
Algorithms and Data Structures II.

Lecture Notes:

Algorithms on weighted graphs

Ásványi Tibor � asvanyi@inf.elte.hu

November 6, 2022

Contents

1 Weighted graphs and their representations ([3] 22) 4
1.1 Graphical representation . 4
1.2 Textual representation . 5
1.3 Adjacency matrix representation 5
1.4 Adjacency list representation 6
1.5 Space complexity of representing graphs 6

1.5.1 Adjacency matrices . 6
1.5.2 Adjacency lists . 6

1.6 The abstract class of weighted graphs 7

2 Minimum spanning trees (MSTs) ([3] 23) 8
2.1 A general method . 9
2.2 Algorithm of Kruskal . 12

2.2.1 The set operations of the Kruskal algorithm 13
2.3 Algorithm of Prim . 14

3 Single-Source Shortest Paths ([3] 24) 16
3.1 Dijkstra's algorithm . 17
3.2 Single-source shortest paths in DAGs 20
3.3 Queue-based Bellman-Ford algorithm 23

3.3.1 Handling negative cycles 24
3.3.2 Illustration of �nding optimal paths 25
3.3.3 Illustration of handling negative cycles 26
3.3.4 Our version of Queue-based Bellman-Ford algorithm

(QBF) . 26
3.3.5 Analyzing QBF . 27

4 All-Pairs Shortest Paths ([3] 25) 30
4.1 Dynamic programming . 30
4.2 Transitive closure of a directed graph (TC) 31

4.2.1 Computing transitive closure with breadth-�rst search 32
4.3 The Floyd-Warshall algorithm (FW) 33

4.3.1 Solving the All-Pairs Shortest Paths problem with the
Single-Source Shortest Paths algorithms 36

2

References

[1] Ásványi, T, Algorithms and Data Structures I. Lecture Notes
http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs1/AlgDs1LectureNotes.pdf

[2] Ásványi, T, Algorithms and Data Structures II. Lecture Notes: Ele-
mentary graph algorithms
http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs1/AlgDS2graphs1.pdf

[3] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.,
Introduction to Algorithms (Third Edititon), The MIT Press, 2009.

[4] Cormen, Thomas H., Algorithms Unlocked, The MIT Press, 2013.

[5] Narashima Karumanchi,
Data Structures and Algorithms Made Easy, CareerMonk Publication,
2016.

[6] Neapolitan, Richard E., Foundations of algorithms (Fifth edition),
Jones & Bartlett Learning, 2015. ISBN 978-1-284-04919-0 (pbk.)

[7] Shaffer, Clifford A.,
A Practical Introduction to Data Structures and Algorithm Analysis,
Edition 3.1 (C++ Version), 2011
(See http://aszt.inf.elte.hu/∼asvanyi/ds/C++3e20110103.pdf)

[8] Tarjan, Robert Endre, Data Structures and Network Algorithms,
CBMS-NSF Regional Conference Series in Applied Mathematics, 1987.

[9] Weiss, Mark Allen, Data Structures and Algorithm Analysis in C++
(Fourth Edition),
Pearson, 2014.

[10] Ásványi Tibor, Detecting negative cycles with Tarjan's breadth-�rst
scanning algorithm (2016)
http://ceur-ws.org/Vol-2046/asvanyi.pdf

3

1 Weighted graphs and their representations

([3] 22)

De�nition 1.1 A weighted graph is a graph G = (V,E) with the weight
function w : E → R where V is the �nite set of vertices, and E ⊆ V × V \
{(u, u) : u ∈ V } is the set of edges.

Provided that (u, v) ∈ E, w(u, v) is its weight or length or cost (weight,
length and cost are synonyms).

De�nition 1.2 Given a weighted graph, the weight or length or cost of a
path is the sum of the weights of the edges along the path.

1.1 Graphical representation

The edges are labeled with their weights.

1

3 4

2
2

1
0

-1
1 � 2, 2 ; 3, 1.
2 � 3, 0 ; 4, -1.

Figure 1: A weighted, undirected graph in graphical representation (on the
left) and in textual representation.

a

c d

b
2

0
-11

a → b, 2.
b → c, 0 ; d, -1.
c → a, 1.

Figure 2: A weighted digraph in graphical representation (on the left) and
in textual representation (on the right).

4

1.2 Textual representation

In case of undirected graphs �u � vu1 , wu1 ; · · · ; vuk
, wuk

.� means that
(u, vu1), · · · , (u, vuk

) are edges of the graph, in order with weights w(u, vu1) =
wu1 , · · · , w(u, vuk

) = wuk
. (See Figure 1.)

In case of digraphs �u → vu1 , wu1 ; · · · ; vuk
, wuk

.� means that from
vertex u come out directed edges (u, vu1), · · · , (u, vuk

), in order with weights
w(u, vu1) = wu1 , · · · , w(u, vuk

) = wuk
. (See Figure 2.)

1.3 Adjacency matrix representation

In the adjacency matrix representation, graph G = (V,E) with weight func-
tion w : E → R (V = {v1, · · · , vn}) is represented with matrix A/1 : R∞[n, n]
where n = |V | is the number of vertices, 1..n are their sequence numbers,
and for sequence numbers i, j ∈ 1..n,

A[i, j] = w(vi, vj) ⇐⇒ (vi, vj) ∈ E

A[i, i] = 0

A[i, j] =∞ ⇐⇒ (vi, vj) /∈ E ∧ i 6= j

For example, on Figure 3, the digraph is represented with the adjacency
matrix next to it.

1

3 4

2
2

1
0

-1

A 1 2 3 4
1 0 2 ∞ ∞
2 ∞ 0 0 -1
3 1 ∞ 0 ∞
4 ∞ ∞ ∞ 0

Figure 3: A weighted digraph in graphical representation (on the left) and
in adjacency matrix representation (on the right).

There are always zeros in the main diagonal, because we study only simple
graphs (with no looping edge), and a vertex is available from itself on a path
of zero length. See Figure 4.

Notice that the adjacency matrix is always symmetrical, if the graph is
undirected, because in case (vi, vj) ∈ E, (vj, vi) = (vi, vj) ∈ E.

5

1

3 4

2
2

1
0

-1

A 1 2 3 4
1 0 2 1 ∞
2 2 0 0 -1
3 1 0 0 ∞
4 ∞ -1 ∞ 0

Figure 4: A weighted undirected graph in graphical representation (on the
left) and in adjacency matrix representation (on the right).

1.4 Adjacency list representation

The adjacency list representation is similar to the textual one. Graph G =
(V,E) with weight function w : E → R (V = {v1, · · · , vn}) is represented
with pointer array A : Edge*[n] where type Edge is the following one.

Edge
+v : N
+w : R
+next : Edge∗

The roles of attributes v and next are the same as in case unweighted graphs,
but w is the weight (i.e. length) of the appropriate edge. In case of undirected
graphs, each edge is represented twice, but in case of digraphs, each edge is
represented only once. (See Figure 5.)

1.5 Space complexity of representing graphs

1.5.1 Adjacency matrices

Their space requirements can be calculated similarly as in the unweighted
case. Provided that a �oat is represented in one word, the storage require-
ment of adjacency matrix representation is n2 words in the general case.
In case of undirected graphs, storing just the lower triangle matrix, we need
n∗(n−1)/2 words. n∗(n−1)/2 ∈ Θ(n2), consequently the space complexity
of this representation is Θ(n2) in both cases.

1.5.2 Adjacency lists

Each �Edge� contains an extra data member w compared to the unweighted
case. Clearly, this fact does not in�uence the asymptotic storage require-
ments.

6

1

3 4

2
6

5
0

-1

A[1]→ v = 2 ; A[1]→ w = 6 ; A[1]→ next = �
A[2]→ v = 3 ; A[2]→ w = 0 ; A[2]→ next→ v = 4
; A[2]→ next→ w = −1 ; A[2]→ next→ next = �
A[3]→ v = 1 ; A[3]→ w = 5 ; A[3]→ next = �
A[4] = �

A

1

2

3

4 �

2 6 �

3 0 4 -1 �

1 5 �

Figure 5: A weighted graph (on the left) in adjacency list representation (on
the rignt).

1.6 The abstract class of weighted graphs

Gw
+ V : V{}
+ E : E{} // E ⊆ V × V \ {(u, u) : u ∈ V }
+ w : E → R // weights of edges

7

2 Minimum spanning trees (MSTs) ([3] 23)

a

d e

b c

f

2

4

4

5
3

1
5

1 2

a � b, 2 ; d, 4.
b � c, 4 ; d, 5 ; e, 3.
c � e, 1 ; f, 5.
d � e, 1.
e � f, 2.

Figure 6: Connected weighted undirected graph. The vertices can be cities,
the edges are possible routes with the costs of building them. We want to
ensure that we can go form each city to each other city while minimizing the
costs of building the network.

In order to solve problems similar the one illustrated on Figure 6, we
de�ne the notion of MST = Minimum Spanning Tree. In this chapter we
discuss algorithms computing the MSTs of connected weighted undirected
graphs. (The weights of the edges may be negative.)

De�nition 2.1 Given undirected graph G = (V,E), its spanning forest is
graph T = (V, F), if F ⊆ E, and T is (undirected) forest (i.e. T is an
undirected graph, consisting of undirected tree components where the trees
are pairwise disjunctive, and they cover V together).

De�nition 2.2 Given undirected connected graph G = (V,E), graph T =
(V, F) is its spanning tree, if F ⊆ E, and T is (undirected) tree.

De�nition 2.3 Provided that G = (V,E) is a weighted graph (tree, forest,
etc.) with weight function w : E → R, then the weight of G is the sum of the
weights of its edges:

w(G) =
∑
e∈E

w(e)

De�nition 2.4 Given undirected connected weighted graph G, T is the min-
imum spanning tree, i.e. MST of G, if

• T is spanning tree of G, and

• for each other spanning tree T ′ of G, w(T) ≤ w(T ′).

De�nition 2.5
We say that an A set of edges is a subset of the graph G = (V,E), i� A ⊆ E.

8

2.1 A general method

The general algorithm below starts with the empty set A = {}. In each
iteration, it adds a new edge to this set of edges. It has an invariant property:
Set A is a subset of some MST of G. Consequently, A becomes the set of
edges of an MST of G, when the size of A becomes |G.V |−1 (because the
number of edges of a tree is always its number of vertices minus one).�� �GenMST(G : Gw ; A : E{})

A := {} ; k := |G.V | − 1

// k edges must be added to A

k > 0

�nd an edge (u, v) that is safe for A

A := A ∪ {(u, v)} ; k −−

De�nition 2.6 Let us suppose that G = (V,E) is an undirected connected
weighted graph, and the edge set A is a subset of some MST of G.

Edge (u, v) ∈ E is safe for A, i� (u, v) /∈ A, and A ∪ {(u, v)} is still a
subset of some MST of G. (The two MSTs may be di�erent.)

Consequence 2.7 Let us suppose that G = (V,E) is an undirected con-
nected weighted graph. Provided that we have the initially empty set A of
edges, and in each step we add an edge to A which is safe for A, then after
|V |−1 steps we receive an MST of G.

Now we have the following question. How to �nd an edge which is safe
for A? In order to answer it, we present the following notions and theorems.

De�nition 2.8 (S, V \S) is a cut of the graph G = (V,E), i� {} (S (V .

De�nition 2.9 An edge (u, v) ∈ E of graph G = (V,E) crosses cut (S, V\S),
i� one endpoint of edge (u, v) is in S and the other is in V \S.

De�nition 2.10 An edge is a light edge crossing a cut, i� it crosses the cut
and its weight is the minimum of the weights of the edges crossing the cut.
(The expressions �light edge crossing the cut� and �light edge in the cut� are
synonyms in this topic.)

De�nition 2.11 A cut respects a set A of edges, i� no edge of A crosses
the cut. (The verbs �respects� and �avoids� are synonyms in this topic.)

9

Theorem 2.12
Provided that G = (V,E) is an undirected connected weighted graph, and
(1) the A set of edges is a subset of some MST of G, and
(2) the cut (S, V \S) respects (i.e. avoids) the A set of edges, and
(3) the edge (u, v) ∈ E is a light edge crossing the cut (S, V \S)
=⇒ the edge (u, v) is safe for the A set of edges.

Proof. (u, v) /∈ A, because (u, v) crosses the cut, which respects A.
Let T = (V, TE) be an MST with the property A ⊆ TE. There are two
cases. (1) If (u, v) ∈ TE, we are ready. (2) For (u, v) /∈ TE, we create
a T ′ MST for which A ∪ {(u, v)} is a subset of T ′. We note that T is a
spanning tree, so in T there is exactly one path form u to v. Thus on this
path there is an edge crossing the cut (S, V \S). Let (p, q) be such an edge.
In this case, w(p, q) ≥ w(u, v) ∧ (p, q) /∈ A. Let us delete edge (p, q) from
T . Then tree T becomes a spanning forest T ′′ of two trees. One of these
trees contains vertex u, the other contains vertex v. Let us add edge (u, v)
to T ′′. We receive a spanning tree again. Let us call it T ′. As a result,
w(T ′) = w(T)−w(p, q) +w(u, v) ≤ w(T). Remember that T was an MST of
G. Thus w(T ′) ≥ w(T). Therefore w(T ′) = w(T), and T ′ is also an MST of
G. �

Based on the previous theorem, we have a method for building an MST. Let
us denote the edges of the A set of edges with double lines. In the following
example, in each step, we select a cut respecting A, we �nd a light edge
crossing the cut, and add this edge safely to A. The example graph has 6
vertices. Thus we �nd an MST in 5 steps.

a

d e

b c

f

2

4

4

5
3

1
5

1 2

Initially A = {}, thus each
cut is appropriate. Select cut
({a, b, c}, {d, e, f}). (c, e) is a
light edge crossing this cut, con-
sequentially it is safe for A. Add
it to A.

a

d e

b c

f

2

4

4

5
3

1
5

1 2

Now A = {(c, e)}. For example,
cut ({a, f}, {b, c, d, e}) respects
A. Edges (a, b) and (e, f) are
the light edges crossing this cut.
Both of them are safe for A. Se-
lect (a, b). Add it to A.

10

a

d e

b c

f

2

4

4

5
3

1
5

1 2

Now A = {(a, b), (c, e)}. For ex-
ample, cut ({a, b, c, d, e}, {f}) re-
spects A. Edge (e, f) is the light
edge crossing this cut. Thus it is
safe for A. Add it to A.

a

d e

b c

f

2

4

4

5
3

1
5

1 2

Now A = {(a, b), (c, e), (e, f)}.
For example, cut
({a, b}, {c, d, e, f}) respects A.
Edge (b, e) is the light edge
crossing this cut. Thus it is safe
for A. Add it to A.

a

d e

b c

f

2

4

4

5
3

1
5

1 2

A = {(a, b), (b, e), (c, e), (e, f)}.
Cut ({a, b, c, e, f}, {d}) respects
A. Edge (d, e) is the light edge
crossing this cut. Thus it is safe
for A. Add it to A.

a

d e

b c

f

2

4

4

5
3

1
5

1 2

A = {(a, b), (b, e), (c, e), (d, e), (e, f)}.
|A| = 5 = |G.V |−1, thus A is the set
of the edges of a minimum spanning
tree (MST).

11

2.2 Algorithm of Kruskal

a

d e

b c

f

0

2
2

1

1
2

3

0 2

a � b, 0 ; d, 2 ; e, 2.
b � c, 1 ; e, 1 ; f, 2.
c � f, 3.
d � e, 0.
e � f, 2.

Figure 7: Connected weighted undirected graph

Components edge its weight is it safe?
a, b, c, d, e, f (a,b) 0 +
ab, c, d, e, f (d,e) 0 +
ab, c, de, f (b,c) 1 +
abc, de, f (b,e) 1 +
abcde, f (a,d) 2 -
abcde, f (a,e) 2 -
abcde, f (b,f) 2 +
abcdef - - -

;

a

d e

b c

f

0

2
2

1

1
2

3

0 2

Figure 8: 7. Double lines show the edges of the MST found.

12

�� �Kruskal(G : Gw ; A : E{}) : N

∀v ∈ G.V
makeSet(v) // a spanning forest of single vertices is formed

A := {} ; k := |G.V |
// k is the number of components of the spanning forest

// let Q be a minimum priority queue of G.E by weight G.w :

Q : minPrQ(G.E,G.w)

k > 1 ∧ ¬Q.isEmpty()

e : E := Q.remMin()

x := �ndSet(e.u) ; y := �ndSet(e.v)

AA
x 6= y

��

A := A ∪ {e} ; union(x, y) ; k −− SKIP

return k

This algorithm checks whether G is connected. If so, it returns k = 1.
Otherwise k > 1.

MT (n,m) ∈ O(m ∗ lg n)

2.2.1 The set operations of the Kruskal algorithm

�� �makeSet(v : V)

π(v) := v

s(v) := 1

�� ��ndSet(v : V) : V

AA
π(v) 6= v

��

π(v) :=
�ndSet(π(v))

SKIP

return π(v)

�� �union(x, y : V)

AA
s(x) < s(y)

��

π(x) := y

s(y)+= s(x)

π(y) := x

s(x)+= s(y)

13

2.3 Algorithm of Prim�� �Prim(G : Gw ; r : V)

∀v ∈ G.V
c(v) :=∞ ; p(v) := � // costs and parents still unde�ned

// edge (p(v), v) will be in the MST where c(v) = G.w(p(v), v)

c(r) := 0 // r is the root of the MST where p(r) remains �
// let Q be a minimum priority queue of G.V \ {r} by label values c(v) :

Q : minPrQ(G.V \ {r}, c) // c(v) = cost of light edge to (partial) MST

u := r // vertex u = r has become the �rst node of the (partial) MST

¬Q.isEmpty()

// neighbors of u may have come closer to the partial MST

∀v : (u, v) ∈ G.E ∧ v ∈ Q ∧ c(v) > G.w(u, v)

p(v) := u ; c(v) := G.w(u, v) ; Q.adjust(v)

u := Q.remMin() // (p(u), u) is a new edge of the MST

MTPrim(n,m) ∈ O(m ∗ log n).

a

d→ e

b c

f

0

2
2

1

1
2

3

0 2

a � b, 0 ; d, 2 ; e, 2.
b � c, 1 ; e, 1 ; f, 2.
c � f, 3.
d � e, 0.
e � f, 2.

c values of nodes in Q vertex changes of labels p
a b c d e f into a b c d e f
∞ ∞ ∞ 0 ∞ ∞ MST � � � � � �
2 ∞ ∞ 0 ∞ d d d
2 1 ∞ 2 e e e
0 1 2 b b b

1 2 a
2 c

f
0 1 1 0 0 2 result b e b � d e

14

a

d e

b c

f

0

2
2

1

1
2

3

0 2

Compared to the algorithm of Kruskal, using the algorithm of Prim, we have
received another MST of the same graph.

15

3 Single-Source Shortest Paths ([3] 24)

Problem 3.1 Given graph G : Gw where s ∈ G.V is the source vertex. We
search for a shortest path to each vertex available from s in G. This is called
the single-source shortest paths problem.

Note 3.2 In the following algorithms the undirected graphs will be modeled
with digraphs where for each edge (u, v) of the graph, (v, u) is also edge of
the graph, and w(u, v) = w(v, u).

This model simpli�es the forthcoming discussions. In the rest of these
lecture notes, graph means digraph by default.

De�nition 3.3 A loop of a digraph is negative, i� the sum of the weights
of its edges is negative.

Consequence 3.4 Problem 3.1 can be solved, i� there is no negative cycle
available from s.

Note 3.5 Remember that undirected graphs are modeled with digraphs here.
This simpli�cation has a consequence: if an undirected graph contains a neg-
ative edge, it also contains a negative cycle in this model, according to de�-
nition 3.3. And in case of undirected graphs, we can solve the single-source
shortest paths problem (i.e. 3.1), i� there is no negative edge available from
s.

Provided that problem 3.1 can be solved, we consider the result of path-
�nding now. We have two possibilities for each vertex v ∈ G.V \{s}:
- If there is some path form s to v, d(v) is the length of the shortest (i.e.
optimal) path, and π(v) is the parent of vertex v on such a path.
- If there is no path from s to v, d(v) =∞ and π(v) = �.

Considering vertex s, d(s) = 0 and π(s) = � are the appropriate results,
because the optimal path consists of only vertex s.

The shortest path �nding algorithms approximate the optimal paths step-
by-step.

Let us consider a given moment of the running algorithm. Let the shortest
path found form s to v be denoted by s v. Let the length of this path be
denoted by w(s v). Then we have a common invariant of the forthcoming
algorithms solving problem 3.1, and this invariant becomes true when we
initialize the algorithm:
- Provided that we already have found some path from s to v, d(v) = w(s v)
and π(v) is the parent of v 6= s on s v.

16

- If still there is no s v, i.e. still we have not found any path from s to v,
then d(v) =∞ and π(v) = �.

In order to approximate the optimal paths step-by-step, edges (u, v), i.e. u→
v of the graph are considered systematically. Provided that path s u→ v
turns out shorter than s v, s u→ v becomes the new s v. At code
level this means that we perform the following conditional, which is called
relaxation. (Because of the special features of the di�erent algorithms, this
relaxation may contain some additional statements.)

AA
d(v) > d(u) +G.w(u, v)

��

π(v) := u ; d(v) := d(u) +G.w(u, v) SKIP

Many of the single-source shortest paths algorithms have an explicit set of
the vertices to be processed. They repeatedly select and remove a vertex form
this set, then perform relaxation on each edge going out from this vertex. All
these relaxations together are called the expansion of this vertex. Processing
a vertex means its selection + removal + expansion.

3.1 Dijkstra's algorithm

Precondition: In graph G : Gw, ∀(u, v) ∈ G.E: G.w(u, v) ≥ 0, i.e. each
edge of the graph has non-negative weight.

In this case there is no negative cycle. Thus problem 3.1 (the single-source
shortest paths problem) can be solved.

17

�� �Dijkstra(G : Gw ; s : V)

∀v ∈ G.V
d(v) :=∞ ; π(v) := � // distances are still ∞, parents unde�ned

// π(v) = parent of v on s v where d(v) = w(s v)

d(s) := 0 // s is the root of the shortest-path tree

// let Q be a minimum priority queue of G.V \{s} by label values d(v) :

Q : minPrQ(G.V \{s}, d)

u := s // going to calculate shortest paths form s to other vertices

d(u) <∞∧¬Q.isEmpty()

// check, if s u→v is shorter than s v before

∀v : (u, v) ∈ G.E ∧ d(v) > d(u) +G.w(u, v)

π(v) := u ; d(v) := d(u) +G.w(u, v) ; Q.adjust(v)

u := Q.remMin() // s u is optimal now, if it exists

MTDijkstra(n,m) ∈ O((n + m) ∗ lg n). This result can be received similarly
to that of algorithm Prim, because of the striking similarities between the
two algorithms, although they solve completely di�erent problems, and the
interpretations of their results are also totally di�erent. An important tech-
nical di�erence: here we sum up the weights of the edges along a path, but
we have nothing to do with paths there.

mTDijkstra(n,m) ∈ Θ(n), which is realized when s, i.e. the source vertex
has no successor.

Exercise 3.6 Implement Dijkstra's algorithm in case of adjacency matrix
representation of the graph. Represent the priority queue with an unsorted
array. What can we say about asymptotic run time e�ciency (i.e. operational
complexity)? Can we develop it with a more sophisticated representation of
the priority queue?

Exercise 3.7 Implement Dijkstra's algorithm in case of adjacency lists
representation of the graph. Be careful about keeping the theoretical
MTDijkstra(n,m) ∈ O((n + m) ∗ lg n) and mTDijkstra(n,m) ∈ Θ(n). (The
appropriate representation and implementation of the priority queue is the
key.)

We illustrate Dijkstra's algorithm on the next graph where vertex a is
the source node.

18

a

d e

b c

f

1

3
3

1
3

0 2

a � b, 1 ; d, 3 ; e, 3.
b � e, 1 ; f, 3.
c.
d � e, 0.
e � f, 2.

d values of nodes in Q expanded changes of π values
a b c d e f vertex a b c d e f
0 ∞ ∞ ∞ ∞ ∞ : d � � � � � �

1 ∞ 3 3 ∞ a : 0 a a a
∞ 3 2 4 b : 1 b b
∞ 2 4 e : 2 e
∞ 4 d : 2
∞ f : 4

0 1 ∞ 2 2 4 result � a � e b b

a

0

→

d

2

e

2

b

1

c

∞

f

4

1

1
3

0

The shortest paths tree in case of s = a. We display also the unavailable
node/nodes with ∞ d value.

Theorem 3.8 When we select vertex u for expansion (�rst with statement
u := s, later with u := Q.remMin()), then we have already found optimal
path to u, provided that d(u) <∞.

Theorem 3.9 If vertex u is selected for expansion and d(u) = ∞, then no
element of Q ∪ {u} is available form s.

Consequence 3.10 While Dijkstra's algorithm selects a vertex with �nite d
value for expansion, we already have the optimal path to this vertex.

If d(u) <∞ for each vertex selected, then the second loop of the algorithm
makes Q empty (with n−1 iterations), and stops when it has found optimal
path to each vertex of the graph.

19

If some time it selects vertex u with d(u) =∞, then no element of Q∪{u}
is available from s. We stop, because d(u) = ∞. Each element of Q ∪ {u}
has ∞ d value and � π value, while the vertices selected earlier are those
available from s. And we have found optimal path to them.

3.2 Single-source shortest paths in DAGs

Precondition: Graph G : Gw is directed, and there is no loop available from
s.

In this case there is no negative cycle available from s, and the single-
source shortest paths problem has solution.

This algorithm checks its precondition. If it is satis�ed, function
DAGshortestPaths() returns �. Otherwise it �nds a directed loop, and it
returns with some node of this loop. Starting from this vertex, and going
through the π labels of the nodes. the loop can be traversed in reversed
direction. �� �DAGshortestPaths(G : Gw ; s : V) : V

S : Stack ; dcg : V := �
topologicalSort(G, s, dcg, S)

AA
dcg = �

��

DAGshPs(G,S) SKIP

return dcg

Procedure topologicalSort() tries to make a topological order of the ver-
tices available from s.

Variable time (which is supposed to be global here) is needed only for
the presentation of the run of the algorithm. Each statement corresponding
to time can be omitted from an implementation. Thus these statements are
put into square brackets in the structograms.�� �topologicalSort(G : G ; s,&dcg : V ; S : Stack)

∀u ∈ G.V
color(u) := white ; π(u) := �

[time := 0] ; DFvisit(G, s, dcg, S)

20

�� �DFvisit(G : G ; u,&dcg : V ; S : Stack)

color(u) := grey ; [d(u) := + + time]

∀v : (u, v) ∈ G.E while dcg = �

AA
color(v) = white

��

π(v) := u

DFvisit(G, v, dcg, S)
AA

color(v) = grey
��

π(v) := u ; dcg := v skip

[f(u) := + + time] ; color(u) := black ; S.push(u)

�� �DAGshPs(G : Gw ; S : Stack)

∀v ∈ G.V
d(v) :=∞ ; π(v) := � // distances are still ∞, parents unde�ned

// π(v) = parent of v on s v where d(v) = w(s v)

s := S.pop()

d(s) := 0 // s is the root of the shortest-path tree

u := s // going to calculate shortest paths form s to other vertices

¬S.isEmpty()

// check, if s u→v is shorter than s v before

∀v : (u, v) ∈ G.E ∧ d(v) > d(u) +G.w(u, v)

π(v) := u ; d(v) := d(u) +G.w(u, v)

u := S.pop() // s u is optimal now

MT (n,m) ∈ Θ(n+m) ∧ mT (n,m) ∈ Θ(n)

Exercise 3.11 When the operational complexity of this algorithm is the
smallest? When it is the greatest? Why?

Theorem 3.12 Provided that there is no loop available from s,
- algorithm DAGshortestPaths() �nds optimal path to the vertices available
form s, and
- for each vertex x unavailable from s, it terminates with d(x) = ∞ and
π(x) = �.

We illustrate the algorithm on the DAG below where s = a. First we sort
topologically the subgraph available from s. Then � after the usual initial-
ization �, the vertices are expanded according to their topological order.

21

a

1/10

→

d

4/5

e

3/8

b

2/9

c

f

6/7

1

3
3

1
3

1

3

0 2

a → b, 1 ; d, 3 ; e, 3.
b → e, 1 ; f, 3.
c → b, 1 ; f, 3.
e → d, 0 ; f, 2.
S = 〈 a, b, e, f, d 〉

changes of d values expanded changes of π labels
a b c d e f vertex a b c d e f
0 ∞ ∞ ∞ ∞ ∞ : d � � � � � �

1 3 3 a : 0 a a a
2 4 b : 1 b b

2 e : 2 e
f : 4
d : 2

0 1 ∞ 2 2 4 result � a � e b b

a

0

→

d

2

e

2

b

1

c

∞

f

4

1

1
3

0

The shortest paths tree in case of s = a. We display also the unavailable
node/nodes with ∞ d value.

Exercise 3.13 Implement the DAG single source shortest paths algorithm
in case of adjacency matrix representation of the graph. What can you say
about the asymptotic run time e�ciency (i.e. operational complexity) of this
implementation?

Exercise 3.14 Implement the DAG single source shortest paths algorithm
in case of adjacency lists representation of the graph. What can you say
about the asymptotic run time e�ciency (i.e. operational complexity) of this
implementation?

22

3.3 Queue-based Bellman-Ford algorithm

Precondition: There is no negative cycle available from s. (In case of
directed graph there can be negative edges, i.e. edges with negative weights.)

The Queue-based Bellman-Ford algorithm (QBF) has unknown author
(with neither theoretical analysis nor checking negative cycles). According
to our best knowledge it was analyzed and published by professor Robert
Endre Tarjan. He calls it Breadth-�rst Scanning in [8].1

QBF is similar to breadth-�rst search but the length of a path is calculated as
the sum of the weights of the edges along the path. First it puts only s into
the queue. Similarly to BFS, after the usual initialization, in the main loop,
it repeatedly removes the �rst element of the queue, and expands it. Unlike
BFS, QBF makes relaxation for each neighbor of this actual node. Provided
that through the actual node, QBF �nds a shorter path to a neighbor of it,
QBF modi�es the d and π labels of this neighbor accordingly. If this neighbor
is not in the queue, QBF adds it to the end of the queue.�� �QueueBasedBellmanFord(G : Gw ; s : V)

∀u ∈ G.V
d(u) :=∞ ; π(u) := � ; inQ(u) := false

d(s) := 0

Q : Queue ; Q.add(s) ; [inQ(s) := true]

¬Q.isEmpty()

u := Q.rem() ; inQ(u) := false

∀v : (u, v) ∈ G.E ∧ d(v) > d(u) +G.w(u, v)

d(v) := d(u) +G.w(u, v) ; π(v) := u

AA
¬inQ(v)

��

Q.add(v)

inQ(v) := true
SKIP

Because there is no operation v∈Q for type Queue, we could introduce new
type Transparent_queue. We prefer introducing logic label inQ(v) which is
true ⇐⇒ v ∈ Q. (If we index the vertices from 1 to n, at implementation

1Tarjan received the Turing Award in 1986. The citation for the award states that it

was: �For fundamental achievements in the design and analysis of algorithms and data

structures.� He has Hungarian roots.

23

level labels inQ(v) can be represented by array inQ/1 : B[n]. Undoubtedly
this array could be part of the implementation of type Transparent_queue.)

Provided that there is no negative cycle available from s, this simple version

of QBF computes a path s
opt
 v for each vertex v available from s, and it

stops with empty queue. If there is some negative cycle available from s, the
expansions go around along such a negative cycle, and the algorithm gets
into in�nite loop.

3.3.1 Handling negative cycles

In order to handle this later case, Tarjan de�ned passes of QBF (see 3.3.5),
and he proved that the algorithm stops in n passes, i� there is no negative
cycle available from s. He also elaborated other criteria [8]. Here we use a
relatively simple, easy-to-check criterion of the author of these lecture notes
[10].

We introduce label e(v) for each vertex v of the graph where e(v) is the
number of edges along s v. We can prove that there is no negative cycle
available from s ⇐⇒ during the run of QBF, for each vertex v accessed by
its main loop, e(v) < n. (See [10] for the details.)

The statement above is clearly equivalent to the following one. There
is some negative cycle available from s ⇐⇒ during the run of QBF, for
some vertex v accessed by its main loop, e(v) ≥ n becomes true. In this
case vertex v is part of some negative cycle which can be identi�ed by the π
labels of the vertices of this cycle, or starting from vertex v, the π labels of
the vertices lead us into such a negative cycle. Obviously, the whole process
of identifying this negative cycle needs maximum n steps where n is the
number of the vertices of the graph.

Hereinafter, for each vertex v reached from s, we record label e(v) besides
labels d(v) and π(v).

When we make a relaxation through edge (u, v), and we �nd that e(v) ≥
n, then we identify some vertex of some negative cycle according to the
previous method, and our version of algorithm QBF returns with this vertex.

Provided that during the run of QBF, after each relaxation e(v) < n, we
stop with empty queue and return with �.

It can be proved that our version of QBF stops in O(n ∗m) time in both
cases (where n is the number of vertices and m is the number of edges of the
graph).

24

3.3.2 Illustration of �nding optimal paths

Here we �nd a path s
opt
 v to each vertex v available from s.

a→

c d

b
3

1 −2−1

3

a → b, 3 ; c, 1.
b → d, −2.
c → b, −1.
d → c, 3.

changes of d; e expanded Q : changes of π
a b c d vertex Queue a b c d

0; 0 ∞ ∞ ∞ : d; e 〈 a 〉 � � � �
3; 1 1; 1 a: 0; 0 〈 b, c 〉 a a

1; 2 b: 3; 1 〈 c, d 〉 b
0; 2 c: 1; 1 〈 d, b 〉 c

d: 1; 2 〈 b 〉
−2; 3 b: 0; 2 〈 d 〉 b

d: −2; 3 〈 〉
0 0 1 −2 �nal d and π values � c a b

a

0

→

c

1

d

-2

b

0

1 −2−1
The shortest paths tree where
s = a. We indicated only the d
values of the nodes.

25

3.3.3 Illustration of handling negative cycles

a→

c d

b
3

1 −2−1

2

a → b, 3 ; c, 1.
b → d, −2.
c → b, −1.
d → c, 2.

changes of d; e expanded Q : changes of π
a b c d vertex Queue a b c d

0; 0 ∞ ∞ ∞ : d; e 〈 a 〉 � � � �
3; 1 1; 1 a: 0; 0 〈 b, c 〉 a a

1; 2 b: 3; 1 〈 c, d 〉 b
0; 2 c: 1; 1 〈 d, b 〉 c

d: 1; 2 〈 b 〉
−2; 3 b: 0; 2 〈 d 〉 b

0; 4 d: −2; 3 〈 〉 d

a→

c d

b

−2−1

2

We stop here because e(c) = 4 = n, which
means that there is a negative cycle among
the ancestors of vertex �c�. Going back ac-
cording to the π values we �nd the negative
cycle.

3.3.4 Our version of Queue-based Bellman-Ford algorithm (QBF)

Here we give the structograms of the our version of QBF. Do not forget that
when we have modi�ed labels d(v), π(v) and e(v) of vertex v, we add v to
the end of the queue ⇐⇒ e(v) < n, and v is not currently in the queue.

If we know in advance that there is no negative cycle available from s, then
those parts of the subsequent functions can be omitted which correspond to
labels e(v) or negative cycles (see the previous version of QBF).

26

�� �QueueBasedBellmanFord(G : Gw ; s : V) : V

∀u ∈ G.V
d(u) :=∞ ; π(u) := � ; inQ(u) := false

d(s) := 0 ; e(s) := 0

Q : Queue ; Q.add(s) ; [inQ(s) := true]

¬Q.isEmpty()

u := Q.rem() ; inQ(u) := false

∀v : (u, v) ∈ G.E ∧ d(v) > d(u) +G.w(u, v)

d(v) := d(u) +G.w(u, v) ; π(v) := u

e(v) := e(u) + 1

AA
e(v) < n

��

AA
¬inQ(v)

��

Q.add(v)

inQ(v) := true
SKIP

return FindNegCycle(G.V, v)
// negative cycle among
// the ancestors of v

return � // Shortest-path tree computed

�� �FindNegCycle(V : V{} ; v : V) : V

// Find a vertex of a negative cycle among the ancestors of v

∀u ∈ V
B(u) := false

B(v) := true ; u := π(v)

¬B(u)

B(u) := true ; u := π(u)

return u // u is a vertex of a negative cycle

3.3.5 Analyzing QBF

We analyze only those cases when there is no negative cycle available from
s.

In order to prove the correctness of QBF and to analyze its e�ciency it
is fundamental to divide its run into passes.

De�nition 3.15 Recursive de�nition of passes:
� Pass 0: processing the source vertex (s).
� Pass (i+1): processing the vertices in the queue at the end of pass i.

27

For example, let us consider the illustration of our algorithm together with

pass counting. (Illustration of �nding paths s
opt
 v.)

a→

c d

b
3

1 −2−1

3

a → b, 3 ; c, 1.
b → d, −2.
c → b, −1.
d → c, 3.

changes of d; e expanded Q : changes of π
a b c d vertex Queue a b c d Pass

0; 0 ∞ ∞ ∞ : d; e 〈 a 〉 � � � �
3; 1 1; 1 a: 0; 0 〈 b, c 〉 a a 0.

1; 2 b: 3; 1 〈 c, d 〉 b 1.
0; 2 c: 1; 1 〈 d, b 〉 c 1.

d: 1; 2 〈 b 〉 2.
−2; 3 b: 0; 2 〈 d 〉 b 2.

d: −2; 3 〈 〉 3.
0 0 1 −2 �nal d and π values � c a b -

Property 3.16 For each vertex u of the graph, if there is no negative cycle

available from s, and there is some path s
opt
 u consisting of k edges, then by

the beginning of pass k, d(u) = w(s
opt
 u), and 〈s, . . . , π2(u), π(u), u〉 is an

optimal path.

Proof. Use mathematical induction according to k. �

Lemma 3.17 If there is no negative cycle available from s, then for each

vertex u available from s, there is some path s
opt
 u consisting of maximum

n−1 edges.

Proof. In this case the paths containing no cycle are not longer then those
containing cycle. A path containing no cycle has at most n−1 edges. Con-
sequently there are �nite number of paths containing no cycle. As a result,
for each vertex u, there are �nite number of paths from s to u which contain
no cycle. Therefore there is optimal one among them. �

Theorem 3.18 (Consequence of the Property and Lemma above)
If there is no negative cycle available from s ⇒ for each vertex u available

28

from s, there is some path s
opt
 u computed by the beginning of pass n−1 ⇒

by the end of pass n−1 the queue becomes empty and the algortihm stops in
O(n ∗m) running time, i.e.

MT (n,m) ∈ O(n ∗m).

This theoretical time complexity does not guarantee e�ciency. Fortunately
practical tests support that in case of large, randomly generated sparse
graphs (m ∈ O(n)) with positive edge-weights where the vertices of the
graph are available from s, the average running time of QBF is statistically
Θ(n), provided that we represent the graph with adjacency lists. And time
complexity Θ(n) is the theoretical minimum. (Most of the networks can be
modeled with large, sparse graphs. It is not accidental that this simple but
general algorithm is often used for �nding optimal paths in networks.)

29

4 All-Pairs Shortest Paths ([3] 25)

In this chapter, we consider how to compute the transitive closure of a �nite
binary relation. Next we introduce algorithm Floyd-Warshall that searches
for shortest paths between each pairs of vertices of a weighted graph. Both
algorithms

• are based on the adjacency representation of graphs,

• have computation complexity Θ(n3),

• are classical examples of dynamic programming [3].

Floyd's Floyd-Warshall algorithm solves more general problem than the Tran-
sitive Closure algorithm of Roy and Warshall, and it is later than the other
one.

Before going to the details of these algorithms, we shortly introduce dy-
namic programming.

4.1 Dynamic programming

Dynamic programming is similar to the divide-and-conquer method. It also
has some trivial base case or cases which can be solved directly. It also di-
vides more complex or larger problems into smaller subproblems, solves these
subproblems and combines their solutions in order to solve the original prob-
lem. The main di�erence is that the divide-and-conquer method solves the
subproblems independently from each other, like in case of merge sort. Thus
it is e�ective when the subpromlems and subsubproblems etc. are typically
independent from each other. It becomes ine�cient when a larger problem
has common subproblems and subsubproblems recursively. In dynamic pro-
gramming, we solve each subproblem only once, and remember its solution
whenever we meet that subproblem again.

For example, consider the Fibonacci function.
F : N→ N
Fn = Fn−1 + Fn−2 if n > 1
F1 = 1 and F0 = 0.

Provided that n > 1, can divide computing Fn into computing Fn−1 and
Fn−2, and conquer with adding the results of the two recursive calls. As a
result, for example
F9 = F8 + F7 = (F7 + F6) + F7 = ([F6 + F5] + F6) + (F6 + F5) =
([{F5 + F4}+ F5] + {F5 + F4}) + ({F5 + F4}+ F5) = . . .

30

Thus F9 and F8 are computed only once, F7 is computed twice, F6 is
computed 3 times, F5 is computed 5 times, and so on. In general, Fn−k is
computed Fk+1 times, and it follows that computing Fn needs exponential
time of n.

On the contrary Fn can be computed in linear time, if we start with
computing with F2, F3, F4 in this order, and so on, always remembering the
last two partial results. This is a trivial case of dynamic programming. In
the subsequent two algorithms we use it in a much more complex way, and
the partial results will be stored in matrices.

4.2 Transitive closure of a directed graph (TC)

In this subsection, for each pair of vertices (u, v) of a network/graph, we want
to determine whether there is any path form u to v or not. We are interested
neither in the path nor in its length. For this purpose we introduce the
following notion.

De�nition 4.1 Given graph G = (V,E), its transitive closure is relation
T ⊆ V × V where

(u, v) ∈ T ⇐⇒ there is some path from vertex u to vertex v in graph G.

Notation 4.2 B = {0; 1}

Provided that the vertices of a graph can be identi�ed by indices 1..n, we
can represent the graph with adjacency matrix A/1 : B[n, n]. And we can
represent its transitive closure with matrix T/1 : B[n, n] where

T [i, j] ⇐⇒ there is some path from vertex i to vertex j in the graph
represented with matrix A.

In order to compute matrix T , let us de�ne matrix sequence
〈T (0), T (1), T (n)〉 where T (n) = T .

Notation 4.3 i
k
 j is a path from vertex i to vertex j where the indices of

the vertices between i and j are ≤ k (i > k and j > k is possible, where
i, j ∈ 1..n and k ∈ 0..n).

De�nition 4.4 T
(k)
ij ⇐⇒ ∃ i k

 j (k ∈ 0..n ∧ i, j ∈ 1..n)

Property 4.5 (Recursive relation among the T matrices.)

T
(0)
ij = A[i, j] ∨ (i = j) (i, j ∈ 1..n)

T
(k)
ij = T

(k−1)
ij ∨ T (k−1)

ik ∧ T (k−1)
kj (k ∈ 1..n ∧ i, j ∈ 1..n)

31

Consequence 4.6
T

(k)
ik = T

(k−1)
ik ∧ T

(k)
kj = T

(k−1)
kj (k ∈ 1..n ∧ i, j ∈ 1..n)

This means that column k and row k of matrix T (k) are the same as the
appropriate column and row of matrix T (k−1). (k ∈ 1..n)

Let us notice that a single matrix T is enough for the whole computation,
because T

(k)
ij depends only on T

(k−1)
ij , T

(k−1)
ik and T

(k−1)
kj , where T

(k)
ik = T

(k−1)
ik ∧

T
(k)
kj = T

(k−1)
kj �� �TransitiveClosure(A/1, T/1 : B[n, n])

i := 1 to n

j := 1 to n

T [i, j] := A[i, j]

T [i, i] := 1

k := 1 to n

i := 1 to n

j := 1 to n

T [i, j] := T [i, j] ∨ (T [i, k] ∧ T [k, j])

Clearly T (n) ∈ Θ(n3) for procedure TransitiveClosure.

4.2.1 Computing transitive closure with breadth-�rst search

When BFS has been completed with s = i, the black vertices are those
available from vertex i, and the white vertices are those unavailable from
vertex i.

As a result, we can simplify BFS. We do not count d and π values just a
boolean label nonwhite(j) for each vertex j. Then T [i, j] ⇐⇒ nonwhite(j)
where j ∈ 1..n. And this is row i of matrix T where i ∈ 1..n. Thus
MT (n,m) ∈ Θ(n+m) for a single row of T .

Thus the whole matrix is computed with Θ(n∗(n+m)) maximal running
time. This is Θ(n2) on sparse graphs which is asymptotically better than
algorithm TC.

But on dense graphs, this is asymptotically Θ(n3) which means practically
longer running time than that of the extremely simple TC algorithm.

32

4.3 The Floyd-Warshall algorithm (FW)

Notation 4.7 R∞ = R ∪ {∞}

Given a weighted graph with adjacency matrix A/1 : R∞[n, n]. FW
computes matrix D/1 : R∞[n, n] where D[i, j] is the length of an optimal
path from vertex i to vertex j; or D[i, j] = ∞, if there is no path from i to
j. FW also computes matrix π/1 : N[n, n] where π[i, j] is the parent node of
vertex j on an optimal path from i to j, if i 6= j and there is some path from
i to j. Otherwise π[i, j] = 0.

Precondition: There is no negative cycle in the graph. (This condition is
checked by the algorithm.)
Task: FW constructs the following sequence of matrix pairs:
〈(D(0), π(0)), (D(1), π(1)), . . . , (D(n), π(n))〉 where D(0) = A, π(0) and matrix
pairs (D(k), π(k)) [k ∈ 1..n] can be constructed according to their properties
which we are going to present, D = D(n) ∧ π = π(n).

Notation 4.8 i
k

opt
j (k ∈ 1..n) is a shortest path from vertex i to vertex j

with two constraints:

• On this path, the indices of the vertices between vertex i and vertex j
are ≤ k.

• This path contains no cycle.

Note 4.9

• If i = j then i
k

opt
j = 〈i〉.

• If i 6= j then ∃ i 0

opt
j = 〈i, j〉 ⇐⇒ (i, j) is an edge of the graph.

• If i 6= j ∧ k ∈ 1..n, there are two possibilities about path i
k

opt
j :

i
k

opt
j = i

k−1

opt
j ∨ i

k

opt
j = i

k−1

opt
k
k−1

opt
j.

De�nition 4.10 D
(k)
ij =

 w(i
k

opt
j) if i

k
 j exists

∞ if i
k
 j does not exist

33

De�nition 4.11

π
(k)
ij =

 the parent of vertex j on a path i
k

opt
j , if i 6= j ∧ i k

 j exists

0 if i = j ∨ i k
 j does not exist

Property 4.12 Matrix D(0) is equal to adjacency matrix A of the graph,
and matrix D(n) is equal to matrix D to be computed.

Property 4.13

π
(0)
ij =

{
i if i 6= j ∧ (i, j) is an edge of the graph
0 if i = j ∨ (i, j) is not edge of the graph

And matrix π(n) is equal to matrix π to be computed.

Property 4.14 based on note 4.9, provided that k ∈ 1..n:
If D

(k−1)
ij > D

(k−1)
ik +D

(k−1)
kj

then D
(k)
ij = D

(k−1)
ik +D

(k−1)
kj ∧ π(k)

ij = π
(k−1)
kj

else D
(k)
ij = D

(k−1)
ij ∧ π(k)

ij = π
(k−1)
ij

Consequence 4.15 Provided that k ∈ 1..n:
D

(k)
ik = D

(k−1)
ik ∧ π(k)

ik = π
(k−1)
ik ∧ D

(k)
kj = D

(k−1)
kj ∧ π(k)

kj = π
(k−1)
kj

Note 4.16 about the correctness of function FloydWarshall(A,D, π) on Fig-
ure 9. (We suppose here that the precondition is satis�ed, i.e. there is no
negative loop in the graph.) We prove that D = D(n) ∧ π = π(n) at the end
of the function, where D and π are the matrices of the function, while D(n)

and π(n) are the �nal theoretical matrices de�ned in 4.10 and 4.11.
Let us consider matrices D, π of the function and theoretical matrices

D(k), π(k) where k ∈ 1..n.
The �rst double for-loop above initializes the matrices of the function as

D = D(0) ∧ π = π(0).
A single iteration of the main loop (k := 1 to n) computes the matrix

pair (D(k), π(k)) from (D(k−1), π(k−1)). And this computation is done in the
matrix pair (D, π) of the function in the following way.

Let us suppose that we are at the beginning of iteration k of the main loop
where D = D(k−1) ∧ π = π(k−1). (We have seen that it is true for k = 1.)

Now let us suppose that we arrive at condition D[i, j] > D[i, k] + D[k, j]
where i, j ∈ 1..n, and for the earlier iterations i = i′, j = j′ of the inner,
double loop D[i′, j′] = D

(k)
i′j′ ∧ π[i′, j′] = π

(k)
i′j′ has been ensured.

Clearly D[i, j] = D
(k−1)
ij ∧ π[i, j] = π

(k−1)
ij , because D[i, j] and π[i, j] has

not been updated yet. And D[i, k] = D
(k−1)
ik = D

(k)
ik ∧ D[k, j] = D

(k−1)
kj = D

(k)
kj

34

�� �FloydWarshall(A/1, D/1 : R∞[n, n] ; π/1 : N[n, n]) : N

i := 1 to n

j := 1 to n

D[i, j] := A[i, j]

AA
i 6= j ∧ A[i, j] <∞

��

π[i, j] := i π[i, j] := 0

k := 1 to n

i := 1 to n

j := 1 to n

AA
D[i, j] > D[i, k] +D[k, j]

��

D[i, j] := D[i, k] +D[k, j]

π[i, j] := π[k, j]

AA
i = j ∧D[i, i] < 0

��

return i // i is in negative cycle SKIP

SKIP

return 0 // shortest-path trees computed

Figure 9: Algorithm FW � MT (n) ∈ Θ(n3) ∧ mT (n) ∈ Θ(n2)

∧ π[k, j] = π
(k−1)
kj = π

(k)
kj according to Consequence 4.15. Performing this

conditional statement D[i, j] = D
(k)
ij ∧π[i, j] = π

(k)
ij becomes true according to

Property 4.14. (Clearly, D[i, i] < 0 becomes never true if there is no negative
cycle in the graph.)

Thus performing all the iterations of the inner double loop
D[i, j] = D

(k)
ij ∧ π[i, j] = π

(k)
ij becomes true for all i, j ∈ 1..n. This means

that D = D(k) ∧ π = π(k) at the end of the actual iteration of the main loop.
Therefore D = D(k−1) ∧ π = π(k−1) will be true at the beginning of the next
iteration for k.

Consequently (by mathematical induction), D = D(n) ∧ π = π(n) will be
true after the last iteration of the main loop, where k = n.

Note 4.17 If a negative value appears in the main diagonal of matrix D of
the following program, then we have found a negative cycle. (Let the reader
argue about this statement.)

Note 4.18 As a result of algorithm Transitive Closure,
T [i, j] ⇐⇒ D[i, j] <∞ when algorithm FW has been �nished (i, j ∈ 1..n).

35

Practically speaking, algorithm Transitive Closure solves its own task
more e�ciently than algorithm FW its own one, because of the simpler bodies
of the loops.

4.3.1 Solving the All-Pairs Shortest Paths problem with the
Single-Source Shortest Paths algorithms

Let us notice that the solution of the Floyd-Warshall (FW) algorithm, namely
the ith rows of matrices D and π computed with it supply a solution of the
Single-Source Shortest Paths problem for s = i, provided that there is no
negative loop in the input graph.

Similarly, solving the Single-Source Shortest Paths problem for each s ∈
1..n, we also receive a solution of the All-Pairs Shortest Paths problem.

Below we consider some cases.

Provided that our graph is a DAG, we can call the DAG Shortest Paths
algorithm for each s ∈ 1..n, and a solution of the All-Pairs Shortest Paths
problem can be computed with worst-case time complexity MT (n,m) ∈
Θ(n ∗ (n+m)).

For sparse graphs, where m ∈ O(n), Θ(n ∗ (n + m)) = Θ(n2), thus
MT (n,m) ∈ Θ(n2). This means that on sparse graphs, performing n times
the DAG Shortest Paths algorithm is faster by an order of magnitude than
performing the FW algorithm which runs in MT (n),mT (n) ∈ Θ(n3) on
DAGs.

For dense graphs, where m ∈ Θ(n2), Θ(n ∗ (n + m)) = Θ(n3), thus
MT (n,m) ∈ Θ(n3) which may cause slower run than that of FW, because
of the higher constants hidden in the Θ-notation.

We receive similar results, if we apply Breadth-First Search versus FW
to unweighted graphs.

Provided that our graph has no negative edge, we can call the Dijkstra al-
gorithm for each s ∈ 1..n, and a solution of the All-Pairs Shortest Paths
problem can be computed with worst-case time complexity MT (n,m) ∈
O(n ∗ (n+m) ∗ log n).

For sparse graphs, where m ∈ O(n), O(n∗(n+m)∗ log n) = O(n2∗ log n),
thus MT (n,m) ∈ O(n2 ∗ log n). This means that on sparse graphs, perform-
ing n times the Dijkstra algorithm is also faster by an order of magnitude
than performing the FW algorithm which runs in MT (n),mT (n) ∈ Θ(n3)
on graphs with non-negative edges.

For dense graphs, where m ∈ Θ(n2), O(n∗(n+m)∗ log n) = O(n3∗ log n),
thusMT (n,m) ∈ O(n3∗ log n) which may cause slower run than that of FW,
because n3 ∗ log n is asymptotically greater than n3.

36

If we know only that the input graph contains no negative cycle, performing
QBF for each s ∈ 1..n, MT (n,m) ∈ O(n ∗ n ∗ m) = O(n2 ∗ m). Provided
that our graph is not extremely sparse, i.e. we can suppose that m ∈ Ω(n),
the upper estimate of the asymptotic running time of n∗QBF is never bet-
ter than the asymptotic running time of the FW algorithm which runs in
MT (n),mT (n) ∈ Θ(n3) on graphs with no negative cycle.

37

