
Algorithms and Data Structures II.

Lecture Notes:

Elementary graph algorithms

Ásványi Tibor � asvanyi@inf.elte.hu

October 2, 2021

Contents

1 Simple graphs and their representations ([3] 22, [7] 11) 4
1.1 Basic notions of graph theory 4
1.2 Introduction to graph representations 6
1.3 Graphical representation . 6
1.4 Textual representation . 7
1.5 Adjacency matrix representation 7
1.6 Adjacency list representation 9
1.7 Space complexity of representing graphs 10

1.7.1 Adjacency matrices . 10
1.7.2 Adjacency lists . 10

2 Abstract types set, sequence and graph 12

3 Elementary graph algorithms ([3] 22) 14
3.1 Breadth-�rst Search (BFS) . 14

3.1.1 Breadth-�rst Tree . 17
3.1.2 Illustrations of BFS . 18
3.1.3 E�ciency of BFS . 20
3.1.4 The implementations of BFS in case of adjacency list

and adjacency matrix representations 20
3.2 Depth-�rst Search (DFS) . 21

3.2.1 Depth-�rst forest . 23
3.2.2 Classi�cation of edges 23
3.2.3 Illustration of DFS . 23
3.2.4 The running time of DFS 25
3.2.5 Checking the DAG property 25
3.2.6 Topological sort . 26

2

References

[1] Ásványi, T, Algorithms and Data Structures I. Lecture Notes
http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs1/AlgDs1LectureNotes.pdf

[2] Burch, Carl, B+ trees
(See http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs2/B+trees.pdf)

[3] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.,
Introduction to Algorithms (Third Edititon), The MIT Press, 2009.

[4] Cormen, Thomas H., Algorithms Unlocked, The MIT Press, 2013.

[5] Narashima Karumanchi,
Data Structures and Algorithms Made Easy, CareerMonk Publication,
2016.

[6] Neapolitan, Richard E., Foundations of algorithms (Fifth edition),
Jones & Bartlett Learning, 2015. ISBN 978-1-284-04919-0 (pbk.)

[7] Shaffer, Clifford A.,
A Practical Introduction to Data Structures and Algorithm Analysis,
Edition 3.1 (C++ Version), 2011
(See http://aszt.inf.elte.hu/∼asvanyi/ds/C++3e20110103.pdf)

[8] Tarjan, Robert Endre, Data Structures and Network Algorithms,
CBMS-NSF Regional Conference Series in Applied Mathematics, 1987.

[9] Weiss, Mark Allen, Data Structures and Algorithm Analysis in C++
(Fourth Edition),
Pearson, 2014.

3

1 Simple graphs and their representations ([3]

22, [7] 11)

Graphs can model networks, complex processes etc. The models must be
represented in the computer, in a mathematical way, or in an intuitive manner
for better understanding.

1.1 Basic notions of graph theory

De�nition 1.1 A graph is a G = (V,E) ordered pair where V is the �nite
set of vertices, E ⊆ V × V \ {(u, u) : u ∈ V } is the set of edges. If V = {},
then the graph is empty. If V 6= {}, then the graph is nonempty. (The
vertices of graphs are also called nodes.)

This de�nition excludes parallel edges (we cannot distinguish two (u, v)
edges) and self-loops like edge (u, u).

In these lecture notes graph means simple graph (without parallel edges
and self-loops).

De�nition 1.2 Graph G = (V,E) is undirected, if for each edge (u, v) ∈ E
: (u, v) = (v, u).

De�nition 1.3 Graph G = (V,E) is directed or digraph, if for each pair of
edges (u, v), (v, u) ∈ E: (u, v) 6= (v, u).

De�nition 1.4 Given graph G = (V,E), 〈u0, u1, . . . un〉 (n ∈ N) is a path,
if for each i ∈ 1..n: (ui−1, ui) ∈ E. These (ui−1, ui) edges are the edges of
the path. The length of this path is n, i.e. equal to the number of edges of
the path.

De�nition 1.5 Given path 〈u0, u1, · · · , un〉, its subpath is path
〈ui, ui+1, · · · , uj〉 where 0 ≤ i ≤ j ≤ n.

A path 〈u0, u1, . . . un〉 is loop, if u0 = un, and the edges of the path are
pairwise distinct.

A loop 〈u0, u1, . . . un−1, u0〉 is simple loop, if vertices u0, u1, . . . un−1 are
pairwise distinct.

A path contains a loop, if it has some subpath which is a loop.
A path is acyclic, if it does not contain loop.
A graph is acyclic, if all the paths of the graph are acyclic.

De�nition 1.6 A DAG is a directed acyclic graph.

4

De�nition 1.7 Given digraph G = (V,E), its undirected pair is undirected
graph G′ = (V,E ′) where E ′ = {(u, v) : (u, v) ∈ E ∨ (v, u) ∈ E}.

De�nition 1.8 An undirected graph is connected, if there is some path be-
tween each pair of its vertices.

A digraph is connected, if its undirected pair is connected.

De�nition 1.9 An undirected tree is an undirected, acyclic, connected
graph.

De�nition 1.10 Given a digraph, its vertex u is generator vertex of the
graph, if each vertex v of this graph is available form u, i.e. there is some
path u v.

Property 1.11 If a digraph has generator node, then it is connected. But
there are connected digraphs without generator node.

De�nition 1.12 T is a rooted tree, if it is a digraph with generator node,
and its undirected pair is an acyclic graph.

The generator vertex of a rooted tree is called its root.
Digraph T is directed tree, if it is rooted tree, or it is empty.

Property 1.13 Given a (directed or undirected) nonempty tree with n ver-
tices, it has n− 1 edges.

De�nition 1.14 Graph G′ = (V ′, E ′) is subgraph of graph G = (V,E), if
V ′ ⊆ V ∧E ′ ⊆ E, and both graphs are directed or both graphs are undirected.

Graph G′ is proper subgraph of graph G, if graph G′ is subgraph of graph
G, but G′ 6= G, and G′ is not empty.

De�nition 1.15 Two (sub)graphs are disjunct, if they have no common ver-
tex.

De�nition 1.16 Nonempty graph G′ is connected component of graph G,
if G′ is a connected subgraph of G, but there is no connected subgraph G′′ of
G that G′ is proper subgraph of G′′.

Property 1.17 A graph is connected, or it consists of pairwise disjunct con-
nected components (which together cover the whole graph).

De�nition 1.18 A graph is forest, if its connected components are trees (or
it is a tree).

Property 1.19 An undirected graph is forest ⇐⇒ it is acyclic.
A directed graph G is forest ⇐⇒ its undirected pair is acyclic, and each

connected component of G has generator vertex.

5

1.2 Introduction to graph representations

When we represent graph G = (V,E), we suppose that V = {v1, · · · , vn}
where n ∈ N, i.e. the vertices of the graph can be identi�ed with the sequence
numbers or labels 1..n.

In graphical and textual representations (see below) the indices of the
vertices are often given as the lower case letters of the English alphabet
where a = 1, b = 2, · · · , z = 26.

1.3 Graphical representation

The vertices are represented with small circles. The edges are given as arrows
(in case of digraphs) or simple lines (in case of undirected graphs). The labels
or indices of the vertices are written into the corresponding circles.

a

c d

b

a � b ; c.
b � c ; d.

Figure 1: The same undirected graph in graphical (on the left) and textual
(on the right) representations. The vertices are labeled with letters.

Note 1.20 We can label the vertices of undirected graphs also with index
numbers and those of digraphs with letters.

1

3 4

2
1 → 2.
2 → 3 ; 4.
3 → 1.

Figure 2: The same digraph in graphical (on the left) and textual (on the
right) representations. The vertices are labeled with indices from 1 to 4.

6

1.4 Textual representation

In case of undirected graphs �u � vu1 ; · · · ; vuk
.� means that the neighbors

of vertex u are vertices vu1 , · · · , vuk
, i.e. (u, vu1), · · · , (u, vuk

) are edges of the
graph. (See Figure 1.)

In case of digraphs �u → vu1 ; · · · ; vuk
.� means that from vertex u

come out directed edges (u, vu1), · · · , (u, vuk
), i.e. vertices vu1 , · · · , vuk

are
the immediate successors or children of vertex u. (See Figure 2.)

1.5 Adjacency matrix representation

In the adjacency matrix representation, graph G = (V,E) (V = {v1, · · · , vn})
is represented with bit matrix A/1 : bit[n, n] where n = |V | is the number of
vertices, 1..n are the indices or identi�ers of the vertices, type bit is {0, 1};
and for each indices i, j ∈ 1..n:

A[i, j] = 1 ⇐⇒ (vi, vj) ∈ E

A[i, j] = 0 ⇐⇒ (vi, vj) /∈ E.
See for example, Figure 3.

1

3 4

2 A 1 2 3 4
1 0 1 0 0
2 0 0 1 1
3 1 0 0 0
4 0 0 0 0

Figure 3: The same digraph in graphical (on the left) and adjacency matrix
(on the right) representations.

In the main diagonal, there are always zero values and the nonzero ele-
ments have value one, because we consider only simple graphs (i.e. graphs
without self-loops and parallel edges).

Let us notice that the adjacency matrix of an undirected graph is always
symmetrical, because (vi, vj) ∈ E ⇐⇒ (vj, vi) ∈ E. See Figure 4.

This means that in case of undirected graphs, for each pair vi és vj of
vertices A[i, j] = A[j, i], and A[i, i] = 0.

Thus it is enough to represent the triangle under1 the main diagonal. This
lower triangular matrix (without the main diagonal) contains no element in

1or above

7

1

3 4

2 A 1 2 3 4
1 0 1 1 0
2 1 0 1 1
3 1 1 0 0
4 0 1 0 0

Figure 4: The same undirected graph in graphical (on the left) and adjacency
matrix (on the right) representations.

the �rst row, a single element in the second row, two elements in the third
row, and so on, (n− 1) elements in the last row. Consequently, instead of

n2 bits, it consists only of 1 + 2 + · · ·+ (n− 1) = n ∗ (n− 1)/2 bits.

Consequently, instead of matrix A we can use array B : bit[n ∗ (n − 1)/2]
which � using notation aij = A[i, j] � contains the following sequence.

〈a21, a31, a32, a41, a42, a43, . . . , an1, . . . , an(n−1)〉

Thus
A[i, j] = B[(i− 1) ∗ (i− 2)/2 + (j − 1)] if i > j (in the lower triangle)
A[i, j] = A[j, i] if i < j (A[i, j] in the upper triangular matrix)
A[i, i] = 0. (A[i, i] is on the main diagonal)

Explanation: If we want to determine the index of item aij = A[i, j] of the
abstract lower triangular matrix in its representation, namely in array B, we
have to count the number of items preceding aij in array B, because array
B is indexed from zero. Item aij of the abstract lower triangular matrix is
preceded by the following elements in its representation, namely in array B.

a21
a31, a32
a41, a42, a43
...
a(i−1)1, a(i−1)2, · · · , a(i−1)(i−2)
ai1, ai2, · · · , ai(j−1)

These are (1 + 2 + 3 + · · ·+ (i− 2)) + (j − 1) = (i− 1) ∗ (i− 2)/2 + (j − 1)
elements.

8

In an adjacency matrix property (vi, vj) ∈ E can be checked in Θ(1) time.
Thus this representation may be a good choice, if our algorithm uses this
operation frequently.

On the contrary, enumerating the children (in a digraph) or neighbors (in
an undirected graph) of a vertex needs n steps which is typically much more
than the actual number of children or neighbors. In case of an algorithm
intensively using such enumerations adjacency lists may be a better choice.

1.6 Adjacency list representation

The adjacency list representation is similar to the textual representation.
Graph G = (V,E) (V = {v1, · · · , vn}) is represented with pointer array

A/1 : Edge*[n] where

Edge
+v : N
+next : Edge∗

In case of an undirected graph, S1L A[i] contains the indices of the neighbors
of vertex vi (i ∈ 1..n). Thus in case of an undirected graph, each edge is
represented twice: if vertex vj is neighbor of vertex vi, then vertex vi is also
neighbor of vertex vj.

In case of a digraph, S1L A[i] contains the indices of the children (i.e.
immediate successors) of vertex vi (i ∈ 1..n). Thus in case of an digraph,
each edge is represented only once. See an example on Figure 5.

One might use other kind of lists (C2Ls, arrays etc.) instead of S1Ls here.
These are also adjacency list representations. However, the representation
detailed above is our default

Using adjacency lists, in order to decide, if (vi, vj) ∈ E, we have to search
for index j on list A[i]. Consequently, if this operation is frequent in an
algorithm, adjacency matrix representation of the graph may be a better
choice.

On the contrary, given a vertex, enumerating its neighbors (in an undi-
rected graph) or children (in a digraph) needs as many steps as the number of
its neighbors or children. Regarding the graph algorithms of these notes we
�nd that such enumerations are the most intensively used operations of most
of these algorithms. Therefore we usually prefer adjacency lists to matrices.

9

1

3 4

2 A[1]→ v = 2 ; A[1]→ next = �
A[2]→ v = 3 ; A[2]→ next→ v = 4
; A[2]→ next→ next = �
A[3]→ v = 1 ; A[3]→ next = �
A[4] = �

A

1

2

3

4 �

2 �

3 4 �

1 �

Figure 5: The same digraph is given with graphical representation on the
left, and with adjacency list representation on the right.

1.7 Space complexity of representing graphs

Given graph G = (V,E), n := |V |, m := |E|, i.e. in these lecture notes, we
are going to use n and m for the number of vertices and edges of a graph.
Clearly 0 ≤ m ≤ n ∗ (n− 1) ≤ n2, thus m ∈ O(n2).

The sparse graphs are characterized with m ∈ O(n), while the dense
graphs are characterized with m ∈ Θ(n2).

1.7.1 Adjacency matrices

The adjacency matrix, i.e. A/1 : bit[n, n] needs n2 bits by default.
In case of undirected graphs the abstract matrix above can be represented

with array B : bit[n ∗ (n− 1)/2] (See subsection 1.5 for the details.)
For this reason the space complexity of the graph is Θ(n2) in both cases.

1.7.2 Adjacency lists

In case of adjacency list representation we have pointer array A/1 : Edge*[n]
and m or 2m elements of the n adjacency lists together. (See subsection
1.6 for the details: m elements for digraphs and 2m elements for undirected

10

graphs.) For this reason the space complexity of the graph is Θ(n + m) in
both cases.

• In case of sparse graphs m ∈ O(n). Thus the space complexity of the
adjacency list representation of these graphs is Θ(n+m) = Θ(n). This
is asymptotically smaller than Θ(n2), which is a space complexity of the
adjacency matrix representations of all the graphs. Considering that
sparse graphs model most of the di�erent networks, this representation
may most often be a good choice.

• In case of dense graphs m ∈ Θ(n2). Consequently Θ(n + m) = Θ(n2).
Therefore the space complexities of the adjacency list and matrix rep-
resentations are asymptotically equivalent.

• In case of complete graphs the adjacency lists together contain n ∗
(n − 1) elements, and each element consists of many bits (typically
one word for the index of the neighbor or child of the actual vertex
and another word for the pointer referring to the next element of the
list of edges, which means that a single element consists of 128 bits in
a 64 bit architecture). As a result, the actual storage requirements of
the adjacency list representation of a (nearly) complete graph can be
signi�cantly greater than those of the adjacency matrix representation
of the same graph where one element of the matrix can be stored in a
single bit.

11

2 Abstract types set, sequence and graph

These types will be useful in the subsequent abstract algorithms of graphs
etc. Given some type T, let

• T{} denote a �nite set of items with element type T

• {} denote the empty set

• T〈〉 denote a �nite sequence of items with type T

• 〈〉 denote the empty sequence.

We will use the usual operations of sets, plus operation u from S where
S is a nonempty set. This statement selects a random element of S, assigns
its value to variable u, and removes it from set S.

A sequence is indexed from 1. If s is a sequence, si denotes its ith element.
If u, v : T〈〉, then quad u+ v is their concatenation.

Variables of set and variables of sequence types must be declared (like arrays).
We suppose that declaration s : T〈〉 initializes s with an empty sequence,
and declaration h : T{} initializes h with an empty set.

In order to describe the type of abstract graphs, �rst we introduce the el-
ementary type V which will be the abstract type of the vertices of graphs.
We suppose that each vertex can labeled by any number named values where
each label of the vertex has a value.

These labels are partial functions. The domain of each label is a subset
of vertices. They can be created and modi�ed with assignment statements.
If a label exists, it is visible and it is e�ective in the whole program, and it
lives while the program runs.

If v : V and name is a label of vertex v, then name(v) denotes the value
of label name of vertex v. As a result, performing statement name(v) := x
assigns value x to label name of vertex v. If the label does not exists,
name(v) := x creates label name of vertex v with value x.

Set V is typically represented by set N. Similarly, the vertices of a graph
with n vertices are typically represented by set 1..n if we index the array
representing the graph from 1 (or 0..(n − 1) if we index this array from 0).
The labels of the vertices can also be represented with arrays. Thus their
visibility, scope and lifetime are bounded in the implementation of the graph
algorithm. The solution of the problems arising from this boundaries is part
of the implementation process.

12

Now we describe type edge (E) and type unweighted abstract graph (G). We
emphasize again that for practical reasons we exclude graphs with looping
and/or parallel edges, i.e. our graph notion means simple graph.

E
+ u, v : V

G
+ V : V{} // vertices
+ E : E{} // E ⊆ V × V \ {(u, u) : u ∈ V } // edges

13

3 Elementary graph algorithms ([3] 22)

The elementary graph algorithms are algorithms on unweighted graphs. In
an unweighted graph the length of a path is simply the number of edges on
this path. A shortest path between two vertices is also called optimal path or
distance between them. A path may include loop. Clearly, an optimal path
never includes loop. In directed graphs or digraphs edge (u, v) is di�erent
from edge (v, u). In undirected graphs edge (u, v) is equal to edge (v, u) by
de�nition.

Notation 3.1 Given vertices u and v of a graph, u v means a path from
u to v.

De�nition 3.2 Given vertices u and v of a graph G, v is available from u
means that there is some u v in G.

In this chapter we consider two basic algorithms on unweighted graphs, i.e.
breadth-�rst search (BFS) and depth-�rst search (DFS). The later one is also
called depth-�rst traversal. We also discuss two applications of DFS.

3.1 Breadth-�rst Search (BFS)

We consider BFS on digraphs and also on undirected graphs. Given a graph
G : G, we �x a source vertex s ∈ G.V which can be any vertex of G. We �nd
the shortest paths to each other vertex available form s. If there are more
than one shortest paths to a vertex, we compute only one of them.

Let u be a vertex of G. The most important labels of u:

• d(u) = the length of s u found. d(u) = ∞ means that (still) we
have not found any s u. Clearly, d(u) = 0, i� u = s.

• pi(u) = the parent of vertex u on s u found. pi(u) = � means that
(still) we have not found any s u or u = s.

If vertex u is unavailable form s, d(u) =∞ and π(u) = � remains even when
the algorithm terminates. Otherwise BFS calculates a shortest (i.e. optimal)
s u. π(s) = � also remains true because the optimal s s consists of
only s, it contains no edge, i.e. s has no parent on this path.

We will also use a label called color. Its value does not in�uence the run
of the program. Consequently the statements referring to it can be safely
omitted form BFS. (Therefore they are put between square brackets in the
structogram of BFS.) They are useful only for illustration:

14

• The white vertices have not yet been found by the graph search (or
traversal).

• The grey vertices have already been found but not processed yet.

• The black vertices have already been processed. The algorithm has
nothing to do with them.�� �BFS(G : G ; s : V)

∀u ∈ G.V
d(u) :=∞ ; π(u) := �

[color(u) := white]

d(s) := 0 ; [color(s) := grey]

Q : Queue ; Q.add(s)

¬Q.isEmpty()

u := Q.rem()

∀v : (u, v) ∈ G.E

AA
d(v) =∞

��

d(v) := d(u) + 1

π(v) := u

[color(v) := grey]

Q.add(v)

SKIP

[color(u) := black]

Performing the �rst loop, d(u) = ∞ becomes true for each vertex of the
graph, which means that no vertex have been found by the algorithm. As a
result, π(u) = � for each vertex2.

We know that d(s) = 0 is the length of the shortest s s.3 The vertices
found but not yet processed are put into the queue, i.e. into Q. For this
reason, s is already put into Q. Processing vertex u means that we remove u
form Q, plus expand u, i.e. enumerate and consider the children or neighbors
of u (children in digraphs and neighbors is undirected graphs). This means
that all the time we process the �rst element of Q.

The second, main loop runs while there is any vertex which we have found
but not yet processed, i.e. Q is not empty. The main loop �rst removes vertex

2[and also color(u) = white]
3[Performing d(s) := 0 we have started the processing of s. This has the e�ect of

color(s) := grey.]

15

u = s form Q. Then for each child/neighbor of s its d value will be 1 and
its π value will be s because the optimal path to it consist of the edge (s, u).
The children/neighbors of s are also put into Q so that they can be processed
later.4

Now Q contains the vertices available from s in a single step. The main
loop removes them from Q one by one. It �nds the vertices available from
s in two steps, i.e. minimum through two edges, because these vertices are
the newly found children or neighbors of those available in a single step.
Undoubtedly, the newly found vertices are those with d(v) = ∞. The
main loop also assigns the d(v) = 2 and π(v) = u values according to the
parents of these vertices5, and they are added to the end of Q6. Provided
that for some vertex v, d(v) 6= ∞ when we process edge (u, v), this vertex
is unquestionably known form earlier7, consequently d(v) ∈ {0, 1, 2}, which
means that the newly found path to v is not shorter than the old path found
it. For this reason, in this case edge (u, v) is omitted by BFS. (See the
conditional statement in the abstract code of BFS above.)

By the time BFS has processed all the vertices at distance 1 from s, i.e.
it has removed them from Q and it has expanded them (i.e. processed the
edges going out of them), by this time Q contains the vertices at distance 2
form s.

While BFS is processing the vertices at distance 2, i.e. is it removes them
from Q and expands them, the vertices at distance 3 are newly found and
put at the end of Q with the appropriate d and π values. As a result of this,
by the time BFS has processed all the vertices at distance 2, Q contains all
the vertices at distance 3, and so on.

Generally speaking, when Q consists of the vertices at distance k from s, BFS
starts to process them. While processing them, it newly �nds the vertices at
distance k+1, assigns the appropriate values to their labels and puts them at
the end of Q. By the time all the vertices at distance k have been processed,
Q consists of the vertices at distance k + 1, and so on.

We say that the vertices at distance k form s are at level k of the graph.
As a result, BFS traverses the graph level by level. It starts with level 0.
Next it goes to level 1. Then it follows with level 2, and so on. Each level
is completely processed before BFS goes on to the next level: While BFS is
processing a level, it newly �nds the vertices at the next level, and puts them

4[They also receive grey color, and �nally s is colored black, because this vertex has

been �nished.]
5[they also receive grey color]
6[then their parent is colored black because it has been �nished]
7[already it is not white, but grey or black]

16

into Q. Then it �nds the vertices of the next level in Q. For this reason, it
is called breadth-�rst search (or breadth-�rst traversal).

Because the graph is �nite, �nally there will be no vertex at the next level, i.e.
at distance k + 1. Q becomes empty, and BFS stops. The vertices available
from s have been found at some level. For each of them, its d value contains
its distance from s, and its π value refers to its parent on the optimal path
found to it (with the exception that π(s) = � remains true, because s has no
parent). Therefore all the other vertices are unavailable from s: for each of
them d(v) =∞ and π(v) = � remain true, because it is not found by BFS.8

Exercise 3.3 In the algorithm of BFS, condition �d(v) =∞� can be replaced
by another condition equivalent to it. Which is this condition? Explain your
decision.

3.1.1 Breadth-�rst Tree

Let us suppose that we have run procedure call BFS(G, s). Let v 6= s be a
vertex available form s. Then BFS �nds an optimal path s v, and π(v)
refers to the parent of v on this path. Unquestionably many vertices may
have the same parent on the optimal paths found to them, but the parent of
each vertex similar to v has a single parent.

Consequently � as the result of BFS(G, s) � the π values of the vertices
available from s de�ne a general tree. Its root is s, and accordingly π(s) = �.
This tree is called breadth-�rst tree or shortest-paths tree. For each vertex v
available from s, this tree contains a shortest path s v where this optimal
path has been computed by procedure call BFS(G, s).

Obviously this reversed representation of the shortest-paths tree is space
e�cient because each vertex has at most one parent but may have many
children in the tree.

Exercise 3.4 Let us suppose that we have run procedure call
BFS(G, s), and vertex v is available from s. Write recursive procedure
printShortestPathTo(v) which prints the shortest path s v calculated by
BFS(G, s).

Notice that parameter s is not needed, if v is available from s. This
algorithm should not build any new data structure.

MT (d) ∈ Θ(d) where d = d(v).

8[Thus the vertices available from s become black, while the others remain white.]

17

Exercise 3.5 Let us suppose that we have run procedure call BFS(G, s),
and vertex v is available from s. Write nonrecursive procedure
printShortestPathTo(v) which prints the shortest path s v calculated by
BFS(G, s).

Notice that parameter s is not needed, if v is available from s. Explain
your data structure needed for avoiding recursive code.

MT (d) ∈ Θ(d) where d = d(v).

Exercise 3.6 Let us suppose that we have run procedure call BFS(G, s).
Write procedure printShortestPathTo(s, v) which

• prints the shortest path s v calculated by BFS(G, s), provided that
vertex v is available from s.

• prints text �There is no path from s to v� with the appropriate substi-
tutions for s and v, otherwise.

MT (d) ∈ Θ(d), where d = d(v), if v is available from s; and d = 1, otherwise.

3.1.2 Illustrations of BFS

a→

d e

b c

f

a → b.
b → c ; e.
c → e.
d → a.
e → d.
f → c ; e.

Figure 6: The same digraph in graphical (on the left) and textual (on the
right) representation (s = a).

We illustrate BFS on the graph of Figure 6. We use the table below where
�a� is the source vertex. Obviously the new vertices always go to the end of
queue Q.

We have a convention that in nondeterministic cases we prefer the vertex
with lower index. This convention will be applied at the illustration of each
graph algorithm. (This is the weakest �rule� but you should follow it at tests
and exams.) For example, in the following illustration it is used when the
children of vertex �b� are put into the queue in order �c,e�.

18

changes of d ex- Q : changes of π
a b c d e f panded Queue a b c d e f
0 ∞ ∞ ∞ ∞ ∞ vertex : d 〈 a 〉 � � � � � �

1 a:0 〈 b 〉 a
2 2 b:1 〈 c, e 〉 b b

c:2 〈 e 〉
3 e:2 〈 d 〉 e

d:3 〈 〉
0 1 2 3 2 ∞ �nal d and π values � a b e b �

a

0

→

d

3

e

2

b

1

c

2

f

∞

Figure 7: The breadth-�rst tree of BFS on the graph familiar from Figure 6
provided that s = a.

Now we illustrate BFS on the graph of Figure 8 where �f� is the source vertex.

a

d e

b c

f ←

a � b ; d.
b � c ; d.
c � e ; f.
d � e.
e � f.

Figure 8: An undirected graph in graphical (on the left) and in textual (on
the right) representation (s = f).

19

changes of d ex- Q : changes of π
a b c d e f panded Queue a b c d e f
∞ ∞ ∞ ∞ ∞ 0 vertex : d 〈 f 〉 � � � � � �

1 1 f:0 〈 c, e 〉 f f
2 c:1 〈 e, b 〉 c

2 e:1 〈 b, d 〉 e
3 b:2 〈 d, a 〉 b

d:2 〈 a 〉
a:3 〈 〉

3 2 1 2 1 0 �nal d and π values b c f e f �

a

3

d

2

e

1

b

2

c

1

f

0

←

Figure 9: The breadth-�rst tree of BFS on the graph familiar from Figure 8
provided that s = f.

3.1.3 E�ciency of BFS

Remember that we use the following traditional notations at graph algo-
rithms: n = |G.V | and m = |G.E|.

The �rst, the initializing loop of BFS(G, s) iterates n times.
The second, the main loop of it iterates as much as the number of vertices
available from s (counting also s itself): this is maximum n, minimum 1.

As a result of this, the number of iterations of the inner loop is maximum
m or 2m on directed/undirected graphs (when all the vertices are available
form s). And it is minimum zero (provided that no edge goes out form s).

For this reason, MT (n,m) ∈ Θ(n+m), and mT (n,m) ∈ Θ(n).

3.1.4 The implementations of BFS in case of adjacency list and
adjacency matrix representations

We suppose that in graph G = (V,E), V = {v1, · · · , vn} where n ∈ N, i.e.
the vertices of the graph can be identi�ed by the indices 1..n. Labels d and

20

π of the vertices are represented by arrays d/1, π/1 : N[n] where d(vi) is
represented by d[i] and π(vi) is represented by π[i]. The representation of
the color labels of the vertices is super�uous. The representation of � can be
number 0, for example π[s] = 0 means π(vs) = �. Undoubtedly the length of
a shortest path between two vertices is maximum n−1. And this is also the
maximum of the �nite d-values in BFS. Thus we can use number n instead
of ∞.

Exercise 3.7 Let us suppose that we represent the abstract graph of BFS
with adjacency lists. (See section 1.6.)

Write procedure BFS(A/1 : Edge ∗ [n] ; s : 1..n ; d/1, π/1 : N[n]) im-
plementing the appropriate abstract algorithm in this case. Make sure that
the the worst-case and the best-case operational complexities of the imple-
mentation of BFS remain MT (n,m) ∈ Θ(n + m), and mT (n,m) ∈ Θ(n),
respectively.

Exercise 3.8 Let us suppose that we represent the abstract graph of BFS
with adjacency matrix. (See section 1.5.)

Write procedure BFS(A/1 : bit[n, n] ; s : 1..n ; d/1, π/1 : N[n]) imple-
menting the appropriate abstract algorithm in this case.

Can we retain the worst-case and the best-case operational complexities
of the abstract BFS? If not, how do they change?

3.2 Depth-�rst Search (DFS)

DFS is also called depth-�rst traversal, because it touches all the vertices and
edges of the graph.

In these lecture notes we consider DFS on digraphs only. Unlike in BFS,
in DFS the colors of the vertices are essential. Unlike BFS, DFS goes on
in one direction in the graph while it �nds undiscovered, i.e. white vertices.
When DFS discovers a vertex, it becomes grey.

When DFS does not �nd any white vertex as a child of the actual vertex, it
colors the actual vertex black, and backtracks to its parent, i.e. to the vertex
it was discovered from. Then this parent becomes the actual vertex again.
And BFS tries to go through another, still unprocessed edge to another white
vertex, and so on.

Unquestionably DFS is highly non-deterministic. It may select any un-
processed edge going out from the actual vertex. (While illustrating DFS,
we will resolve this non-determinism: we prefer the edge going to the vertex
with the lowest index.) DFS can backtrack recursively, if needed.

The classical form of DFS does not have any source vertex. The depth-
�rst traversal of the graph consists of depth-�rst visits (DFvisits). A DFvisit

21

may start from any white vertex of the graph. (While illustrating DFS, we
will resolve this non-determinism: we prefer the white vertex with the lowest
index.) The starting point of a DFvisit is its root, because each DFvisit
builds up a depth-�rst tree with this starting point as root. In a depth-�rst
tree, the parent of a non-root vertex is the vertex it was discovered form.

A DFvisit ends when we color its root black, and we cannot backtrack
from it, because it does not have any parent. Then we try to start another
DFvisit form a white vertex. When no white vertex remains, DFS stops. It
is certainly the case that a vertex may be grey only during a DFvisit. Before
a DFvisit all the vertices are white or black. As a result, at the end of the
program all of them are black.

DFS also has variable time : N. It starts from zero and it is increased
when a vertex is discovered or �nished.

For each vertex of v of the graph, DFS assigns value to the following
labels of v.

• color(v) ∈ {white, grey, black} where color(v) = white means that v
is still undiscovered, i.e. no DFvisit has touched it; color(v) = grey
means that v has been discovered, but it is still un�nished, i.e. DFS
still has not tried to backtrack from it; and color(v) = black means
that v has been �nished.

• d(v) ∈ {1, 2, 3, ...} is the discovery time of v.

• f(v) ∈ {2, 3, 4, ...} is the �nishing time of v.

• π(v) : V is the parent vertex of v. If v does not have parent (i.e. it is
the root of a DFvisit), then π(v) = �.�� �DFS(G : G)

∀u ∈ G.V
color(u) := white

time := 0

∀r ∈ G.V

AA
color(r) = white

��

π(r) := �
DFvisit(G, r, time)

SKIP

�� �DFvisit(G : G ; u : V ; &time : N)

d(u) := + + time ; color(u) := grey

∀v : (u, v) ∈ G.E

AA
color(v) = white

��

π(v) := u

DFvisit
(G, v, time)

AA
color(v) = grey

��

backEdge
(u, v) SKIP

f(u) := + + time ; color(u) := black

22

3.2.1 Depth-�rst forest

Each DFvisit (started from DFS) computes a depth-�rst tree. The depth-�rst
forest consists of these depth-�rst trees.

r ∈ G.V is the root of a depth-�rst tree ⇐⇒ π(r) = �
(u, v) ∈ G.E is the edge of a depth-�rst tree ⇐⇒ u = π(v)

3.2.2 Classi�cation of edges

De�nition 3.9 The classi�cation of the edges of the graph:

(u, v) is tree edge ⇐⇒ (u, v) is the edge of some depth-�rst tree.
(We traverse the graph through the tree edges.)

(u, v) is back edge ⇐⇒ v is ancestor of u in a depth-�rst tree.

(u, v) is forward edge ⇐⇒ (u, v) is not tree edge, but v is a descendant of
u in a depth-�rst tree.

(u, v) is cross edge ⇐⇒ u and v are vertices on di�erent branches of the
same depth-�rst tree, or they are in two di�erent depth-�rst trees.

Theorem 3.10 Recognizing the edges of a graph:
When we process edge (u, v) during a DFvisit, this edge can be classi�ed
according to the following criteria.

(u, v) is tree edge ⇐⇒ vertex v is still white.

(u, v) is back edge ⇐⇒ vertex v is just grey.

(u, v) is forward edge ⇐⇒ vertex v is already black ∧ d(u) < d(v).

(u, v) is cross edge ⇐⇒ vertex v is already black ∧ d(u) > d(v).

Exercise 3.11 We are just processing edge (u, v) during DFS. Why d(u) =
d(v) cannot happen? In which case could it happen? In this case, how should
we modify De�nition 3.9 so that we do not have to modify Theorem 3.10?

3.2.3 Illustration of DFS

We illustrate DFS on Figure 10. DFS is non-deterministic in two aspects. (1)
Which white certex is selected as root of a DFvisit. (2) Which unprocessed
edge going out from the actual vertex is selected to be processed: these edges
can be ordered according to the vertices they point to.

23

At this course, when we illustrate a graph algorithm, its non-determinism
is resolved by considering the possible vertices in alphabetical order, i.e. the
vertex with lowest index is preferred. Note that there could be another
convention or we could select randomly from the set of possible vertices.
However, this alphabetical convention must be followed at our tests and
exams.

On Figure 10 we can see a digraph.

a

d e

b c

f

a → b ; e.
b → c ; e.
d → a.
e → c ; d.
f → c ; e.

Figure 10: The same digraph in graphical (on the left) textual (on the right)
representation.

a

1/10

→

d

6/7

e

5/8

b

2/9

c

3/4

f

11/12

←

F
B

C
C

C

Figure 11: DFS of graph on Figure 10.

On Figure 11 we can see the result of DFS on the same digraph. Labels of the
form d/f of the vertices display the discovery and �nishing times of them.
Small arrows pointing to vertices �a� and �f� show the roots of the DFvisits.
Double arrows identify the edges of the depth-�rst trees. The classi�cation
of the other edges is made clear by the following labels of them. �B� means
back edge, �F� means forward edge, and �C� means crossing edge .

24

3.2.4 The running time of DFS

We use the same notations as before: n = |G.V | and m = |G.E|. Procedure
DFS is called only once. Both loops of DFS iterares n times. We have 2n+1
steps without DFvisits.

Procedure DFvisit is also called n times, once for each vertex: when we
achieve it �rst, and it is still white, recursive procedure DFvisit is called for
it. The loop of DFvisit iterates as much as the number of edges going out
from vertex u. This loop processes the edges of the graph, and each edge
is processed by one iteration of this loop. As a result of this, considering
all the calls of DFvisit together, the loop of DFvisit iterates m times. We
suppose here that a call to procedure backEdge just labels a back edge9, thus
its operational complexity is Θ(1), and its running time does not modify the
asymptotic order of the loop iteration invoking it. Altogether we have n+m
steps in DFvisits.

We have counted 3n+m+ 1 steps.
Consequently MT (n),mT (n) ∈ Θ(n+m) for DFS.

3.2.5 Checking the DAG property

De�nition 3.12 Digraph G is DAG (Directed Acyclic Graph), i� it does
not contain directed loop.

DAGs are an important class of graph. Many useful algorithms is de�ned
on them. For this reason, checking their input can be crucial. (For example,
see algorithms topological sort and DAG shortest paths later.

It is certainly the case that when DFS �nds back edge (u, v), then �
according to the de�nition of back edge � it also �nds a directed loop in
the graph, because v is an ancestor of u in the depth-�rst tree which the
actual DFvisit is building. Therefore the path consisting of the tree edges
and leading from v to u concatenated with edge (u, v) form a directed loop.

It can be proved that if digraph G in not DAG, i.e. it contains directed
loop, then DFS �nds back edge, and thus it �nds a directed loop containing
this back edge [3]. [However, DFS often does not �nd all the directed loops,
because a back edge can be part of many directed loops: provided that it
processes a back edge, it will never process it again.]

Exercise 3.13 Draw a digraph with three vertices and four edges which con-
tains too simple directed loops, and maybe DFS �nds both of them, maybe

9Notice that we omitted the explicit labeling of the non-back edges in our structogram,

although each tree edge (u, v) is booked by the assignment statement π(v) := u. We are

going to see that the forward and cross edges do not have signi�cance in our applications.

25

not, depending on the resolution of its inherent non-determinism. Illustrate
both cases.

Summarizing all these we receive the following theorem.

Theorem 3.14 Digraph G is DAG ⇐⇒ DFS does not �nd back edge.
If DFS �nds back edge (u, v), then sequence 〈v, u, π(u), π(π(u)), . . . , v〉 of

vertices read in backward direction forms a simple directed loop.

Based on this theorem, the run of procedure call backEdge(u, v) of struc-
togram DFvisit() (see section 3.2) is able to print the directed loop found.
In this case its maximal running time is clearly Θ(n). (And in some cases
the printing of all the directed loops found can increase even the asymptotic
running time of DFS.)

Exercise 3.15 Write the structogram of procedure backEdge(u, v) provided
that it must print all the loops found in an easy to read manner. Make sure
that MT (n) ∈ Θ(n) is satis�ed.

Exercise 3.16 De�ne an in�nite sequence of digraphs where m ∈ O(n), con-
sequently MTDFS(n,m) ∈ Θ(n), but if procedure backEdge(u, v) must print
all the directed loops found, then even the minimal running time of DFS is
Ω(n2). Explain why these properties are satis�ed.

Exercise 3.17 Modify DFS so that it can search loops on undirected graphs.
How can we recognize back edges? [Undoubtedly, in an undirected graph, if
(u, v) is tree edge, then (v, u) is not back edge because (v, u) = (u, v).] What
about forward and cross edges?

3.2.6 Topological sort

De�nition 3.18 A topological order of digraph G is a linear ordering of all
its vertices such that if G contains an edge (u, v), then u appears before v in
this ordering.

A graph may have more than one topological order. See for example
Figure 12.

Theorem 3.19 A digraph has topological order ⇐⇒ it is DAG (i.e. it does
not contain directed loop.)

Proof.

26

a

c d

b a c db

a c db

Figure 12: A DAG drawn in three di�erent ways: it is drawn in a traditional
way on the left. On the right the vertices are in two topological orders.

⇒ If there is a directed loop in the graph, let it be 〈u1, u2, . . . , uk, u1〉.
As a result, u1 is followed directly or indirectly by u2, then somewhat
later by u3, and so on. Even later uk comes, and then u1 again. This
is contradiction. Unquestionably, there is no topological order of this
graph.

⇐ If there is no directed loop in the graph, undeniably it has some vertex
without parent. If we delete such a vertex from the graph (together
with its edges), then the no cycle is generated in the graph remaining.
Again we have some vertex without parent, we can delete it, and so on.
In order the deleted vertices form a topological order.

�
A topological sort is a graph algorithm generating a topological order

of the graph. This process of generating a topological order is also called
topological sort.

We can sort a graph topologically with DFS, for example.

Topological sort of a DAG with DFS:

1. We create an empty stack.

2. Perform DFS on the digraph: When a vertex is �nished we put it on
the top of the stack.

3. If DFS �nds a back-edge, then the graph is not a DAG, there is no
topological ordering, and the content of the stack is unde�ned.

4. Otherwise, �nally the content of the stack in top-down order is the
topological order of the DAG.

27

a

1/10

→

d

6/7

e

5/8

b

2/9

c

3/4

f

11/12

←

F
F

C
C

C

Figure 13: The vertices of a DAG sorted strictly decreasingly according to
the �nishing times of DFS form a topological order of the DAG. And this
order can be received e�ciently with pushing each vertex at the beginning
of the sequence when it is �nished by DFS. As a result, 〈f, a, b, e, d, c〉 is a
topological order of the DAG above. Let us notice, if we resolve the non-
determinism of DFS di�erently, the topological order received may also be
di�erent.

An illustration of topological sort is found on Figure 13.
A natural application of topological sort is a solution of a single-machine

scheduling problem: The vertices of the DAG are jobs, and an edge (u, v) of
the graph means that job u must be performed before job v. The jobs must
be sorted according to these constraints represented by the edges.

Exercise 3.20 Write the structograms of (1) DFS and (2) topological sort
in cases of (A) adjacency list and (B) adjacency matrix representations of the
graph. What can you say about the e�ciencies of the four implementations?

Exercise 3.21 Notice that the second half of the proof of Theorem 3.19 can
be considered an algorithm. Write its structogram, which is independent of
DFS. How can you avoid the destroying of the input graph using just O(n)
working memory? What about e�ciency? How can you handle cyclic di-
graphs in this algorithm?

28

