
Algorithms and Data Structures II.
Written Exam � Example Questions 2022

Rules for the Exams

Dear Student,

You get theoretical questions (de�nitions, theorems, time complexity calcu-
lations), and some other questions about illustrating algorithms learned this
semester. Most of these algorithms have di�erent variants. You must present
them as you have seen them in the classroom.

Write the structograms, de�nitions, and theorems, and illustrate each algo-
rithm the way you learned in my lessons. You have patterns for illustration
in Teams and Canvas. The time complexity calculations of the algorithms
must be given in detail.

For each exercise about illustrating algorithms follow the following process:

� Carefully copy the input data given in the exercises.

� You must use the data given in your exercise.

� Illustration on another input will not be accepted.

� You draw your illustrations on some sheets of originally blank paper.

Best wishes, Tibor Asvanyi
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DC Data Compression

DC.1 The Hu�man coding
<http://en.wikipedia.org/wiki/Huffman_coding>

DC.1.1 We would like to compress the text

MATEKFELELETEMKETTESLETT

with Hu�man coding. Draw the Hu�man tree, give the Hu�man code of each
letter, the Hu�man code of the text, and the length of the Hu�man code in
bits. Show the letters of the original text in the Hu�man code of it.

DC.1.2 Solve Exercise DC.1.1 with the following text.

EMESE MAI SMSE NEM NAIV MESE

DC.1.3 We have compressed a text with Hu�man coding. Given an internal
node of the Hu�man tree, number 0 labels the edge which goes to its child
with a smaller frequency value, and number 1 labels the edge which goes
to its child with a higher frequency value. The frequencies of the di�erent
characters are the following ones. R:2, T:4, O:5, G:7, E:13, and A:17. The
beginning of the compressed code is

0111 1100 0100 1101 0

without spaces. (Blanks are included here only to increase readability.) Draw
the Hu�man tree and decompress the code above. What are the codes of the
characters above? What is the decompressed text?
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DC.2 The Lempel�Ziv�Welch (LZW) algorithm
<http://en.wikipedia.org/wiki/Lempel-Ziv-Welch>

DC.2.1 We have compressed a text with the Lempel-Ziv-Welch algorithm.
The text contains the letters A', 'B', and 'C'. Their codes are 1, 2, and 3
in turn. While building the dictionary, for the code of each new word the
�rst unused positive integer was selected. In this way, we have received the
following code.

1 2 4 3 5 6 9 7 1

Give the original text and the complete dictionary.

DC.2.2 Solve Exercise DC.2.1 with the following LZW code.

1 2 4 3 5 8 1 10 11 1

DC.2.3 Illustrate LZW compression on text CBABABABCBABABAB.

DC.2.4 Solve Exercise DC.2.1 with the following LZW code.

1 2 3 4 6 5 9 7 11
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AVL trees

Note: { [ (1) 2 ] 3 [ ( 4 {5} ) 6 (7) ] } is the parenthesized form of the
following tree.
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AVL.1 Given an initially empty AVL tree t. Illustrate the insertion of num-
bers 1 2 7 3 5 6 8 9 4 into it in the given order. Show the balances of each
node on your illustrations. When you balance a subtree, make sure, which
subtree is balanced.

AVL.2 Given the AVL tree t = { [ (1) 2 ] 3 [ ( 7 {9} ) 10 (11) ] }. Draw
the tree with its balances. Illustrate the deletion of numbers 2 1 7 from t in
the given order. Show the balances of each node on your illustrations. When
you balance a subtree, make sure, which subtree is balanced.

AVL.3 Given the AVL tree t = { [ (1) 2 ] 3 [ ( 7 {9} ) 10 (11) ] }. Draw
the tree with its balances. Illustrate the removal of its minimal and maximal
key, in each case on the original tree. Show the balances of each node
on your illustrations. When you balance a subtree, make sure, which subtree
is balanced.

AVL.4 Given the AVL tree t = { [ (2) 4 ( {6} 8 {10} ) ] 12 [ 14 (16) ] }.
Draw the tree with its balances. Illustrate the insertion of keys 1, 5, and 15,
in each case on the original tree. Show the balances of each node on
your illustrations. When you balance a subtree, make sure, which subtree is
balanced.

AVL.5 Given the AVL tree t = { [ (2) 4 ] 6 [ ( {8} 10 {12} ) 14 (16) ] }. Draw
the tree with its balances. Illustrate the removal of its minimal and maximal
key, in each case on the original tree. Show the balances of each node
on your illustrations. When you balance a subtree, make sure, which subtree
is balanced.
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AVL.6 We already know BSTs. Present the de�nitions characterizing AVL
trees.

AVL.7 De�ne Fibonacci trees. What do you know about the size of a Fi-
bonacci tree with height h? Why Fibonacci trees are important?

AVL.8 What theorem do you know about the height of a balanced binary
search tree? Why this theorem is important?

AVL.9 What theorem do you know about the height of a balanced binary
search tree? Present the outline of its proof.

AVL.10 What kind of balancing rotations do you know? Draw the four
general rotation schemes which are important during insertion.

AVL.11 Draw the two general rotation schemes which are not important
during insertion. Why are these important?

AVL.12 Draw the structogram of procedure AVLinsert() as we learned in the
lecture. (Do not draw the structograms of its subroutines.)

AVL.13 Draw the structogram of procedure leftSubTreeGrown() as we
learned in the lecture. (Do not draw the structograms of its subroutines.)

AVL.14 Draw the structogram of procedure rightSubTreeGrown() as we
learned in the lecture. (Do not draw the structograms of its subroutines.)

AVL.15 Draw the structogram of balancing rotation (++,+) as we learned
in the lecture.

AVL.16 Draw the structogram of balancing rotation (++,−) as we learned
in the lecture.

AVL.17 Draw the structogram of balancing rotation (++,=) as we learned
in the lecture.

AVL.18 Draw the structogram of balancing rotation (−−,+) as we learned
in the lecture.

AVL.19 Draw the structogram of balancing rotation (−−,−) as we learned
in the lecture.

AVL.20 Draw the structogram of balancing rotation (−−,=).
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AVL.21 Draw the structograms of procedures AVLremMin() and leftSub-
TreeShrunk() as we learned in the lecture. (Do not draw the structograms
of their other subroutines.)

AVL.22 Draw the structogram of procedure rotate_PP() as we learned in
the lecture. (Do not draw the structograms of its subroutines.)

AVL.23 Draw the structogram of procedure AVLdel() as we learned in the
lecture. (Do not draw the structograms of its subroutines.)

AVL.23 Draw the structograms of procedures AVLdelRoot() and rightSub-
TreeMinToRoot() as we learned in the lecture. (Do not draw the struc-
tograms of their other subroutines.)
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B+ trees

Note for the subsequent exercises:
� The general schemes of the textual representation of a non-leaf B+ tree of
degree 4 are
(T1 k1 T2), (T1 k1 T2 k2 T3), and (T1 k1 T2 k2 T3 k3 T4) where
Ti is the ith subtree, and ki is a split key between the ith and the (i+1)
subtree.
- The general schemes of the textual representation of a leaf of a B+ tree of
degree 4 are (k1 k2), and (k1 k2 k3) where ki is a key of the set represented
with the B+ tree.
- In the example trees we vary three kinds of pairs of brackets: (), [], and {}
depending on the level of a subtree.

B+1 Given the following B+ tree of degree 4.
{ [ (1 2 4) 5 (6 8) ] 10 [ (10 12 14) 15 (16 18) 20 (20 22) 24 (24 26) ] }
Draw the tree. Illustrate the insertion of keys 5, 3, and 11, in each case on
the original tree.

B+2 Given the following B+ tree of degree 4.
{ [ (2 4) 5 (6 8) ] 10 [ (10 12 14) 15 (16 18) 20 (20 22) ] }
Draw the tree. Illustrate the deletion of keys 18, 22, and 2, in each case
on the original tree.

B+3 Given the following B+ tree of degree 4.
{ [ (2 3 4) 5 (6 7) ] 16 [ (16 18) 19 (20 22) ] }
Draw the tree. Illustrate the insertion of key 1 and the deletion of key 16, in
each case on the original tree.

B+4 Given the following B+ tree of degree 4.
[ (9 10) 11 (12 13 14) 15 (15 16) 18 (19 20) ]
Draw the tree. Illustrate the insertion of key 11, then the deletion of keys 9
and 19, in each case on the original tree.

B+5 Given the following B+ tree of degree 4.
[ (9 10) 11 (12 13) 14 (15 16 17) 18 (19 20) ]
Draw the tree. Illustrate the insertion of key 14, then the deletion of keys 10
and 20, in each case on the original tree.

B+6 Given the following B+ tree of degree 4.
{ [ (1 2) 3 (4 5) ] 7 [ (11 15 20) 27 (27 30) ] }
Draw the tree. Illustrate the insertion of key 18, then the deletion of keys 30
and 4, in each case on the original tree.
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32 String Matching

32.1 The naive string-matching algorithm

32.1-1 Show the comparisons the naive string matcher makes for the pattern
P = 0001 in the text T = 000010001010001.

32.1-2 Suppose that all characters in the pattern P are di�erent. Show how
to accelerate NAIVE-STRING-MATCHER to run in time O(n) on an n-
character text T.

32.x The Quick Search algorithm
<http://aszt.inf.elte.hu/~asvanyi/ds/Quick Searching. ppt>

32.x.1 Compute shift[0..1] for the pattern P = 000. Show the comparisons
the Quick Search string matcher makes for this pattern in the text T =
000010001010001.

32.x.2 Compute shift[′A′..′F ′] for the pattern
P = ABABACD. Show the comparisons the Quick Search string matcher
makes for this pattern in the text
T = BABAEABABAFDBABABACD.

32.x.3 Compute shift[′A′,′ C ′,′G′,′ T ′] for the pattern
P = GCAGAGAG. Show the comparisons the Quick Search string matcher
makes for this pattern in the text
T = GCATCGCAGAGAGTATACAGTACG.

32.4 The Knuth-Morris-Pratt algorithm

32.4-1 Compute next[1..19] (also called prefix or π function) for the pattern
ababbabbabbababbabb.

32.4.2a Compute next[1..4] for the pattern P = 0001. Show the comparisons
the Knuth-Morris-Pratt string matcher makes for this pattern in the text
T = 000010001010001.

32.4.2b Compute next[1..5] for the pattern P = abaab. Show the comparisons
the Knuth-Morris-Pratt string matcher makes for this pattern in the text
T = aaababaabaababaab.

32.4.2c Compute next[1..6] for the pattern P = aabaab. Show the compar-
isons the Knuth-Morris-Pratt string matcher makes for this pattern in the
text T = aaabaabaabaababaab.
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32.4.2d Compute next[1..6] for the pattern P = babbab. Show the compar-
isons the Knuth-Morris-Pratt string matcher makes for this pattern in the
text T = ababbabbababbababbabb.

32.4.2e Compute next[1..7] for the pattern P = ABABAKI.
Show the comparisons the Knuth-Morris-Pratt string matcher makes for this
pattern in the text
T = BABALABABATIBABABAKI.
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