
Algorithms and Data Structures II.
Test1 (example exercises)

22 Elementary Graph Algorithms

22.2-1 Present breadth-�rst search on the directed graphs below1, using the
given vertex as source. Illustrate the run of the algorithm as you have seen
it in the classroom. For each vertex, show the d and π values; and for all the
times, show the transformations of the queue. Draw the breadth-�rst tree
represented by the �nal π values.

22.2-1a Source vertex: 3

1 → 2; 4. 2 → 5. 3 → 5; 6.
4 → 2. 5 → 4. 6.

22.2-1b Source vertex: 5

1 → 4. 2 → 1; 3; 5. 3.
4 → 2; 5. 5 → 3; 4. 6 → 3; 5.

22.2-2 Illustrate the run of the breadth-�rst search on the undirected graph
below2, using vertex 4 as the source.

1 � 2; 5. 2 � 1; 6. 3 � 4; 6; 7. 4 � 3; 7; 8.
5 � 1. 6 � 2; 3; 7. 7 � 3; 4; 6; 8. 8 � 4; 7.

22.3-2 Show how depth-�rst search works on the graph below. Assume that
in the indeterministic cases the DFS procedure considers the vertexes in
alphabetical order. Show the discovery and �nishing times for each vertex,
and show the classi�cation of each edge.

q → s; t; w. r → u; y. s → v. t → x; y.
u → y. v → w. w → s. x → z.
y → q. z → x.

22.4-1 Show the ordering of vertexes produced by TOPOLOGICAL-SORT
when it is run on the DAGs below, under the assumption of Exercise 22.3-2.

q → s; t; w. r → u; y. s → v. t → x; y.
u → y. v → w. w. x → y; z.
y. z → v.

p → q; r. q → s; u. r → s; t. s → v.
t → v. u. v → u.

1u→ v1; . . . vn. means that the graph has the directed edges (u, v1), . . . (u, vn).
2u � v1; . . . vn. means that the graph has the undirected edges (u, v1), . . . (u, vn).

1



22.x-1. Let us suppose that we represent graph G = (V,E) as an adjacency
matrix A/1 : B[n, n] where n = |V |. Give a simple implementation

BFS(A, s, d, P )
of the Breadth-�rst search algorithm for this case that runs in O(n2) time
(d/1 : N[n] and P/1 : Z[n]). As a result of performing BFS, for each vertex
u ∈ 1..n of the graph:
- if P [u] ≥ 1 then P [u] is the parent of u in the breadth-�rst tree,
- if P [u] = 0 then u is the source vertex of the BFS.
- if P [u] = −1 then u is not reachable from the source vertex in the graph.

22.x-2. Let us suppose that we represent graph G = (V,E) with adjacency
list representation using pointer array A/1:E*[n] where n = |V | and objects
of class E{ +v:N; +next:E* } represent the edges. Give a simple implemen-
tation

BFS(A, s, d, P )
of the Breadth-�rst search algorithm for this case that runs in O(n+m) time
(m = |G.E|, d/1 : N[n] and P/1 : Z[n]). As a result of performing BFS, for
each vertex u ∈ 1..n of the graph:
- if P [u] ≥ 1 then P [u] is the parent of u in the breadth-�rst tree,
- if P [u] = 0 then u is the source vertex of the BFS.
- if P [u] = −1 then u is not reachable from the source vertex in the graph.

22.x-3. Let us suppose that array P/1 : Z[n] contains the breadth-�rst tree
of a BFS on a directed graph. For each vertex u ∈ 1..n of the graph:
- if P [u] ≥ 1 then P [u] is the parent of u in the breadth-�rst tree,
- if P [u] = 0 then u is the source vertex of the BFS.
- if P [u] = −1 then u is not reachable from the source vertex in the graph.

Write procedure printPath(P, v) which prints the optimal path from the
source vertex to vertex v ∈ 1..n, or the text �NO PATH�, if v is not reachable
from the source vertex.

22.x-4. Let us suppose that we represent graph G = (V,E) as an adjacency
matrix A/1 : B[n, n] where n = |V |. Write procedure

adjMtx2adjList(A,G)
which runs in Θ(n2) time and makes a copy of this graph into G where G is
going to be an adjacency list representation of the same graph i.e. G/1:E*[n]
where objects of class E{ +v:N; +next:E* } represent the edges.

2



22.x-5. Let us suppose that we represent DAG G = (V,E) with adjacency
list representation using pointer array A/1:E*[n] where n = |V | and objects
of class E{ +v:N; +next:E* } represent the edges. Give a simple implemen-
tation of topological sort based on DFS:

topologicalSort(A, TO)
where a topological order of the vertices of G is to be put into array
TO/1 : N[n]. This implementation should run in O(n + m) time where
m = |G.E|.

22.x-6. Let us suppose that we represent graph G = (V,E) as an adjacency
matrix A/1 : B[n, n] where n = |V |. Give a simple implementation of topo-
logical sort based on DFS:

topologicalSort(A, TO)
where a topological order of the vertices of G is to be put into array
TO/1 : N[n]. This implementation should run in O(n2) time.

3


