
Algorithms and Data Structures II.

Lecture Notes:

String Matching, Data Compression

Ásványi Tibor � asvanyi@inf.elte.hu

August 27, 2022

Contents

1 String Matching ([1] 32) 4
1.1 The naive string-matching (Brute-Force) algorithm 4
1.2 Quick Search . 7
1.3 String Matching in Linear time

(Knuth-Morris-Pratt, i.e. KMP algorithm) 9

2

References

[1] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.,
Introduction to Algorithms (Fourth Edititon),
The MIT Press, 2022

[2] Cormen, Thomas H., Algorithms Unlocked, The MIT Press, 2013.

[3] Ásványi, Tibor Algorithms and Data Structures I. Lecture Notes,
http://aszt.inf.elte.hu/~asvanyi/ds/AlgDs1/, 2022

3

1 String Matching ([1] 32)

Given alphabet Σ = {σ1, σ2, . . . , σd} (1 ≤ d < ∞ integer constant), text
T : Σ[n], pattern P : Σ[m], we search for all the occurrences of P [0 . .m) in
T [0 . . n), provided that 0 < m ≤ n. (These symbols will be used in this way
in this chapter.) The elements of the alphabet will be called letters.

De�nition 1.1
s ∈ 0 . . (n−m) is a valid shift of P on T , i� T [s . . s+m) = P [0 . .m).

We will compute the set of valid shifts of P on T , i.e. set
S = { s ∈ 0 . . (n−m) | T [s . . s+m) = P [0 . .m) }.

1.1 The naive string-matching (Brute-Force) algorithm

As an introduction, consider the following example. We search for pattern
P [0 . . 4) = BABA in text T [0 . . 11) = ABABBABABAB. (Notation: B:
letter B has been matched successfully against the appropriate letter of the
text; ��B: it has been matched unsuccessfully.)

i = 0 1 2 3 4 5 6 7 8 9 10
T [i]= A B A B B A B A B A B

��B A B A
B A B ��A

��B A B A
B ��A B A

s=4 B A B A

��B A B A
s=6 B A B A

��B A B A

S = { 4; 6 }

In general, we have a window, i.e T [s . . s+m) on the text. The size of
the window is equal to the length of the pattern. We perform the following
algorithm.

(0) In the beginning, the window is at the beginning of the text, i.e. s = 0,
and the set S of valid shifts is empty.

(1) We check, whether we see the pattern, i.e. P [0 . .m) in the window.

(2) If so, we add the actual shift s of the window to the set S of valid shifts.

4

(3) We perform s := s+ 1, i.e., we slide the window to the right by one.

(4) If the window is still in the text, we go to step (1).

(5) We return the set S of valid shifts.�� �BruteForce(T : Σ[n] ; P : Σ[m] ; S : N{})

S := {}
s := 0 to n−m

AA
match(T, s, P) // T [s . . s+m) = P [0 . .m)

��

S := S ∪ {s} SKIP�� �match(T : Σ[] ; s : N ; P : Σ[m]) : B

// check, whether T [s . . s+m) = P [0 . .m)

j := 0

j < m ∧ T [s+ j] = P [j]

j ++

return j ≥ m

Property 1.2 For the naive string-matching algorithm,
MT (n,m) ∈ Θ((n−m+1) ∗m) ∧ mT (n,m) ∈ Θ(n−m+1)

Proof. First we take some notes on the number of loop iterations + subrou-
tine calls, to prove both statements.
� The main loop of the Brute-Force algorithm iterates n−m+1 times.
� The loop of equality test T [s . . s+m) = P [0 . .m) iterates 0 to m times.
� Considering all the iterations of the Brute-Force algorithm, this equality
test makes (n−m+1) ∗m loop iterations in the worst case (when P [0 . .m)
occurs �everywhere� in T [0 . . n), i.e., both of them have the form �σσ . . . σ�),
and no iteration in the best case (when P [0] /∈ T [0 . . n)).
� There are 1 + (n−m+1) = n−m+2 subroutine calls.

Based on these notes, �rst we prove that MT (n,m) ∈ Θ((n−m+1) ∗m).
� In the worst case, there are (n−m+1)+(n−m+1)∗m+(n−m+2) steps, i.e. loop
iterations + subroutine calls, which meansMT (n,m) = (n−m+1)∗(m+2)+1
steps altogether, where n ≥ m.
� Thus MT (n,m) > (n−m+1)∗m. Therefore MT (n,m) ∈ Ω((n−m+1)∗m).
� In order to prove MT (n,m) ∈ O((n−m+1)∗m), we can solve the following

5

inequality.
(n−m+1) ∗ (m+ 2) + 1 ≤ 2 ∗ (n−m+1) ∗m
(n−m+1) ∗m+ (n−m+1) ∗ 2 + 1 ≤ 2 ∗ (n−m+1) ∗m
(n−m+1) ∗ 2 + 1 ≤ (n−m+1) ∗m
1 ≤ (n−m+1) ∗ (m− 2)
And this is true ifm ≥ 3. (In this case, m−2 ≥ 1. Thus (n−m+1)∗(m−2) ≥
(n−m+1) ∗ 1 ≥ 1 because n ≥ m in general in this topic.)

Finally we prove that mT (n,m) ∈ Θ(n−m+1).
� In the best case, there are (n−m+1)+(n−m+2) steps, i.e. loop iterations +
subroutine calls, which means mT (n,m) = 2∗ (n−m+1)+1 steps altogether,
where n ≥ m.
� Thus mT (n,m) > (n−m+1). Consequently mT (n,m) ∈ Ω(n−m+1).
� In order to prove mT (n,m) ∈ O(n−m+1), we can solve the following
inequality.
2 ∗ (n−m+1) + 1 ≤ 3 ∗ (n−m+1)
1 ≤ n−m+1
0 ≤ n−m
m ≤ n which is true in general in this topic. □

Property 1.3 Provided that on a class of pattern matching problems there is
some constant c ∈ (0; 1) so that m ≤ c ∗ n, we have the following asymptotic
e�ciency for the naive algorithm above.

MT (n,m) ∈ Θ(n ∗m) ∧ mT (n,m) ∈ Θ(n)

Proof. 1∗n ≥ n−m+1 > n−c∗n = (1−c)∗n where 1−c ∈ (0; 1) constant.
Based on the de�nition of Θ(·), n−m+1 ∈ Θ(n).
Therefore (n−m+1) ∗m ∈ Θ(n ∗m).
Considering Property 1.2 and the transitivity of relation · ∈ Θ(·), we have
0 < c < 1 ∧m ≤ c ∗ n ⇒ mT (n,m) ∈ Θ(n) ∧MT (n,m) ∈ Θ(n ∗m). □

Property 1.4 Provided that on a class of pattern matching problems there
are some constants 0 < ε ≤ c < 1 so that ε ∗ n ≤ m ≤ c ∗ n, we have the
following worst-case asymptotic e�ciency for the naive algorithm above.

MT (n,m) ∈ Θ(n2)

Proof. Clearly ε ∗ n ∗ n ≤ n ∗m ≤ n ∗ n. Thus n ∗m ∈ Θ(n2). Considering
MT (n,m) ∈ Θ(n ∗ m) from Property 1.3, and the transitivity of relation
· ∈ Θ(·), we have MT (n,m) ∈ Θ(n2) □

6

1.2 Quick Search

Quick Search is a simpli�ed version of the Boyer-Moore algorithm. Boyer-
Moore and its variants are considered extremely e�cient string-matching
algorithms in usual applications. Quick Search (or some other variant of
Boyer-Moore) is often implemented in text editors for the search and substi-
tute commands.

In Quick Search, similarly to the naive string-matching algorithm, we
have a window (T [s . . s+m)) with the size of the pattern (P [0 . .m)). We
start with s = 0, i.e., we start with the window at the beginning of the text,
and we make the T [s . . s+m) = P [0 . .m) comparisons repeatedly, i.e., we
check repeatedly whether we see the pattern in the window. Between two
comparisons/checks we slide the window to the right. The naive method
always slides the window by one, i.e., it increases the actual shift of the
window by one. The speedup of Quick Search (and of many other e�cient
string-matching algorithms) comes from a typically greater increase of shift
s. However, we must ensure that while sliding the window to right, we do
not jump over any valid shift, i.e., we �nd each substring of T [0 . . n) which
matches P [0 . .m).

In these e�cient string-matching algorithms, we typically make some
preparations before we start the actual search: Based (only) on the pat-
tern P [0 . .m), we generate a table. And from this table, after a successful
or unsuccessful matching, we can determine in Θ(1) time, how to go on.

In the case of Quick Search, in this preparation phase, we consider each
element of the alphabet Σ. We add a label shift(σ) ∈ 1 . .m+1 to each
σ ∈ Σ.

Let us suppose that T [s . . s+m) (the window) has just been matched
against P [0 . .m); over := s +m; σ := T [over]. This means that T [over] is
just over the actual window. Then the shift(σ) value shows how much the
window should be moved (to the right) above the text so that we have some
chance to see the pattern through the window. To decide about the chance,
we consider only this σ = T [over] character of the text.

We have two cases.

1. Provided that σ ∈ P [0 . .m), shift(σ) ∈ 1 . .m shows how much the
window should be moved above the text, so that the old T [over] can
be seen as the rightmost occurrence of σ in P [0 . .m). This rightmost
occurrence of σ in P [0 . .m) corresponds to the smallest movement of
the window. (The other occurrences of σ in P [0 . .m) corresponds to
bigger movements of the window.)

7

2. Provided that σ /∈ P [0 . .m), shift(σ) = m+1, i.e., the window jumps
over this σ character of the text. (With a smaller movement of the
window, we have no chance to see the pattern through it.)

For example, let the alphabet be Σ = {A,B,C,D}, and let the pattern be
P [0 . . 4) = CADA. In the following examples, xxxx shows the window's po-
sition before sliding it to the right, and the pattern CADA displays the
window's position after sliding it to the right.

Text: ...xxxxA......xxxxB......xxxxC......xxxxD...

Pattern: CADA CADA CADA CADA

The appropriate shift values are given in the following table.

σ A B C D
shift(σ) 1 5 4 2

�� �initShift(P : Σ[m])

∀σ ∈ Σ

shift(σ) := m+ 1

j := 0 to m−1

shift(P [j]) := m− j

Considering the size of the alphabet as a constant, we receive
TinitShift(m) ∈ Θ(m).

With the previous pattern P [0 . . 4) = CADA, the illustration
of initShift() and that of Quick Search follows.

σ A B C D
initial shift(σ) 5 5 5 5

C 4
A 3
D 2
A 1

�nal shift(σ) 1 5 4 2

8

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
T [i]= A D A B A B C A D A B C A B A D A C A D A D A

��C A D A

��C A D A
s = 6 C A D A

C A ��D A

��C A D A
s = 17 C A D A

��C A D A

S = { 6; 17 }�� �QuickSearch(T : Σ[n] ; P : Σ[m] ; S : N{})

initShift(P) ; S := {} ; s := 0

s+m ≤ n

AA
match(T, s, P) // T [s . . s+m) = P [0 . .m)

��

S := S ∪ {s} SKIP

AA
s+m < n

��

s+= shift(T [s+m]) break

mT (n,m) ∈ Θ
(

n
m+1

+m
)

(e.g. if T [0 . . n) and P [0 . .m) are disjunct)
MT (n,m) ∈ Θ((n−m+ 1) ∗m) (e.g. if T = σσ . . . σ és P = σ . . . σ)

The best-case performance of Quick Search is an order of magnitude better
than that of the naive string-matching algorithm. The worst-case perfor-
mance is a bit worse than that of Brute-Force because of the running time
of initShift(P), although this does not in�uence the asymptotic measure.

Fortunately, according to experimental studies, the average performance
is much closer to the best case than to the worst case. As a result, in many
practical applications, Quick Search is one of the best choices. However, if we
want to optimize for the worst case, we need another algorithm, for example,
Knuth-Morris-Pratt.

1.3 String Matching in Linear time
(Knuth-Morris-Pratt, i.e. KMP algorithm)

As an introduction, consider the following example. We search for the
occurrences of pattern P [0 . . 8) = BABABBAB in text a T [0 . . 18) =
ABABABABBABABABBAB. (Notation: The algorithm knows "even

9

without matching" that the unmarked letters at the beginning of the text
are the same as the corresponding letters in the text. B: letter B has been
matched successfully against the appropriate letter of the text; a ��B: it has
been matched unsuccessfully. [Listen to the explanation at the lecture.])

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T [i]= A B A B A B A B B A B A B A B B A B

��B
B A B A B ��B

s=3 B A B A B B A B
B A B A B ��B

s=10 B A B A B B A B
B A B

S = { 3; 10 }

Notations 1.5

� Let ε denote the empty string.

� If x and y are two strings, then x + y is their concatenation. (For
example, if x = ABA and y = BA, then x+ y = ABABA and y+x =
BAABA. If y = ε, then x+ y = x = y + x.)

� If x and y are two strings, then x ⊑ y (x is possibly full pre�x of y)
means that ∃z string, so that x+ z = y. (For example, if y = BABA,
then its possibly full pre�xes are {ε, B,BA,BAB,BABA}.)

� If x and y are two strings, then x ⊏ y (x is pre�x of y) means that
x ⊑ y ∧ x ̸= y. (For example, if y = BABA, then its pre�xes are
{ε, B,BA,BAB}.)

� If x and y are two strings, then x ⊒ y (x is possibly full su�x of y)
means that ∃z string, so that z + x = y. (For example, if y = BABA,
then its possibly full su�xes are {BABA,ABA,BA,A, ε}.)

� If x and y are two strings, then x ⊐ y (x is su�x of y) means that
x ⊒ y ∧ x ̸= y. (For example, if y = BABA, then its su�xes are
{ABA,BA,A, ε}.)

� Pj = P [0 . . j) (j ∈ 0 . .m) string Pj with length j is a possibly full
pre�x of string P . P0 is the empty pre�x of P . Similarly Ti = T [0 . . i).
[Similarly P0 ⊐ Pj (j ∈ 1 . .m).]

10

� x � y (x is pre�x-su�x of y) means that x ⊏ y∧x ⊐ y. (For example,
if y = BABA, then its pre�x-su�xes are {ε, BA}. If y = BABAB,
then its pre�x-su�xes are {ε, B,BAB}. If y = ABC, its only pre�x-
su�x is ε.)

� maxi H is the ith greatest element of set H (i ∈ 1 . . |H|).
[Consequently max1H = maxH. Provided that set H is �nite,
max|H| H = minH.]

� H(j) = {h ∈ 0 . . j − 1 | Ph ⊐ Pj } (j ∈ 1 . .m)
(For example, if P5 = BABAB, then H(5) = {0, 1, 3}, H(4) =
{0, 2}, H(3) = {0, 1}, H(2) = {0} = H(1).)
[0 ∈ H(j), max1H(j) = maxH(j), max|H(j)| H(j) = minH(j) = 0.]
[Equivalent de�nition: H(j) = { |x| : x � Pj } (j ∈ 1 . .m)]

� next(j) = maxH(j) (j ∈ 1 . .m)
(In the previous example, next(5) = 3. And next(1) = 0 in general.)

Properties 1.6 (Similarly for pre�xes)
x ⊒ y ∧ y ⊒ z ⇒ x ⊒ z x ⊐ y ∧ y ⊐ z ⇒ x ⊐ z
x ⊒ y ∧ y ⊐ z ⇒ x ⊐ z x ⊐ y ∧ y ⊒ z ⇒ x ⊐ z

Property 1.7 (Similarly for pre�xes) x ⊐ z ∧ y ⊐ z ∧ |x| < |y| ⇒ x ⊐ y

Property 1.8 Provided that i, j ∈ 0 . .m, Pi ⊐ Pj ⇐⇒ Pi � Pj.

Property 1.9 Provided that 0 ≤ h < j ≤ m and Pj ⊒ Ti,
Ph ⊐ Ti ⇐⇒ Ph ⊐ Pj.

Properties 1.10
Ph ⊒ Ti ∧ P [h] = T [i] ⇐⇒ Ph+1 ⊒ Ti+1

Ph ⊐ Pj ∧ P [h] = P [j] ⇐⇒ Ph+1 ⊐ Pj+1

Ph � Pj ∧ P [h] = P [j] ⇐⇒ Ph+1 � Pj+1

Property 1.11 next(j) ∈ 0 . . (j−1) (j ∈ 1 . .m)

Property 1.12 next(j + 1) ≤ next(j) + 1 (j ∈ 1 . .m−1)

Example 1.13
P [j−1] = B A B A B B A B

j = 1 2 3 4 5 6 7 8
next(j) = 0 0 1 2 3 1 2 3

Proof. [of Property 1.12: next(j + 1) ≤ next(j) + 1 (j ∈ 1 . .m−1)]

11

� If next(j + 1) = 0, then next(j + 1) = 0 ≤ 1 ≤ next(j) + 1.

� If next(j + 1) > 0, consider next(j + 1) = maxH(j + 1). Clearly,
next(j + 1) ∈ H(j + 1). Because H(j + 1) = {h ∈ 0 . . j | Ph ⊐ Pj+1 }
we have P(next(j+1)−1)+1 = Pnext(j+1) ⊐ Pj+1. Based on property 1.10,
Pnext(j+1)−1 ⊐ Pj. Considering next(j) = max{h ∈ 0 . . j−1 | Ph ⊐ Pj }
we receive next(j + 1)− 1 ≤ next(j), and next(j + 1) ≤ next(j) + 1.

□

Lemma 1.14 next(maxlH(j)) ∈ H(j) (j ∈ 1 . .m, l ∈ 1 . . |H(j)|−1)

Proof.
Pnext(maxl H(j)) ⊐ Pmaxl H(j) because Pnext(i) ⊐ Pi (i ∈ 1 . .m)
Pmaxl H(j) ⊐ Pj. Considering the transitivity of relation ⊐ (1.6) we receive
Pnext(maxl H(j)) ⊐ Pj. As a result, next(maxlH(j)) ∈ H(j). □

Property 1.15
maxl+1H(j) = next(maxl H(j)) (j ∈ 1 . .m, l ∈ 1 . . |H(j)|−1)

Proof.

� First we prove that maxl+1 H(j) ≤ next(maxl H(j)).
Clearly Pmaxl+1 H(j) ⊐ Pj ∧ Pmaxl H(j) ⊐ Pj ∧maxl+1H(j) < maxl H(j).
Considering 1.7, i.e. x ⊐ z ∧ y ⊐ z ∧ |x| < |y| ⇒ x ⊐ y, we have
Pmaxl+1 H(j) ⊐ Pmaxl H(j). Thus Pmaxl+1 H(j) � Pmaxl H(j). Considering
the de�nition of function next, Pnext(maxl H(j)) � Pmaxl H(j), and this is
the longest one among the strings with this property. Consequently
maxl+1H(j) ≤ next(maxl H(j)).

� On the other hand, next(maxl H(j)) ≤ maxl+1 H(j), because from
the de�nition of function next, next(maxl H(j)) < maxl H(j), and
according to Lemma 1.14, next(maxl H(j)) ∈ H(j).

□

Now we de�ne array next/1 : N[n]. The following procedure, init(next, P)
initializes it so that it contains the values of function next, i.e., ∀j ∈ 1 . .m :
next[j] = next(j), or in short: next[1 . .m] = next(1 . .m). Procedure
init(next, P) �lls array next/1 : N[n] based on array P : Σ[m].

12

�� �init(next/1 : N[m] ; P : Σ[m])

next[1] := i := 0 ; j := 1

j < m

AA
P [i] = P [j]

��

i++

j ++

next[j] := i

AA
i = 0

��

j ++

next[j] := 0
i := next[i]

Invariant of the loop:
0 ≤ i < j ≤ m∧

next[1 . . j] = next(1 . . j)∧
Pi ⊐ Pj ∧
[j < m →

(∀l ∈ i+2 . . j : Pl ̸⊐ Pj+1)]

Exercise 1.16 Prove that the invariant of the loop of procedure init(next, P)
is correct. Why does this invariant imply that next[1 . .m] = next(1 . .m) is
satis�ed when the procedure returns?

Property 1.17 For init(next/1:N[m]; P :Σ[m]) : MT (m),mT (m) ∈ Θ(m).

Proof. It is enough to see that the loop of procedure init(next, P) iterates
minimum m−1 times, and maximum 2m−2 times. Remember that according
to the invariant of this loop 0 ≤ i < j ≤ m.

� Before the �rst iteration j = 1, and each iteration increases j at most
by one. Thus it needs at least m−1 iteration to achieve j = m, to �nish
the loop and the procedure as well.

� t(i, j) := 2j− i. Clearly, 0 ≤ i < j ≤ m implies t(i, j) ∈ 2 . . 2m. Before
the �rst iteration t(i, j) = 2. And t(i, j) strictly increases with each
iteration (on any branch of the core of the loop). Thus the loop stops
after at most 2m−2 iterations.

□

The illustration of procedure init(next, P) on pattern ABABBABA:
(We start a new line at the beginning of a branch of the loop.)

i j next[j]
0

A
1

B
2

A
3

B
4

B
5

A
6

B
7

A
0 1 0 ��A
0 2 0 A
1 3 1 A B
2 4 2 A B ��A
0 4 2 ��A
0 5 0 A
1 6 1 A B
2 7 2 A B A
3 8 3

13

The result:
P [j−1] = A B A B B A B A

j = 1 2 3 4 5 6 7 8
next[j] = 0 0 1 2 0 1 2 3

Based on the properties of pre�xes and su�xes which we have seen above, the
algorithm Knuth-Morris-Pratt (KMP) solves the string matching problem in
linear, i.e. Θ(n) time where n is the length of the text.

First we initialize array next/1 : N[m] with procedure init(next, P). Next,
with the help of this, we determine the valid shifts of the pattern:�� �KMP(T : Σ[n] ; P : Σ[m] ; S : N{})

next/1 : N[m] ; init(next, P)

S := {} ; i := j := 0

i < n

AA
P [j] = T [i]

��

i++ ; j ++

AA
j = m

��

S := S ∪ {i−m}
j := next[m]

SKIP

AA
j = 0

��

i++ j := next[j]

Before discussing KMP in general, we explain this procedure through the
following example. We search for the occurrences, i.e. valid shifts of pattern
P [0 . . 8) = ABABBABA (see the computation of its next array above) in
text T [0 . . 17) = ABABABBABABBABABA.

P [j−1] = A B A B B A B A
j = 1 2 3 4 5 6 7 8

next[j] = 0 0 1 2 0 1 2 3

The search:
i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T [i]= A B A B A B B A B A B B A B A B A
A B A B ��B

s=2 A B A B B A B A
s=7 A B A B B A B A

A B A B ��B
A B A

S = { 2; 7 }

14

s=0 We start with s = 0. We �nd that P [0] = T [0], . . . , P [3] = T [3], but
P [4] ̸= T [4]. The longest pre�x of P8 = P [0 . . 8) which matches the
beginning of the text is P4=P [0 . . 4). The problem: where to shift P
so that we have a chance to �nd a valid shift, but we do not jump over
a solution. P4 = T [0 . . 4). Therefore, if we �nd a pre�x of P4 which
is also a su�x of it, it will also be a su�x of T [0 . . 4). We know that
next[4]=2, i.e., P2 � P4, and this is the longest one.

s=2 � If we shift P , so that P [0 . . 2) is under initial position of P [2 . . 4)
which is equal to T [2 . . 4), then P [0 . . 2) automatically matches with
T [2 . . 4), and we can go on with comparisons P [2] = T [4], P [3] =
T [5], . . . , P [7]=T [9]. We have found a valid shift (s=2) here.
� One may say that also P0 � P4, and we could go on with comparison
P [0] = T [4], but in this case, we would have jumped over a solution.
The smallest shift corresponds to the longest pre�x-su�x, and we have
to use it, to avoid jumping over a possible solution.

Therefore we selected the longest pre�x-su�x of P4, went on with P [2]=
T [4]. . . and �nally found valid shift s=2. (Note that the length of the
longest pre�x-su�x is most often di�erent from the valid shift found.)
Now we �nd that next[8]=3 which means that the longest pre�x-su�x
of P8 is P3. Thus we shift P so that P [0 . . 3) is under the end of the
previous position of P [0 . . 8)=T [2 . . 10) because this shift corresponds
to the smallest one where we have chance to �nd an occurrence of the
pattern.

s=7 Again, automatically P3 ⊐ T10. Thus we go on with checking P [3] =
T [10], and so on. We are lucky again because we �nd another valid
shift s=7. Again we �nd that next[8]=3 which means that the longest
pre�x-su�x of P8 is P3. Thus we shift P so that P [0 . . 3) is under
the end of the previous position of P [0 . . 8) = T [7 . . 15) because this
shift corresponds to the smallest one where we have chance to �nd an
occurrence of the pattern.

s=12 Now the end of the pattern is over the text, but the KMP algorithm
does not check this (to reduce the overall running time despite a longer
�end of the game�). Still it �nds P [3]=T [15] and P [4] ̸=T [16]. We have
found that P4 ⊐ T16. Because next[4] = 2 which means that P2 is the
longest pre�x-su�x of P4, we can shift pattern P so that P2 is under
the previous position of P [2 . . 4)=T [14 . . 16).

s=14 We have found that P2 ⊐ T16. Thus we check P [2] = T [16]. This is
true, but with the next check, i.e. P [3] = T [17] we would over-index

15

the text, so we stop.

After all, we received that the set of valid shifts is S = { 2; 7 }.

In general, we search for the valid shifts of Pm in Tn. We can start from P0

and T0 because P0 ⊒ T0. In general, we have Pj ⊒ Ti for some i and j.
When the KMP algorithm �nds that Pj ⊒ Ti∧ j=m, then it has found a

valid shift which is s= i−m. When it �nds that Pj ⊒ Ti∧ j<m∧P [j] ̸=T [i],
then it has not found a valid shift.

But in both cases � provided that j > 0 �, in order to �nd a new valid
shift, it determines the longest pre�x-su�x of Pj which is Pnext[j]. This is
useful because Pnext[j] ⊒ Ti and moving Pnext[j] under the end of Ti, this is
the smallest shift with which we have chance to �nd a new valid shift. To
make this movement of the pattern, we perform the assignment statement
j :=next[j], and then Pj ⊒ Ti is satis�ed again.

Provided that i < n, we can go on with checking P [j] = T [i]. (1) If
P [j] = T [i], then Pj+1 ⊒ Ti+1, and we increment i and j. Then Pj ⊒ Ti is
satis�ed again, and so on. (2) If P [j] ̸=T [i], again we have to determine the
longest pre�x-su�x of Pj, and so on.

Still there is the case when j=0∧P [j] ̸=T [i]. Then we make the minimal
possible shift, i.e., we increment i and go on.

The whole process can continue while i<n which means that T [i] exists.

Now we verify that MT (n),mT (n) ∈ Θ(n) for procedure KMP().

�� �KMP(T : Σ[n] ; P : Σ[m] ; S : N{})

next/1 : N[m] ; init(next, P)

S := {} ; i := j := 0

i < n

AA
P [j] = T [i]

��

i++ ; j ++

AA
j = m

��

S := S ∪ {i−m}
j := next[m]

SKIP

AA
j = 0

��

i++ j := next[j]

Property 1.18 A trivial invariant of the loop of algorithm KMP:
i ∈ 0 . . n ∧ j ∈ [0 . .m) ∧ j ≤ i

16

To prove that the time complexity of procedure KMP() is linear, it is enough
to verify that the running time of its main loop is Θ(n), because m ∈ 1 . . n,
consequently the Θ(m) time needed for the init(next, P) call and other ini-
tialization do not modify this asymptotic order. And to verify the Θ(n)
operational complexity of this main loop, it is su�cient to prove that it per-
forms at least n and at most 2n iterations. For this purpose, we can use
invariant 1.18: i ∈ 0 . . n ∧ j ∈ 0 . . (m−1) ∧ j ≤ i.

� Before the �rst iteration, i = 0. Because each iteration increases i by
at most one, and the condition of the loop is i < n, we need at least n
iterations to �nish the loop.

� To prove the upper bound 2n of the number of iterations, t(i, j) :=
2i − j. Based on invariant i ∈ 0 . . n ∧ j ∈ 0 . . (m−1) ∧ j ≤ i, we
have t(i, j) ∈ 0 . . 2n. Before the �rst iteration, t(i, j) = 0. Because
t(i, j) = 2i − j strictly increases on each of the four branches of the
body of the loop, and t(i, j) ≤ 2n, the loop stops after at most 2n
iterations.

One can see that variable i never decreases during the run of procedure
KMP() (i.e., we never backtrack on the text when we search it for the pat-
tern). Consequently, the algorithm Knuth-Morris-Pratt can be implemented
easily, even if this text is in a sequential �le.

This is not the case with the Brute-force and Quick Search algorithms.
In these algorithms, sometimes we have to backtrack even m−2 characters
on the text. Provided that the text is in a sequential �le, this means that
during the run of the implementations of these algorithms, the last m−1
characters of the text must be stored in a bu�er.

17

