hi

Hu → [/]�[1]�[2]�[4]�[5]�[6]�[8]�[9]�[
q

/]← Hu

Hi → [/]�[4]�[/
r

]← Hi

�� �unionIntersection(Hu, Hi : E2∗)

q := Hu → next ; r := Hi → next

q ̸= Hu ∧ r ̸= Hi

q → key < r → key

q := q → next

q → key > r → key

p := r

r := r → next

unlink(p)

precede(p, q)

q → key = r → key

q := q → next

r := r → next

r ̸= Hi

p := r ; r := r → next ; unlink(p)

precede(p,Hu)

Exercise 5.2 Write the structure diagrams of quickSort(H:E2∗){ QS(H,H)
} which sort C2L H increasingly. QS(p, s:E2∗) can be a recursive procedure
sorting sublist (p, s) with quicksort. It starts with partitioning sublist (p, s).
Let the pivot (∗q) be the �rst element of the sublist. Let your version of
quicksort be stable.
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Illustration of the partition part of QS(H,H) on C2L H below:
(Partition of the sublist strictly between p and s, i.e. partition of sublist
(p, s). The pivot is ∗q, r goes on sublist (q, s), elements smaller than the
pivot are moved before the pivot.)

H → [
p

/]�[5
q
]�[2

r
]�[4]�[6]�[5]�[2′]�[

s

/]← H

H → [
p

/]�[2]�[5
q
]�[4

r
]�[6]�[5]�[2′]�[

s

/]← H

H → [
p

/]�[2]�[4]�[5
q
]�[6

r
]�[5]�[2′]�[

s

/]← H

H → [
p

/]�[2]�[4]�[5
q
]�[6]�[5

r
]�[2′]�[

s

/]← H

H → [
p

/]�[2]�[4]�[5
q
]�[6]�[5]�[2′

r
]�[

s

/]← H

H → [
p

/]�[2]�[4]�[2′]�[5
q
]�[6]�[5]�[

s

/
r

]← H
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6 Trees, binary trees

Up till now, we have worked with arrays and linked lists. They have a
common property: There is a �rst item in the data structure, and any element
has exactly one other item next to it except for the last element, which has
no successor, according to the following scheme: O � O � O � O � O .

Therefore, the arrays and linked lists are called linear data structures.
(Although in the case of cyclic lists, the linear data structure is circular.)
Thus, the arrays and linked lists represent linear graphs.

6.1 General notions

The trees are also unique �nite graphs at an abstract level. They consist of
nodes (i.e. vertices) and edges (i.e. arcs). If the tree is empty, it contains
neither node nor edge. � denotes the empty tree. If it is nonempty, it always
contains a root node.2 Each node of the graph has zero or more immediate
successor nodes, which are called its children, and it is called their parent. A
directed edge goes from the parent to each of its children. A node with no
child is called a leaf. The root has no parent. Each other node of the tree
has exactly one parent. The non-leaf nodes are also called internal nodes.

Notice that a linear data structure can be considered a tree where each
internal node has a single child. Such trees will be called linear trees.

The descendants of a node are its children and the descendants of its
children. The ancestors of a node are its parent and the ancestors of its
parent. The root (node) has no ancestor, but each other node of the tree is
a descendant of it. Thus, the root is the ancestor of each non-root node in
the tree. Therefore, the root of a tree identi�es the whole tree. The leaves
have no descendants.

Traditionally, a tree is drawn in a reversed manner: The topmost node
is the root, and the edges go downwards (so the arrows at the ends of the
edges are often omitted). See �gure 8.
Given a tree, it is subtree of itself. If the tree is not empty, its other subtrees
are the subtrees of the trees rooted by its children (recursively).

A tree's size is the number of nodes. The size of tree t is denoted by n(t)
or |t| (n(t) = |t|). The number of internal nodes of t is i(t). The number
of leaves of t is l(t). Clearly n(t) = i(t) + l(t) for a tree. For example,
n(�) = 0, and considering �gure 8, n(t1) = i(t1) + l(t1) = 1 + 2 = 3,

2In this chapter the trees are always rooted, directed trees. We do not consider free

trees, undirected connected graphs without cycles.
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t1 t2 t3 t4

1

2

3

4

5

6

7

8

level 0

level 1

level 2

level 3

height = 3

Figure 8: Simple binary trees. Circles represent the nodes of the trees. If
the structure of a subtree is not important or unknown, we denote it with a
triangle.

n(t2) = i(t2) + l(t2) = 1 + 1 = 2, n(t3) = i(t3) + l(t3) = 0 + 1 = 1, and
n(t4) = 2 + n(t4→left) where �t4→left� is the unknown left subtree of t4.

We can speak of a nonempty tree's levels. The root is at level zero (the
topmost level), its children are at level one, its grandchildren are at level
two, and so on. Given a node at level i, its children are at level i+1 (always
in a downward direction).

A nonempty tree's height equals the leaves' lowest level. The height of
the empty tree is −1. The height of tree t is denoted by h(t). For example,
h(�) = −1, and considering �gure 8, h(t1) = 1, h(t2) = 1, h(t3) = 0, and
h(t4) = 1+max(h(t4→left), 0) where �t4→left� is the unknown left subtree
of t4.

All the hierarchical structures can be modelled by trees, for example, the
directory hierarchy of a computer. Each tree node is typically labelled by
some key and maybe with other data.

Sources: [1] Chapter 10, 6, 12; [6] 4.4; [3] 6-7

46



6.2 Binary trees

Binary trees are helpful, for example, for representing sets and multisets (i.e.
bags) like dictionaries and priority queues.

A binary tree is a tree where each internal (i.e. non-leaf) node has at most
two children. If a node has two children, they are the left child and the
right child of their parent. If a node has exactly one child, then this child is
the left or right child of its parent. This distinction is essential.

If t is a nonempty binary tree (i.e. t ̸= �), then ∗t is the root node of
the tree, t → key is the key labelling ∗t, t → left is the left subtree of t,
and t → right is the right subtree of t. If ∗t does not have the left child,
t→ left = �, i.e. the left subtree of t is empty. Similarly, if ∗t does not have
the right child, t→ right = �, i.e. the right subtree of t is empty.

If ∗p is a node of a binary tree, p is the (sub)tree rooted by ∗p, thus
p → key is its key, p → left is its left subtree, and p → right is its right
subtree. If ∗p has the left child, it is ∗p→ left. If ∗p has the right child, it
is ∗p→ right. If ∗p has a parent, it is ∗p→ parent. The tree rooted by the
parent is p→ parent. (Notice that the in�x operator→ binds stronger than
the pre�x operator ∗. For example, ∗p → left = ∗(p → left).) If ∗p does
not have a parent, p→ parent = �.

If p = �, all the expressions ∗p, p → key, p → left, p → right, p →
parent etc. are erroneous.

Properties 6.1
h(�) = −1

t ̸= � binary tree =⇒ h(t) = 1 +max(h(t→ left), h(t→ right))

A strictly binary tree is a binary tree where each internal node has two chil-
dren. (Strictly binary trees are also called full binary trees.) The following
property can be proved easily by induction on i(t).

Property 6.2 Given a t ̸= � strictly binary tree,
l(t) = i(t) + 1.
Thus n(t) = 2i(t) + 1 ∧ n(t) = 2l(t)− 1

A perfect binary tree is a strictly binary tree with all the leaves at the same
level. It follows that in a perfect nonempty binary tree of height h, we have
20 nodes at level 0, 21 nodes at level 1, and 2i nodes at level i (0 ≤ i ≤ h).
Therefore, we get the following property.

Property 6.3 Given a t ̸= � perfect binary tree (n = n(t), h = h(t))
n = 20 + 21 + · · ·+ 2h = 2h+1 − 1
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A nonempty nearly complete binary tree is a binary tree which becomes per-
fect if we delete its lowest level. The � is also a nearly complete binary tree.
(An equivalent definition: A nearly complete binary tree is a binary tree
which can be received from a perfect binary tree by deleting zero or more
nodes from its lowest level.) Notice that the perfect binary trees are also
nearly complete, according to this de�nition.

Because a nonempty, nearly complete binary tree is perfect, possibly ex-
cept at its lowest level h, it has 2h − 1 nodes at its �rst h− 1 levels, at least
1 node and at most 2h nodes at its lowest level. Thus n ≥ 2h − 1 + 1 ∧
n ≤ 2h − 1 + 2h where n is the size of the tree.

Properties 6.4 Given a t ̸= � nearly complete binary tree
(n = n(t), h = h(t)). Then
n ∈ 2h..(2h+1−1). Thus
h = ⌊log n⌋.

Now, we consider the relations between the size n and height h of a
nonempty binary tree. These will be important in binary search trees: good
representations of data sets stored in the RAM.

A nonempty binary tree of height h has the most nodes if it is perfect.
Therefore, from property 6.3, we receive that for the size n of any nonempty
binary tree n < 2h+1. Thus log n < log(2h+1) = h + 1,3 so ⌊log n⌋ < h + 1.
Finally, ⌊log n⌋ ≤ h.

On the other hand, a nonempty binary tree of height h has the least
number of nodes if it contains just one node at each level (i.e. it is linear),
and so for the size n of any nonempty binary tree n ≥ h+1. Thus h ≤ n−1.

Property 6.5 Given a t ̸= � binary tree (n = n(t), h = h(t)),
⌊log n⌋ ≤ h ≤ n− 1
where h = ⌊log n⌋ if the tree is nearly complete, and
h = n− 1 i� the tree is linear (see page 45).

Notice that there are binary trees with h = ⌊log n⌋, although they are
not nearly complete.

6.3 Linked representations of binary trees

The empty tree is represented by a null pointer, i.e. �. A nonempty binary
tree is identi�ed by a pointer referring to a Node, which represents the root
of the tree:

3Remember the de�nition of log n given in section 1: log n = log2(n) if n > 0, and
log 0 = 0.
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Node
+ key : T // T is some known type
+ left, right : Node*
+ Node() { left := right := � } // generate a tree of a single node.
+ Node(x : T) { left := right := � ; key := x }

Sometimes, having a parent pointer in the tree's nodes is helpful. We can
see a binary tree with parent pointers in �gure 9.

�

� �

� � � �

�

�

� �

�

� �

Figure 9: Binary tree with parent pointers. (We omitted the keys of the
nodes here.)

Node3
+ key : T // T is some known type
+ left, right, parent : Node3*
+ Node3(p:Node3*) { left := right := � ; parent := p }
+ Node3(x : T, p:Node3*) { left := right := � ; parent := p ; key := x }
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6.4 Binary tree traversals

�� �preorder(t : Node*)

t ̸= �
process(t)

preorder(t→ left)

preorder(t→ right)

SKIP

�� �inorder(t : Node*)

t ̸= �
inorder(t→ left)

process(t)

inorder(t→ right)

SKIP

�� �postorder(t : Node*)

t ̸= �
postorder(t→ left)

postorder(t→ right)

process(t)

SKIP

�� �levelOrder(t : Node*)

t ̸= �
Q : Queue ; Q.add(t)

¬Q.isEmpty()

s := Q.rem()

process(s)

s→ left ̸= �
Q.add(s→ left) SKIP

s→ right ̸= �
Q.add(s→ right) SKIP

SKIP

Tpreorder(n), Tinorder(n), Tpostorder(n), TlevelOrder(n) ∈ Θ(n) where n = n(t) and
the time complexity of process(t) is Θ(1). For example, process(t) can print
t→ key: �� �process(t)

cout << t→ key << ` `

We can slightly reduce preorder and inorder traversal running times if we
eliminate the tail recursions. (It does not a�ect the time complexities.)�� �preorder(t : Node*)

t ̸= �
process(t)

preorder(t→ left)

t := t→ right

�� �inorder(t : Node*)

t ̸= �
inorder(t→ left)

process(t)

t := t→ right

50



t

1

2

3 4

5

6 7

t

4

2

1 3

6

5 7

t

7

3

1 2

6

4 5

t

1

2

4 5

3

6 7

Figure 10: left upper part: preorder, right upper part: inorder, left lower
part: postorder, right lower part: level order traversal of binary tree t.

6.4.1 An application of traversals: the height of a binary tree

Postorder: �� �h(t : Node*) : Z

t ̸= �
return 1+max(h(t→ left),h(t→ right)) return −1

Preorder:

�� �h(t : Node*) : Z

max := level := −1
preorder_h(t, level,max)

return max

�� �preorder_h(t : Node* ; level,&max : Z)

t ̸= �
level := level + 1

level > max

max := level SKIP

preorder_h(t→ left, level,max)

t := t→ right
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6.4.2 Using parent pointers�� �inorder_next(p : Node3*) : Node3*

q := p→ right

q ̸= �
q → left ̸= �

q := q → left

q := p→ parent

q ̸= � ∧ q → left ̸= p

p := q ; q := q → parent

return q

MT (h) ∈ O(h) where h = h(t)

Exercise 6.6 What can we say about the space complexities of the di�erent
binary tree traversals and other subroutines above?

6.5 Parenthesised, i.e. textual form of binary trees

Parenthesised, i.e. the textual form of a nonempty binary tree:

( LeftSubtree Root RightSubtree )

A pair of brackets represents the empty tree. We omit the empty subtrees of
the leaves. We can use di�erent kinds of parentheses for easier reading. For
example, see Figure 11.

1

2

3

4

6

5

7

The binary tree on the left in

� simple textual form:
( ( (1) 2 () ) 3 ( ( () 4 (5) ) 6 (7) ) )

� elegant parenthesised form:
{ [ (1) 2 () ] 3 [ ( ⟨⟩ 4 ⟨5⟩ ) 6 (7) ] }

Figure 11: The same binary tree in graphical and textual representations.
Notice that by omitting the parenthesis from the textual form of a tree, we
receive the inorder traversal of that tree.
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6.6 Binary search trees

�Binary search trees (BST) are a particular type of container: data structures
that store "items" (such as numbers, names, etc.) in memory. They allow
fast lookup, addition and removal of items. They can be used to implement
either dynamic sets of items or lookup tables that allow �nding an item by
its key (e.g., locating the phone number of a person by name).

Binary search trees keep their keys in sorted order so that lookup and
other operations can use the principle of binary search: when looking for a
key in a tree (or a place to insert a new key), they traverse the tree from
root to leaf, making comparisons to keys stored in the nodes of the tree
and deciding, based on the comparison, to continue searching in the left or
right subtrees. On average, each comparison allows the operations to skip
about half of the tree so that each lookup, insertion or deletion takes time
proportional to the logarithm of the number of items stored in the tree.
This is much better than the linear time required to �nd items by key in
an (unsorted) array but slower than the corresponding operations on hash
tables.�

(The source of the text above is Wikipedia.)

A binary search tree (BST) is a binary tree whose nodes each store a key
(and, optionally, some associated value). The tree additionally satis�es the
binary search tree property, which states that the key in each node must be
greater than any key stored in the left subtree and less than any key stored
in the right subtree. (See Figure 12. Notice that there is no duplicated key
in a BST.) A binary sort tree is similar to a BST but may have equal keys.
The key in each node must be greater than or equal to any key stored in the
left subtree and less than or equal to any key stored in the right subtree. In
this Lecture Notes, all the subsequent structure diagrams refer to BSTs.

a c e g i

b f j n

d l

h

1

2

3

4

6

7

8

Figure 12: Two binary search trees (BSTs)
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�� �inorderPrint(t : Node*)

t ̸= �
inorderPrint(t→ left)

write(t→ key)

inorderPrint(t→ right)

SKIP

Property 6.7 Procedure inorderPrint(t: Node*) prints the keys of the bi-
nary tree t in strictly increasing order, ⇐⇒ binary tree t is a search tree.

�� �search(t : Node* ; k : T) : Node*

t ̸= � ∧ t→ key ̸= k

k < t→ key

t := t→ left t := t→ right

return t

�� �insert(&t : Node* ; k : T)

// See Figure 13.

t = �

t :=
new Node(k)

k < t→ key

insert(t→ left, k)

k > t→ key

insert(t→ right, k)

k = t→ key

SKIP

�� �min(t : Node*) : Node*

t→ left ̸= �
t := t→ left

return t

�� �remMin(&t,&minp : Node*)

// See Figure 14.

t→ left = �
minp := t

t := minp→ right

minp→ right := �
remMin(t→ left,minp)
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Figure 13: Inserting 5 into the BST on the left gives the BST on the right:
First we compare 5 with the root key, which is 6, and 5 < 6. Thus, we insert
5 into the left subtree. Next, we compare 5 with 3, and 5 > 3, so we insert
5 into the right subtree of node 3, and again 5 > 4 therefore we insert 5
into the right subtree of node 4. The right subtree of this node is empty.
Consequently, we create a new node with key 5 and substitute that empty
right subtree with this new subtree consisting of this single new node.

�� �del(&t : Node* ; k : T)

// See Figure 16.

t ̸= �
k < t→ key

del(t→ left, k)

k > t→ key

del(t→ right, k)

k = t→ key

delRoot(t)
SKIP

�� �delRoot(&t : Node*)

// See Figure 17.

t→ left = �
p := t

t := p→ right

delete p

t→ right = �
p := t

t := p→ left

delete p

t→ left ̸= � ∧ t→ right ̸= �
remMin(t→ right, p)

p→ left := t→ left ; p→ right := t→ right

delete t ; t := p

MTsearch(h),MTinsert(h),MTmin(h) ∈ Θ(h)
MTremMin(h),MTdel(h),MTdelRoot(h) ∈ Θ(h)
where h = h(t).

Exercise 6.8 What can we say about the space complexities of the di�erent
BST operations above?
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Figure 14: Removing the node with the minimal key from the BST on the
left gives the BST on the right: The leftmost node of the original BST is
substituted by its right subtree. Notice that deleting the node with key 1
from the BST on the left gives the same BST result: This node's left subtree
is empty. Thus, deleting it means substituting it with its right subtree.
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Figure 15: Removing the node with the maximal key from the BST on the
left gives the BST on the right: The rightmost node of the original BST is
substituted by its left subtree. Notice that deleting the node with key 9
from the BST on the left gives the same BST result: This node's right subtree
is empty. Thus, deleting it means substituting it with its left subtree.

6.7 Complete binary trees, and heaps

A binary tree is complete, i� all levels of the tree, except possibly the last
(deepest) one, are �lled (i.e. it is nearly complete), and, provided that the
deepest level of the tree is not complete, the nodes of that level are �lled
from left to right. A node is an internal node of a complete tree if and only
if it has the left child in the tree.

A binary maximum heap is a complete binary tree where the key stored
in each node is greater than or equal to (≥) the keys in the node's children.
(See Figure 18.)

A binary minimum heap is a complete binary tree where the key stored
in each node is less than or equal to (≤) the keys in the node's children.
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Figure 16: Deleting node 6 of the BST on the left gives the BST on the
right: Node 6 has two children. Thus, we remove the minimal node of its
right subtree to substitute node 6 with it.
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Figure 17: Deleting the root node of the BST on the left gives the BST on
the right: The root node has two children. Thus, we remove the minimal
node of its right subtree and substitute the root node with it. (Notice that
we could remove the maximal node of the left subtree and substitute the root
node with it.)

In this lecture notes, a heap is a binary maximum heap by default.

We usually represent priority queues with heaps in arithmetic representation.

6.8 Arithmetic representation of complete binary trees

A complete binary tree of size n is typically represented by the �rst n elements
of an array A: We put the tree nodes into the array in level order. (See Figure
19.)

If an internal node has index i in array A, let left(i) be the index of its
left child. If it has the right child, too, let right(i) be the index of it. In the
latter case, right(i) = left(i) + 1. If A[j] represents a node di�erent from
the root, Let parent(j) be the index of its parent.

Let us suppose that we use the �rst n elements of an array (indexed from
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Figure 18: A (binary maximum) heap. It is a complete binary tree. The key
of each parent is ≥ to the child's key.

zero), for example, A : T[m], i.e. we use the subarray A[0..n). Then, the root
node of a nonempty tree is A[0]. Node A[i] is internal node ⇐⇒ left(i) < n.
Then left(i) = 2i+1. The right child of node A[i] exists ⇐⇒ right(i) < n.
Then right(i) = 2i + 2. Node A[j] is not the tree's root node ⇐⇒ j > 0.
Then parent(j) = ⌊ j−1

2
⌋.

6.9 Heaps and priority queues

A priority queue is a bag (i.e. multiset). We can add a new item to it and
check or remove a maximal item of it.4 Often, there is a priority function:
T → some number type, where T is the element type of the priority queue, and
the items are compared according to their priorities. For example, computer
processes are often scheduled according to their priorities.

Our representation is similar to our representation of the Stack type,
and some operations are also the same, except for the names. The actual
elements of the priority queue are in the subarray A[0..n) containing a (binary
maximum) heap.

4There are also min priority queues where we can check or remove a minimal item.
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A[7] A[8] A[9] A[10] A[11]

A[3] A[4] A[5] A[6]

A[1] A[2]

A[0]

Figure 19: A complete binary tree of size 12 represented by the �rst 12
elements of an array A: We put the tree nodes into the array in level order.

PrQueue
− A : T[] // T is some known type
− n : N // n ∈ 0..A.length is the actual length of the priority queue
+ PrQueue(m : N){ A := new T[m]; n := 0 } // create an empty priority queue
+ add(x : T) // insert x into the priority queue
+ remMax():T // remove and return the maximal element of the priority queue
+ max():T // return the maximal element of the priority queue
+ isFull() : B {return n = A.length}
+ isEmpty() : B {return n = 0}
+ ∼ PrQueue() { delete A }
+ setEmpty() {n := 0} // reinitialize the priority queue

Provided that subarray A[0..n) is the arithmetic representation of a heap,
MTadd(n) ∈ Θ(log n), mTadd(n) ∈ Θ(1), MTremMax(n) ∈ Θ(log n),
mTremMax(n) ∈ Θ(1), Tmax(n) ∈ Θ(1).

MTadd(n) ∈ Θ(log n), and MTremMax(n) ∈ Θ(log n), because the main
loops of subroutines �add" and �sink" below iterates maximum h times if h
is the height of the heap, and h = ⌊log n⌋.
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�� �PrQueue::add(x : T)

n < A.length

j := n ; n := n+ 1

A[j] := x ; i := parent(j)

j > 0 ∧ A[i] < A[j]

swap(A[i], A[j])

j := i ; i := parent(i)

PrQueueOver�ow

�� �PrQueue::max() : T

n > 0

return A[0] PrQueueUnder�ow

�� �PrQueue::remMax() : T

n > 0

max := A[0]

n := n− 1 ; A[0] := A[n]

sink(A, 0, n)

return max

PrQueueUnder�ow

�� �sink(A : T[] ; k, n : N)

i := k ; j := left(k) ; b := true

j < n ∧ b
// A[j] is the left child of A[i]

j + 1 < n ∧ A[j + 1] > A[j]

j := j + 1 SKIP

// A[j] is the greater child of A[i]

A[i] < A[j]

swap(A[i], A[j])

i := j ; j := left(j)
b := false

Exercise 6.9 What can we say about the space complexities of the di�erent
heap and priority queue operations above?
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op 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

- 8 6 7 6 5 3 4 4 1 3 5 2

add(8) 8 6 7 6 5 *3 4 4 1 3 5 2 #8

. . . 8 6 *7 6 5 #8 4 4 1 3 5 2 3

. . . *8 6 #8 6 5 7 4 4 1 3 5 2 3

. 8 6 8 6 5 7 4 4 1 3 5 2 3

add(2) 8 6 8 6 5 7 *4 4 1 3 5 2 3 #2

. 8 6 8 6 5 7 4 4 1 3 5 2 3 2

add(9) 8 6 8 6 5 7 *4 4 1 3 5 2 3 2 #9

. . . 8 6 *8 6 5 7 #9 4 1 3 5 2 3 2 4

. . . *8 6 #9 6 5 7 8 4 1 3 5 2 3 2 4

. 9 6 8 6 5 7 8 4 1 3 5 2 3 2 4

remMax() ∼9 6 8 6 5 7 8 4 1 3 5 2 3 2 ∼4
max := 9 *4 6 #8 6 5 7 8 4 1 3 5 2 3 2

. . . 8 6 *4 6 5 7 #8 4 1 3 5 2 3 2

. . . 8 6 8 6 5 7 *4 4 1 3 5 2 3 #2

return 9 8 6 8 6 5 7 4 4 1 3 5 2 3 2

remMax() ∼8 6 8 6 5 7 4 4 1 3 5 2 3 ∼2
max := 8 *2 6 #8 6 5 7 4 4 1 3 5 2 3

. . . 8 6 *2 6 5 #7 4 4 1 3 5 2 3

. . . 8 6 7 6 5 *2 4 4 1 3 5 2 #3

return 8 8 6 7 6 5 3 4 4 1 3 5 2 2

Figure 20: Changes of A : Z[15] while applying add() and remMax() op-
erations to it. At the add() operations, the �#� pre�x identi�es the actual
element, and �∗� is the pre�x of its parent. Similarly, at sinking, �∗� denotes
the parent, and �#� is the pre�x of its greatest child. At the remMax() op-
erations, �∼� is the pre�x of both the maximum to be removed and the key
to be moved into its place.

61



t

8

6

6

4 1

5

3 5

7

3

2 8

4

t

8

6

6

4 1

5

3 5

8

7

2 3

4

2

t

8

6

6

4 1

5

3 5

8

7

2 3

4

2 9

t

9

6

6

4 1

5

3 5

8

7

2 3

8

2 4

t

4

6

6

4 1

5

3 5

8

7

2 3

8

2

t

8

6

6

4 1

5

3 5

8

7

2 3

4

2

t

2

6

6

4 1

5

3 5

8

7

2 3

4

2

t

8

6

6

4 1

5

3 5

7

3

2 2

4

2

Figure 21: Heap operation visualization based on Figure 20:
add(8), add(2), add(9), remMax()=9, remMax()=8.



6.10 Heap sort

In Heap sort, �rst, we take the array to be sorted and build a heap from it.
We consider the array as a complete binary tree.

While building the heap, we consider the level order of the tree, and we
start from the last internal node of it. We go back in level order and sink
the root node of each subtree, making a heap out of it. (See Figure 22.)�� �buildMaxHeap(A : T[n])

k := parent(n− 1) downto 0

sink(A, k, n)

When the heap is ready, we swap its �rst and last items. Then, the last
element is the maximal element of the array. We cut it from the tree. Next,
we sink the tree's root and receive a heap again. Again, we swap, cut and
sink, and we have the two largest elements at the end of the array and a heap
without these elements before them. We repeat this process of swap, cut and
sink until we have only a single element in the heap, which is the minimum
of the original array. And the whole array is sorted at this moment. (See
Figure 24.) �� �heapSort(A : T[n])

buildMaxHeap(A)

m := n

m > 1

m := m− 1 ; swap(A[0], A[m])

sink(A, 0,m)

The time complexity of each sinking is O(log n) because h ≤ ⌊log n⌋ for each
subtree. Thus, MTbuildMaxHeap(n) ∈ O(n log n) and the time complexity of
the main loop of heapSort() is also O(n log n).

MTheapSort(n) ∈ O(n log n) because MTbuildMaxHeap(n) ∈ O(n log n) and
the time complexity of the main loop of heapSort() is also O(n log n).

In chapter 7, we prove that MTheapSort(n) ∈ Θ(n log n).

Heap sort has a space complexity of Θ(1) since it is not recursive and uses no
temporal data structures, only a few simple temporal variables. Thus, Heap
sort sorts in-place like Insertion sort.
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Figure 22: From array ⟨68, 23, 51, 42, 19, 35, 97, 53, 60, 14⟩ we build a maxi-
mum heap. Notice that we work on the array from the beginning to the end.
The binary trees show the logical structure of the array. Finally, we receive
array ⟨97, 60, 68, 53, 19, 35, 51, 23, 42, 14⟩. Dashed arrows compare where the
sinking ends because no swap is needed.
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Figure 23: Heap sort visualization based on Figure 24. Double arrows repre-
sent the swap of the largest element with the last element of the heap, �tting
into its desired place. The subsequent arrows demonstrate the sinking pro-
cess after the initial swap. Dashed arrows compare where the sinking ends
because no swap is needed.



op 0 1 2 3 4 5 6 7 8 9

sink 68 23 51 42 *19 35 97 53 60 #14
sink 68 23 51 *42 19 35 97 53 #60 14
sink 68 23 *51 60 19 35 #97 53 42 14
sink 68 *23 97 #60 19 35 51 53 42 14
. . . 68 60 97 *23 19 35 51 #53 42 14
sink *68 60 #97 53 19 35 51 23 42 14
. . . 97 60 *68 53 19 35 #51 23 42 14
. 97 60 68 53 19 35 51 23 42 14

swap ∼97 60 68 53 19 35 51 23 42 ∼14
sink *14 60 #68 53 19 35 51 23 42 +97
. . . 68 60 *14 53 19 35 #51 23 42 +97
swap ∼68 60 51 53 19 35 14 23 ∼42 +97
sink *42 #60 51 53 19 35 14 23 +68 +97
. . . 60 *42 51 #53 19 35 14 23 +68 +97
. 60 53 51 *42 19 35 14 #23 +68 +97

swap ∼60 53 51 42 19 35 14 ∼23 +68 +97
sink *23 #53 51 42 19 35 14 +60 +68 +97
. . . 53 *23 51 #42 19 35 14 +60 +68 +97
swap ∼53 42 51 23 19 35 ∼14 +60 +68 +97
sink *14 42 #51 23 19 35 +53 +60 +68 +97
. . . 51 42 *14 23 19 #35 +53 +60 +68 +97
swap ∼51 42 35 23 19 ∼14 +53 +60 +68 +97
sink *14 #42 35 23 19 +51 +53 +60 +68 +97
. . . 42 *14 35 #23 19 +51 +53 +60 +68 +97
swap *42 23 35 14 #19 +51 +53 +60 +68 +97
sink *19 23 #35 14 +42 +51 +53 +60 +68 +97
swap ∼35 23 19 ∼14 +42 +51 +53 +60 +68 +97
sink *14 #23 19 +35 +42 +51 +53 +60 +68 +97
swap ∼23 14 ∼19 +35 +42 +51 +53 +60 +68 +97
sink *19 #14 +23 +35 +42 +51 +53 +60 +68 +97
swap *19 #14 +23 +35 +42 +51 +53 +60 +68 +97
sink *14 +19 +23 +35 +42 +51 +53 +60 +68 +97
. +14 +19 +23 +35 +42 +51 +53 +60 +68 +97

Figure 24: Full example of Heapsort on array A : Z[10]. At sinking, �∗�
denotes the parent, and �#� is the pre�x of its greater child. At the swap
operations, �∼� is the pre�x of both items to be exchanged. In their �nal
places, the keys have �+� pre�xes.
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7 Lower bounds for sorting

Theorem 7.1 For any sorting algorithm, mT (n) ∈ Ω(n).

Proof. We have to check all the n items, and only a limited number of
items is checked in a subroutine call or loop iteration (without the embedded
subroutine calls and loop iterations). Let this limit be k. Thus
mT (n) ∗ k ≥ n =⇒ mT (n) ≥ 1

k
n =⇒ mT (n) ∈ Ω(n). □

7.1 Comparison sorts and the decision tree model

De�nition 7.2 A sorting algorithm is a comparison sort if it only gains
information about the sorted order of the input items by comparing them.
That is, given two items ai and aj, to compare them, it performs one of the
tests ai < aj, ai ≤ aj, ai = aj, ai ̸= aj, ai ≥ aj, or ai > aj. We may not
inspect the values of the elements or gain order information about them in
any other way. [1]

The sorting algorithms we have studied before, insertion sort, heap sort,
merge sort, and quick sort, are comparison sorts.

In this section, we assume without loss of generality that all the input
elements are distinct5. Given this assumption, comparisons of the form ai =
aj and ai ̸= aj are useless, so we can assume that no comparisons of this form
are made6. We also note that the comparisons ai < aj, ai ≤ aj, ai ≥ aj, and
ai > aj are all equivalent in that they yield identical information about the
relative order of ai and aj. We therefore assume that all comparisons have
the form ai ≤ aj. [1]

We can view comparison sorts abstractly in terms of decision trees. A decision
tree is a strictly binary tree representing the comparisons between elements
performed by a particular sorting algorithm operating on an input of a given
size. Control, data movement, and all other aspects of the algorithm are
ignored. [1]

Figure 25 shows the decision tree corresponding to the insertion sort al-
gorithm from Section 3 operating on an input sequence of three elements.

5In this way, we restrict the set of possible inputs, and we are going to give a lower
bound for the worst case of comparison sorts. Thus, if we provide a lower bound for
the maximum number of key comparisons (MC(n)) and for maximum time complexity
(MT (n)) on this restricted set of input sequences, it is also a lower bound for them on
the whole set of input sequences, because MC(n) and MT (n) are indeed ≥ on a more
extensive set than on a smaller set.

6Anyway if such comparisons are made, neither MC(n) nor MT (n) are decreased.
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⟨a, b, c⟩

b ≤ c

a ≤ c

⟨a, c, b⟩ ⟨c, a, b⟩

a ≤ b

a ≤ c

⟨b, a, c⟩ b ≤ c

⟨b, c, a⟩ ⟨c, b, a⟩

a ≤ b b < a

b ≤ c c < b

a ≤ c c < a

a ≤ c c < a

b ≤ c c < b

Figure 25: The decision tree for insertion sort operating on the input sequence
⟨a, b, c⟩. There are 3! = 6 permutations of the 3 input items. Thus, the
decision tree must have at least 3! = 6 leaves.

Let us suppose that ⟨a1, a2, . . . an⟩ is the input sequence to be sorted. Each
internal node is labelled by ai ≤ aj for some input elements in a decision tree.
We also annotate each leaf by a permutation of ⟨a1, a2, . . . an⟩. The execution
of the sorting algorithm corresponds to tracing a simple path from the root of
the decision tree down to a leaf. Each internal node indicates a comparison
ai ≤ aj. The left subtree then dictates subsequent comparisons once we
know that ai ≤ aj, and the right subtree dictates subsequent comparisons
knowing that ai > aj. When we come to a leaf, the sorting algorithm has
established the appropriate ordering of ⟨a1, a2, . . . an⟩. Because any correct
sorting algorithm must be able to produce each permutation of its input, each
of the n! permutations on n elements must appear as one of the leaves of the
decision tree for a comparison sort to be correct. Thus, we shall consider
only decision trees where each permutation appears as a tree leaf. [1]

7.2 A lower bound for the worst case

Theorem 7.3 Any comparison sort algorithm requires MC(n) ∈ Ω(n log n)
comparisons in the worst case.

Proof. From the preceding discussion, it su�ces to determine the height h =
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MC(n) of a decision tree in which each permutation appears as a reachable
leaf. Consider a decision tree of height h with l leaves corresponding to a
comparison sort on n elements. The input has n! permutations. Because
each input permutation appears as some leaf, we have n! ≤ l. Since a binary
tree of height h has no more than 2h leaves, we have n! ≤ l ≤ 2h. [1]

Consequently

MC(n) = h ≥ log n! =
n∑
i=1

log i ≥
n∑

i=⌈n2 ⌉
log i ≥

n∑
i=⌈n2 ⌉

log
⌈n
2

⌉
≥

⌈n
2

⌉
∗log

⌈n
2

⌉
≥

≥ n

2
∗ log n

2
=
n

2
∗ (log n− log 2) =

n

2
∗ (log n− 1) =

n

2
log n− n

2
∈ Ω(n log n)

□

Theorem 7.4 For any comparison sort algorithm MT (n) ∈ Ω(n log n).

Proof. Only a limited number of key comparisons are performed in a sub-
routine call or loop iteration (without the embedded subroutine calls and
loop iterations). Let this upper limit be k. Then MT (n) ∗ k ≥ MC(n) =⇒
MT (n) ≥ 1

k
MC(n) =⇒ MT (n) ∈ Ω(MC(n)). Together with theorem 7.3

(MC(n) ∈ Ω(n log n)) and transitivity of relation �· ∈ Ω(·)� we receive this
theorem (MT (n) ∈ Ω(n log n)). □

Let us notice that heap sort and merge sort are asymptotically optimal in
the sense that their MT (n) ∈ O(n log n) asymptotic upper bound meets the
MT (n) ∈ Ω(n log n) asymptotic lower bound from Theorem 7.4. This proves
that MT (n) ∈ Θ(n log n) for both of them.
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8 Sorting in Linear Time

It is essential to use a stable sorting method so that those numbers with
equal second digits remain sorted according to their �rst digit.

8.1 Radix sort

The abstract code for the radix sort is straightforward. We assume that each
element of abstract list A is a natural number of d digits, where digit 1 is the
lowest-order digit and digit d is the highest-order digit.�� �radix_sort(A : dDigitNumber⟨⟩ ; d : N)

i := 1 to d

use a stable sort to sort list A on digit i

Radix sort solves the problem of sorting � counterintuitively � by sorting
on the least signi�cant (i.e. �rst) digit in its �rst pass.

In the second pass, it takes the result of the �rst pass and applies a stable
sort to sort it on the second digit. A stable sorting method is essential so
that numbers with equal second digits remain sorted by their �rst digits.
Consequently, the numbers are sorted on the �rst two digits (the two lowest-
order digits) after the second pass.

In the third pass, the Radix sort takes the result of the second pass and
applies a stable sort to sort on the third digit. A stable sorting method is
essential so that numbers with equal third digits remain sorted by their �rst
two digits. Consequently, after the third pass, the numbers are sorted on the
�rst three digits (the three lowest-order digits).

This process continues until the items have been sorted on all d digits.
Remarkably, the items are sorted on the d-digit number at that point. Thus,
only d passes are required to sort. [1]

The sorting method used in each pass can be any stable sort, but it should
run in linear time to maintain e�ciency.

Distributing sort works well on linked lists, and counting sort on arrays.
Both of them are stable and work in linear time.

8.2 Distributing sort

Distributing sort is e�cient on linked lists, and a version of radix sort can
be built on it.
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Remember that stable sorting algorithms maintain the relative order of
records with equal keys (i.e. values).

Distributing sort is an ideal auxiliary method of radix sort because of its
stability and linear time complexity.

Here comes a bit more general study than needed for radix sort. When
distributing sort works for radix sort, its key function φ must select the
appropriate digit.

The sorting problem: Given abstract list L of length n with element type
T, r ∈ O(n) positive integer,
φ : T → 0..(r−1) key selection function.

Let us sort list L with stable sort, with linear time complexity.

�� �distributing_sort(L : T⟨⟩ ; r : N ; φ : T → 0..(r−1))

B : T⟨⟩[r] // array of lists, i.e. bins

k := 0 to r−1
Let B[k] be empty list // init the array of bins

L is not empty

Remove the �rst element x of list L

Insert x at the end of B[φ(x)] // stable distribution

k := r−1 downto 0

L := B[k] + L // append B[k] before L

E�ciency of distributing sort: The �rst and the last loop iterates r
times, and the middle loop n times. Provided that insertion and concatena-
tion can be performed in Θ(1) time, the time complexity of distributing sort
is consequently Θ(n+ r) = Θ(n) because of the natural condition r ∈ O(n).

The size of array B determines its space complexity. Thus, it is Θ(r).

8.3 Radix sort on lists

The following example shows how the radix sort operates on an abstract list
of seven 3-digit numbers with base (i.e. radix) 4. In each pass, we apply the
distributing sort.

The input list (with a symbolic notation):
L = ⟨103, 232, 111, 013, 211, 002, 012⟩
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First pass (according to the rightmost digits of the numbers):
B0 = ⟨⟩
B1 = ⟨111, 211⟩
B2 = ⟨232, 002, 012⟩
B3 = ⟨103, 013⟩
L = ⟨111, 211, 232, 002, 012, 103, 013⟩

Second pass (according to the middle digits of the numbers):
B0 = ⟨002, 103⟩
B1 = ⟨111, 211, 012, 013⟩
B2 = ⟨⟩
B3 = ⟨232⟩
L = ⟨002, 103, 111, 211, 012, 013, 232⟩

Third pass (according to the leftmost digits of the numbers):
B0 = ⟨002, 012, 013⟩
B1 = ⟨103, 111⟩
B2 = ⟨211, 232⟩
B3 = ⟨⟩
L = ⟨002, 012, 013, 103, 111, 211, 232⟩

The digit sorts must be stable for the radix sort to work correctly. Distribut-
ing sort satis�es this requirement. If distributing sort runs in linear time
(Θ(n) where n is the length of the input list), and the number of digits is
constant d, radix sort also runs in linear time Θ(d ∗ n) = Θ(n).

Provided that we have to sort linked lists where the keys of the list elements
are d-digit natural numbers with number base r, implementing the algorithm
above is straightforward. For example, let us suppose that we have an L C2L
with header, and function digit(i, r, x) can extract the ith digit of number x,
where digit 1 is the lowest-order digit and digit d is the highest-order digit,
in Θ(1) time.
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�� �radix_sort( L : E2* ; d, r : N )

BinHead : E2[r] // the headers of the lists representing the bins

B : E2*[r] // pointers to the headers

i := 0 to r − 1

B[i] := &BinHead[i] // Initialize the ith pointer.

i := 1 to d

distribute(L, i, B) // Distribute L on the ith digits of keys.

gather(B,L) // Gather form the bins back into L�� �distribute( L : E2* ; i : N ; B : E2*[r] )

L→ next ̸= L

p := L→ next ; unlink(p)

precede( p,B[digit(i, r, p→ key)]�� �gather( B : E2*[r] ; L : E2* )

i := 0 to r − 1

append(L,B[i]) // add to the end of L the elements form B[i]�� �append( L,Bi : E2* )

Bi→ next ̸= Bi

p := L→ prev ; q := Bi→ next ; r := Bi→ prev

p→ next := q ; q → prev := p

r → next := L ; L→ prev := r

Bi→ next := Bi ; Bi→ prev := Bi

SKIP

Clearly, Tappend ∈ Θ(1), so Tgather ∈ Θ(r) where r = B.length.
And Tdistribute(n) ∈ Θ(n) where n = |L|.
Thus Tradix_sort(n, d, r) ∈ Θ(r + d(n+ r)).
Consequently, if d is constant and r ∈ O(n), then Tradix_sort(n) ∈ Θ(n).

The space complexity of Radix sort is determined by the length of its
temporal arrays, which is r. Thus, the space complexity of the Radix sort is
Θ(r).

In a typical computer, a sequential random-access machine, we sometimes
use Radix sort to sort records of information keyed by multiple �elds. For
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example, we might wish to sort dates by three keys: year, month, and day.
We could run a sorting algorithm with a comparison function that, given two
dates, compares years, and if there is a tie, compares months, and if another
tie occurs, compares days. Alternatively, we could sort the information three
times with a stable sort: �rst on day, next on month, and �nally on year. [1]

8.4 Counting sort

While the previous version of radix sort is e�cient on linked lists, the counting
sort can be applied e�ciently to arrays, and another version can be built on
it.

Remember that stable sorting algorithms maintain the relative order of
records with equal keys (i.e. values).

The counting sort is stable and an ideal auxiliary method of radix sort
because of its linear time complexity.

Here comes a bit more general study than needed for radix sort. When
counting sort is used for radix sort, its key function φ must select the appro-
priate digit.

The sorting problem: Given array A:T[n], r ∈ O(n) positive integer,
φ : T → 0..(r−1) key selection function.

Let us sort array A with stable sort and linear time complexity so that
the result is produced in array B.

�� �counting_sort(A,B : T[n] ; r : N ; φ : T → 0..(r−1))

C : N[r] // counter array

k := 0 to r−1
C[k] := 0 // init the counter array

i := 0 to n− 1

C[φ(A[i])]++ // count the items with the given key

k := 1 to r−1
C[k] += C[k − 1] // C[k] := the number of items with key ≤ k

i := n− 1 downto 0

k := φ(A[i]) // k := the key of A[i]

C[k]−− // The next one with key k must be put before A[i] where

B[C[k]] := A[i] //Let A[i] be the last of the {unprocessed items with key k}
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The �rst loop of the procedure above assigns zero to each element of the
counting array C.

The second loop counts the number of occurrences of key k in C[k] for
each possible key k.

The third loop sums the number of keys ≤ k, considering each possible
key k.

The number of keys ≤ 0 is the same as the number of keys = 0, so the
value of C[0] is unchanged in the third loop. Considering greater keys, we
have that the number of keys ≤ k equals the number of keys = k + the
number of keys ≤ k − 1. Thus, the new value of C[k] can be counted by
adding the new value of C[k−1] to the old value C[k].

The fourth loop goes on the input array in the reverse direction. We put
the elements of input array A into output array B: Considering any key k in
the input array, �rst, we process its last occurrence. The element containing
it is put into the last place reserved for keys = k, i.e. into B[C[k]− 1]: First,
we decrease C[k] by one and put this element into B[C[k]]. According to
this reverse direction, the next occurrence of key k will be the immediate
predecessor of the actual item, etc. Thus, the elements with the same key
remain in their original order, and we receive a stable sort.

The time complexity is Θ(n+ r). Provided that r ∈ O(n), Θ(n+ r) = Θ(n),
and so T (n) ∈ Θ(n).

Regarding the space complexity, besides the input array, we have output
array B of n items and counter array C of r items. As a result, S(n) ∈
Θ(n+ r) = Θ(n) since r ∈ O(n).

Illustration of counting sort: We suppose that we have to sort numbers
of two digits with number base four according to their right-side digit, i.e.
function φ selects the rightmost digit.

The input:
0 1 2 3 4 5

A : 02 32 30 13 10 12

The changes of the counter array C [the �rst column re�ects the �rst loop
initializing counter array C to zero, the next six columns re�ect the second
loop counting the items with key k, for each possible key; the column labeled
by

∑
re�ects the third loop which sums up the number of items with keys

≤ k; and the last six columns re�ect the fourth loop placing each item of the
input array into its place in the output array]:
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C 02 32 30 13 10 12
∑

12 10 13 30 32 02
0 0 1 2 2 1 0
1 0 2
2 0 1 2 3 5 4 3 2
3 0 1 6 5

The output:
0 1 2 3 4 5

B : 30 10 02 32 12 13

Now, we suppose that the result of the previous counting sort is to be sorted
according to the left-side digits of the numbers (of number base 4), i.e. func-
tion φ selects the leftmost digits of the numbers.

The input:
0 1 2 3 4 5

B : 30 10 02 32 12 13

The changes of counter array C:N[4]:
C 30 10 02 32 12 13

∑
13 12 32 02 10 30

0 0 1 1 0
1 0 1 2 3 4 3 2 1
2 0 4
3 0 1 2 6 5 4

The output:
0 1 2 3 4 5

A : 02 10 12 13 30 32

The �rst counting sort ordered the input according to the right-side digits
of the numbers. The second counting sort ordered the result of the �rst sort
according to the left-side digits of the numbers using a stable sort. Thus, in
the �nal result, the numbers with the same left-side digits remained in order
according to their right-side digits. Consequently, the numbers are sorted
according to both digits in the �nal result.

Therefore, the two counting sorts illustrated above form a radix sort's
�rst and second passes. And our numbers have just two digits now, so we
have performed a complete radix sort in this example.

8.5 Radix-Sort on arrays ([1] 8.3)

The keys of array A are d-digit natural numbers with number base r. The
rightmost digit is the least signi�cant (digit 1), and the leftmost digit is the
most signi�cant (digit d).
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�� �radix_sort(A : dDigitNumber[n] ; d : N)

i := 1 to d

use a stable sort to sort array A on digit i

Provided that the stable sort is counting sort, the time complexity of Radix
sort is Θ(d(n+ r)). If d is a constant and r ∈ O(n), Θ(d(n+ r)) = Θ(n), i.e.
T (n) ∈ Θ(n).

The space complexity of the Counting sort determines that of the Radix
sort. Thus S(n) ∈ Θ(n+ r) = Θ(n) since r ∈ O(n).

8.6 Bucket sort

We suppose the items to be sorted are elements of the real interval [0; 1).
This algorithm is e�cient if the input keys are equally distributed on

[0; 1). We sort the buckets with one of the known sorting methods, like
insertion or merge sort. �� �bucket_sort( L : list )

n := the length of L

B : list[n] // Create the buckets B[0..(n−1)]
j := 0 to (n−1)

Let B[j] be empty list

L ̸= �

Remove the �rst element of list L

Insert this element according to its key k into list B[⌊n ∗ k⌋]
j := 0 to (n−1)

Sort list B[j] nondecreasingly

Append lists B[0], B[1], . . . , B[n− 1] in order into list L

Clearly mT (n) ∈ Θ(n). If the keys of the input are equally distributed
on [0; 1), AT (n) ∈ Θ(n). MT (n) depends on the sorting method we use
when sorting lists B[j] nondecreasingly. For example, using Insertion sort
MT (n) ∈ Θ(n2); using Merge sort MT (n) ∈ Θ(n log n).

Considering the space complexity of Bucket sort, we have a temporal
array B of n elements. We do not need other data structures if our lists are
linked. Provided that we use Merge sort as the subroutine of Bucket sort,
the depth of recursion is O(log n) in any case. And Insertion sort sorts in
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place. Consequently, mS(n),MS(n) ∈ Θ(n), if we sort a linked list, and we
use Insertion Sort or Merge sort as the subroutine of Bucket sort.
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9 Hash Tables

In everyday programming practice, we often need so-called dictionaries.
These are collections of records with unique keys. Their operations are (1)
inserting a new record into the dictionary, (2) searching for a record identi-
�ed by a key, and (3) removing a record identi�ed by a key (or localised by
a previous search).

Besides AVL trees, B+ trees (see them in the next semester) and other
kinds of balanced search tree dictionaries are often represented and imple-
mented with hash tables, provided that we would like to optimise the average
running time of the operations. Using hash tables, the average running time
of the operations above is the ideal Θ(1), while the maximum of it is Θ(n).
(With balanced search trees, each key-based operation's worst case and av-
erage case performance are Θ(log n).)

Notations:
m: the size of the hash table
T [0..(m− 1)] : the hash table
T [0], T [1], . . . , T [m− 1] : the slots of the hash table
�: empty slot in the hash table (when we use direct-address tables or key
collisions are resolved by chaining)
E: the key of empty slots in case of open addressing
D: the key of deleted slots in case of open addressing
n: the number of records stored in the hash table
α = n/m : load factor
U : the universe of keys; k, k′, ki ∈ U
h : U → 0..(m− 1) : hash function

We suppose the hash table does not contain two or more records with the
same key and that h(k) can be calculated in Θ(1) time.

9.1 Direct-address tables

In the case of direct address tables, we do not have hash functions. We
suppose that U = 0..(m−1) where m ≥ n, but m is not too big compared to
n.
T : D∗[m] is the direct-address table. Its slots are pointers referring to
records of type D. Each record has a key k : U and contains satellite data.
The direct-address table is initialised with � pointers.
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D
+ k : U // k is the key
+ . . . // satellite data�� �init( T :D*[m] )

i := 0 to m−1
T [i] := �

�� �search( T :D*[] ; k:U ):D*

return T [k]�� �insert( T :D*[] ; p:D* ):B

T [p→ k] = �
T [p→ k] := p

return true
return false

�� �remove( T :D*[] ; k:U ):D*

p := T [k]

T [k] := �
return p

Clearly Tinit(m) ∈ Θ(m). And for the other three operations, we have T ∈
Θ(1).

9.2 Hash tables

Hash function: Provided that |U | >> n, direct address tables cannot be
applied, or at least applying them is wasting space. Thus, we use a hash
function h : U → 0..(m−1) where typically |U | >> m (the size of the
universe U of keys is much greater than the size m of the hash table). The
record with key k is to be stored in slot T [h(k)] of hash table T [0..(m−1)].

Remember that the hash table should not contain two or more records
with the same key and that h(k) must be calculated in Θ(1) time.

Function h : U → 0..(m−1) is simple uniform hashing, if it distributes
the keys evenly into the slots, i.e. any given key is equally likely to hash
into any of the m slots, independently of where other items have hashed to.
Simple uniform hashing is a general requirement for hash functions.

Collision of keys: Provided that h(k1) = h(k2) for keys k1 ̸= k2 we speak
of key collision. Usually |U | >> m, key collisions probably happen, and we
have to handle this situation.

For example, suppose the keys are integer numbers and
h(k) = k mod m. Then exactly those keys are hashed to slot s for which
s = k mod m.
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9.3 Collision resolution by chaining

We suppose that the slots of the hash table identify simple linked lists (S1L)
that is T : E1*[m] where the elements of the lists contain the regular �elds
key and next, plus usually additional �elds (satellite data). Provided the
hash function maps two or more keys to the same slot, the corresponding
records are stored in the list identi�ed by this slot.

E1
+key : U
. . . // satellite data may come here
+next : E1*
+E1() { next := � }�� �init( T :E1*[m] )

i := 0 to m−1
T [i] := �

�� �search( T :E1*[] ; k:U ):E1*

return searchS1L(T [h(k)],k)�� �insert( T :E1*[] ; p:E1* ):B

k := p→ key ; s := h(k)

searchS1L(T [s], k) = �
p→ next := T [s]

T [s] := p

return true

return false

�� �searchS1L( q:E1* ; k:U ):E1*

q ̸= � ∧ q → key ̸= k

q := q → next

return q

�� �remove( T :E1*[] ; k:U ):E1*

s := h(k) ; p := � ; q := T [s]

q ̸= � ∧ q → key ̸= k

p := q ; q := q → next

q ̸= �
p = �

T [s] := q → next p→ next := q → next

q → next := �
SKIP

return q
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Clearly Tinit(m) ∈ Θ(m). For the other three operations mT ∈ Θ(1),
MT (n) ∈ Θ(n), AT (n,m) ∈ Θ(1 + n

m
).

AT (n,m) ∈ Θ(1 + n
m
) is satis�ed, if function h : U → 0..(m−1) is simple

uniform hashing, because the average length of the lists of the slots is equal
to n

m
= α.

Usually n
m
∈ O(1) is required. In this case, AT (n,m) ∈ Θ(1) is also

satis�ed for insertion, search, and removal.

9.4 Good hash functions

Division method: Provided that the keys are integer numbers,

h(k) = k mod m

is often a good choice because it can be calculated simply and e�ciently. And
if m is a prime number not too close to a power of two, it usually distributes
the keys evenly among the slots, i.e. on the integer interval 0..(m−1).

For example, if we want to resolve key collision by chaining, and we would
like to store approximately 2000 records with maximum load factor α ≈ 3,
then m = 701 is a good choice: 701 is a prime number which is close to
2000/3, and it is far enough from the neighbouring powers of two, i.e. from
512, and 1024.

Keys in interval [ 0 ; 1): Provided that the keys are evenly distributed on
[ 0 ; 1), function

h(k) = ⌊k ∗m⌋
is also simple uniform hashing.

Multiplication method: Provided that the keys are real numbers, and
A ∈ (0; 1) is a constant,

h(k) = ⌊{k ∗ A} ∗m⌋

is a hash function. ({x} is the fraction part of x.) It does not distribute the
keys equally well with all the possible values of A.

Knuth proposes A =
√
5−1
2
≈ 0.618 because it is likely to work reasonably

well. Compared to the division method, it has the advantage that the value
of m is not critical.

Each method above supposes that the keys are numbers. If the keys are
strings, the characters can be considered digits of unsigned integers with the
appropriate number base. Thus, the strings can be interpreted as big natural
numbers.
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9.5 Open addressing

The hash table is T : R[m]. The records of type R are directly in the slots.
Each record has a key �eld k : U ∪ {E,D} where E ̸= D; E,D /∈ U are
global constants in order to indicate empty (E) and deleted (D) slots.

R
+ k : U ∪ {E,D} // k is a key or it is Empty or Deleted
+ . . . // satellite data

�� �init( T :R[m] )

i := 0 to m−1
T [i].k := E

Notations for open addressing:
h : U × 0..(m− 1)→ 0..(m− 1) : probing function
⟨h(k, 0), h(k, 1), . . . , h(k,m− 1)⟩ : potential probing sequence

The hash table does not contain double keys.

The empty and deleted slots together are free slots. The other slots are
occupied.) Instead of a single hash function, we have m hash functions now:

h(·, i) : U → 0..(m− 1) (i ∈ 0..(m− 1))

We try these in this order in open addressing, one after the other if needed.

9.5.1 Open addressing: insertion and search, without deletion

In many applications of dictionaries (and hash tables), we do not need dele-
tion. Insertion and search are su�cient. In this case, insertion is more
straightforward.

Suppose we want to insert record r with key k into the hash table. First, we
probe slot h(k, 0). If it is occupied and its key is not k, we try h(k, 1), and
so on, throughout ⟨h(k, 0), h(k, 1), . . . , h(k,m− 1)⟩ until
- we �nd an empty slot, or
- we �nd an occupied slot with key k, or
- all the slots of the potential probing sequence have been considered but
found neither empty slot nor occupied slot with key k.
+ If we �nd an empty slot, we put r into it. Otherwise, insertion fails.
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⟨h(k, 0), h(k, 1), . . . , h(k,m− 1)⟩ is called potential probing sequence because
during insertion, or search (or deletion) only a pre�x of it is generated. This
pre�x is called actual probing sequence.

The potential probing sequence must be a permutation of ⟨0, 1, . . . , (m−
1)⟩, which means that it covers the whole hash table, i.e. it does not refer
twice to the same slot.

The length of the actual probing sequence of insertion/search/deletion is
i ⇐⇒ this operation stops at probe h(k, i− 1).

When we search for the record with key k, again we follow the potential
probing sequence ⟨h(k, 0), h(k, 1), . . . , h(k,m− 1)⟩.
- We stop successfully when we �nd an occupied slot with key k.
- The search fails if we �nd an empty slot or use up the potential probing
sequence unsuccessfully.

In the ideal case, we have uniform hashing: the potential probe sequence of
each key is equally likely to be any of the m! permutations of ⟨0, 1, . . . , (m−
1)⟩.

Provided that
- the hash table does not contain deleted slots,
- its load factor α = n/m satis�es 0 < α < 1, and
- we have uniform hashing,
+ The expected length of an unsuccessful search / successful insertion is, at
most

1

1− α
+ and the expected length of a successful search / unsuccessful insertion is
at most

1

α
ln

1

1− α
For example, the �rst result above implies that if the hash table is half full,
the expected number of probes in an unsuccessful search (or in a successful
insertion) is less than 2. If the hash table is 90% full, the expected number
of probes is less than 10.

Similarly, the second result above implies that if the hash table is half
full, the expected number of probes in a successful search (or unsuccessful
insertion) is less than 1.387. If the hash table is 90% full, the expected
number of probes is less than 2.559. [1].
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9.5.2 Open addressing: insertion, search, and deletion

A successful deletion consists of a successful search for the slot T [s] containing
a given key + the assignment T [s].k := D (let the slot be deleted). T [s].k :=
E (let the slot be empty) is incorrect. For example, let us suppose that we
inserted record r with key k into the hash table, but it could not be put into
T [h(k, 0)] because of key collision, and we put it into T [h(k, 1)]. And then, we
delete the record at T [h(k, 0)]. If this deletion performed T [h(k, 0)].k := E,
a subsequent search for key k would stop at the empty slot T [h(k, 0)], and it
would not �nd record r with key k in T [h(k, 1)]. Instead, deletion performs
T [h(k, 0)].k := D. Then the subsequent search for key k does not stop at
slot T [h(k, 0)] (because neither it is empty nor it contains key k), and it �nds
record r with key k in T [h(k, 1)]. (The search and deletion procedures are
not changed despite the presence of deleted slots.)

Thus, during a search, we go through deleted slots, and we stop when
- we �nd the slot with the key we search for (successful search), or
- we �nd an empty slot or use up the initial probe sequence of the given key
(unsuccessful search).

Insertion becomes more complex because of the presence of deleted slots.
During the insertion of record r with key k, we perform a full search for k
and remember the �rst deleted slot found during the search.
- If the search is successful, the insertion fails (because we do not allow
duplicated keys).
- If the search is unsuccessful, but some deleted slot is remembered, we put
r into it.
- If the search is unsuccessful, no deleted slot is remembered, but the search
stops at an empty slot, then we put r into it.
- If the search is unsuccessful, and neither a deleted nor empty slot is found,
the insertion fails because the hash table is full.

If we use a hash table for a long time, there may be many deleted slots and no
empty slots, although the table is far from full. This means the unsuccessful
searches will check all the slots, and the other operations will slow down,
too. So we have to eliminate the deleted slots, for example, by rebuilding
the whole table.

9.5.3 Linear probing

In this subsection, and the next two, we consider three strategies
to generate actual probing sequences, that is, the adequate pre�x of
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⟨h(k, 0), h(k, 1), . . . , h(k,m− 1)⟩. In each case we have a primary hash func-
tion h1 : U → 0..(m−1) where h(k, 0) = h1(k). If needed, starting from this
slot, we go step by step through the hash table slots, according to a well-
de�ned rule, until we �nd the appropriate slot or �nd the actual operation
impossible. h1 must be a simple uniform hash function.

The most straightforward strategy is linear probing:

h(k, i) = (h1(k) + i) mod m (i ∈ 0..(m− 1))

It is easy to implement linear probing, but we have only m di�erent probing
sequences instead of the m! probing sequences needed for uniform hashing:
Given two keys, k1 and k2; if h(k1, 0) = h(k2, 0) then their whole probing
sequences are the same. In addition, di�erent probing sequences tend to be
linked into continuous, long runs of occupied slots, increasing the expected
time of searching. This problem is called primary clustering. The longer such
a cluster is, the more probable it becomes even longer after the subsequent
insertion. For example, let us have two free slots with i occupied between
them. Then, the probability that the subsequent insertion will increase its
length is at least (i+2)/m. And it may even be linked with another cluster.
Linear probing may be selected only if the probability of key collision is
extremely low.

9.5.4 Quadratic probing*

h(k, i) = (h1(k) + c1i+ c2i
2) mod m (i ∈ 0..m− 1)

where h1 : U → 0..(m−1) is the primary hash function; c1, c2 ∈ R; c2 ̸= 0.
The di�erent probing sequences are not linked together. Still, we have only
m di�erent probing sequences instead of the m! probing sequences needed
for uniform hashing: Given two keys, k1 and k2; if h(k1, 0) = h(k2, 0) then
their whole probing sequences are the same. This problem is called secondary
clustering.

Choosing the constants of quadratic probing: In this case, the poten-
tial probing sequence, i.e. ⟨h(k, 0), h(k, 1), . . . , h(k,m− 1)⟩, may have equal
members, which implies that it does not cover the hash table. Therefore, we
must be careful about selecting the constants of quadratic probing.

For example, if sizem of the hash table is a power of 2, then c1 = c2 = 1/2
is appropriate. In this case

h(k, i) =

(
h1(k) +

i+ i2

2

)
mod m (i ∈ 0..m− 1)
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Thus

(h(k, i+ 1)− h(k, i)) mod m =

(
(i+ 1) + (i+ 1)2

2
− i+ i2

2

)
mod m =

(i+ 1) mod m

So it is easy to compute the slots of the probing sequences recursively:

h(k, i+ 1) = (h(k, i) + i+ 1) mod m

Exercise 9.1 Write the structure diagrams of the operations of hash tables
with quadratic probing (c1 = c2 = 1/2) applying the previous recursive for-
mula.

9.5.5 Double hashing

h(k, i) = (h1(k) + ih2(k)) mod m (i ∈ 0..(m− 1))

where h1 : U → 0..(m−1) and h2 : U → 1..(m−1) are hash functions.
The probing sequence covers the hash table ⇐⇒ h2(k) and m are relative
primes. It is satis�ed, for example, if m > 1 is a power of 2 and h2(k) is an
odd number for each k ∈ U , or if m is a prime number. For example, if m is
a prime number (which should not be close to powers of 2) and m′ is a bit
smaller (let m′ = m − 1 or m′ = m − 2), then the following (h1, h2) is an
eligible choice.

h1(k) = k mod m

h2(k) = 1 + (k mod m′)

In the case of double hashing for each di�erent pair of (h1(k), h2(k)), there is a
di�erent probing sequence, and so we haveΘ(m2) di�erent probing sequences.

Although the number of the probing sequences of double hashing is far
from the ideal number m! of probing sequences, its performance appears to
be very close to that of the perfect scheme of uniform hashing.

Illustration of the operations of double hashing: Because
h(k, i) = (h1(k) + ih2(k)) mod m (i ∈ 0..(m−1)), therefore h(k, 0) = h1(k)
and h(k, i + 1) = (h(k, i) + d) mod m where d = h2(k). After calculating
the place of the �rst probing (h1(k)), we always make a step of distance d
cyclically around the table.

Example: m = 11 h1(k) = k mod 11 h2(k) = 1 + (k mod 10).
In the following table's �operations� (op) column, ins=insert, src=search,

ddel=delete. Next, the key of the operation comes (being neither E nor D).
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In this table, we do not handle satellite data. We show just the keys. In the
next column of the table, there is h2(key), but only if needed. Next, we �nd
the actual probing sequence. Insertion remembers the �rst deleted slot of
the probing sequence, if any. In such cases, we underlined the index of this
slot. In column �s�, we have a �+� sign for a successful and an �−� sign for
an unsuccessful operation. In the table, we do not handle satellite data; we
process only the keys. (See the details in section 9.5.2.)

In the last 11 columns of the table, we represent the actual state of the
hash table. The cells representing empty slots are left empty. We wrote the
reserving key into each occupied slot cell, while the deleted slot cells contain
the letter D.

op key h2 probes s 0 1 2 3 4 5 6 7 8 9 10
init +
ins 32 10 + 32
ins 40 7 + 40 32
ins 37 4 + 37 40 32
ins 15 6 4; 10; 5 + 37 15 40 32
ins 70 1 4; 5; 6 + 37 15 70 40 32
src 15 6 4; 10; 5 + 37 15 70 40 32
src 104 5 5; 10; 4; 9 − 37 15 70 40 32
del 15 6 4; 10; 5 + 37 D 70 40 32
src 70 1 4; 5; 6 + 37 D 70 40 32
ins 70 1 4; 5; 6 − 37 D 70 40 32
del 37 4 + D D 70 40 32
ins 104 5 5; 10; 4; 9 + D 104 70 40 32
src 15 6 4; 10; 5; 0 − D 104 70 40 32

Exercise 9.2 (Programming of double hashing)Write the structure di-
agrams of insertion, search, and deletion where x is the record to be inserted,
k is the key we search for, and the key of the record we want to delete.

The hash table is T [0..(m−1)].
In a search, we try to �nd the record identi�ed by the given key. After a

successful search, we return the position (index of the slot) of the appropriate
record. After an unsuccessful search, we return the number −1.

After a successful insertion, we return the position of the insertion. At
an unsuccessful insertion, there are two cases. If there is no free place in the
hash table, we return �−(m + 1)�. If the key of the record to be inserted is
found at slot j, we return �−(j + 1)�.

In a deletion, we try to �nd and delete the record identi�ed by the given
key. After successful deletion, we return the appropriate record's position
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(slot index). After an unsuccessful deletion, we return �−1�.

Solution:�� �insert( T :R[m] ; x:R ):Z

k := x.k ; j := h1(k)

i := 0 ; d := h2(k)

i < m ∧ T [j].k /∈ {E,D}
T [j].k = k

return
−(j + 1)

i++

j := (j + d) mod m

i < m

ii := j return −(m+ 1)

i < m ∧ T [j].k ̸= E

T [j].k = k

return
−(j + 1)

i++

j := (j + d) mod m

T [ii] := x

return ii

�� �search(T :R[m] ; k:U ):Z

i := 0 ; j := h1(k)

b := true ; d := h2(k)

b

T [j].k = k

return j SKIP

i++

b := (T [j].k ̸= E∧ i < m)

j := (j + d) mod m

return −1

�� �delete( T :R[] ; k:U ):Z

j := search(T, k)

j ≥ 0

T [j].k := D SKIP

return j
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