Algorithms and Data Structures II. Test2 (example exercises)

23 Minimum Spanning Trees

23.1 Kruskal's algorithm

23.1-1 As you have seen in the classroom, illustrate the run of Kruskal's algorithm on the following graph¹. Finally, draw the MST calculated by the algorithm.

1-2, 2; 5, 1.	2-1, 2; 6, 0.
3-4, 4; 6, 1; 7, 1.	4-3, 4; 7, 3; 8, 2.
5-1, 1; 6, 1.	6-2, 0; 3, 1; 5, 1; 7, 2.
7-3, 1; 4, 3; 6, 2; 8, 1.	8 - 4, 2; 7, 1.

23.1-2 Given class $\operatorname{Edge}\{+u, v: \mathbb{N}_+; +w: \mathbb{R}\}\)$. The objects of this class can represent edges of weighted graphs where w(u, v) = w. Arrays G and T have the element type Edge. Array G represents a weighted undirected connected graph. It consists of the edges of the graph. It is non-decreasing according to the weights of the edges. It has m elements. Array T has n1 elements where n1 = n - 1 and n is the number of vertices of the graph.

Write the structogram of the procedure $\operatorname{Kruskal}(G, T)$ which calculates an MST of graph G and puts the edges of this MST into the array T in $O(m * \log n)$ time.

23.2 Prim's algorithm

23.2-1 As you have seen in the classroom, illustrate the run of Prim's algorithm on the following graph. Draw the minimum spanning tree represented by the final π and d values.

1-2, 2; 5, 1.	2-1, 2; 6, 0.
3-4,4;6,1;7,1.	4-3, 4; 7, 3; 8, 2.
5-1,1;6,1.	6-2, 0; 3, 1; 5, 1; 7, 2.
7-3, 1; 4, 3; 6, 2; 8, 1.	8-4, 2; 7, 1.

23.2-2a Suppose that we represent the weighted undirected connected graph G = (V, E) as an adjacency matrix. Give a simple implementation of Prim's algorithm for this case that runs in $O(|V|^2)$ time.

 $^{{}^{1}}u - v_1, w_1; \ldots v_n, w_n$. means that the graph has the undirected edges $(u, v_1), \ldots (u, v_n)$ with weights $w_1, \ldots w_n$.

23.2-2b Suppose that we represent the weighted undirected connected graph G = (V, E) with adjacency lists. Give a simple implementation of Prim's algorithm for this case that runs in $O(|V|^2)$ time.

23.2-2c^{*} Suppose that we represent the graph G = (V, E) with adjacency lists. Give a sophisticated implementation of Prim's algorithm for this case that runs in $O(|E| * \log |V|)$ time.

Hint: Use a binary minimum heap to represent the priority queue of the vertexes (organized according to the d values of the vertexes). When we decrease d(v) for a vertex v, it must be compared with its parent in the heap (concerning their d attributes), and they possibly must be swapped, recursively. Therefore, we need an indexing array to know the place of each vertex in the heap.

24 Single-Source Shortest Paths

24.1 Queue-based Bellman-Ford algorithm

(The Queue-based Bellman-Ford algorithm is also known as Tarjan's breadth-first scanning algorithm, and Shortest Path Faster Algorithm (SPFA).)

24.1-1 As you have seen in the classroom, illustrate the run of the *Queue-based Bellman-Ford* algorithm on the directed graph below², using vertex z as the source. Draw the shortest-paths tree represented by the final π and d values.

Now, change the weight of edge (z, x) to 4 and run the algorithm again, using s as the source.

$$\begin{array}{ll} s \rightarrow t, 6; y, 7. & t \rightarrow x, 5; y, 8; z, -4. \\ x \rightarrow t, -2. & y \rightarrow x, -3; z, 9. \\ z \rightarrow s, 2; x, 7. \end{array}$$

24.1-2a Suppose that we represent the graph G = (V, E) as an adjacency matrix. Give a simple implementation of the Queue-based Bellman-Ford algorithm for this case that runs in $O(|V|^3)$ time.

24.1-2b Suppose that we represent the graph G = (V, E) with adjacency lists. Give a simple implementation of the *Queue-based Bellman-Ford* algorithm for this case that runs in O(|V| * |E|) time.

24.2 Single-source shortest paths in directed acyclic graphs (DAGs)

24.2-1 As you have seen in the classroom, illustrate the run of the DAG single source shortest paths algorithm on the directed graph below, using vertex s as the source.

 $\begin{array}{ll} r\rightarrow s,5;t,3. & s\rightarrow t,2;x,6. & t\rightarrow x,7;y,4;z,2.\\ x\rightarrow y,-1;z,1. & y\rightarrow z,-2. & z. \end{array}$

24.2-2 Replace edge " $y \to z, -2$ " with the edge " $y \to s, -2$ " in the graph above. As you have seen in the classroom, illustrate the run of the *DAG* single source shortest paths algorithm on the resulting graph, using vertex r as the source.

 $^{^{2}}u \rightarrow v_{1}, w_{1}; \ldots v_{n}, w_{n}$. means that the graph has the directed edges $(u, v_{1}), \ldots (u, v_{n})$ with weights $w_{1}, \ldots w_{n}$.

24.1-3a Suppose that we represent the graph G = (V, E) as an adjacency matrix. Give a simple implementation of the *DAG single source shortest* paths algorithm for this case that runs in $O(|V|^2)$ time.

24.1-3b Suppose that we represent the graph G = (V, E) with adjacency lists. Give a simple implementation of the *DAG single source shortest paths* algorithm for this case that runs in O(|V| + |E|) time.

24.3 Dijkstra's algorithm

24.3-1 As you have seen in the classroom, illustrate the run of Dijkstra's algorithm on the directed graph below, first using vertex s as the source and then using vertex z as the source. Draw the shortest-paths tree represented by the final π and d values.

$$s \to t, 3; y, 6.$$
 $t \to x, 8; y, 2.$ $x \to z, 2.$
 $y \to t, 1; x, 4; z, 6.$ $z \to s, 3; x, 7.$

24.3-2 Give a simple example of a directed graph with some positive-weight edges and a negative-weight edge for which Dijkstra's algorithm produces an inconsistent answer.

24.3.3a Suppose that we represent the graph G = (V, E) as an adjacency matrix. Give a simple implementation of Dijkstra's algorithm for this case that runs in $O(|V|^2)$ time.

24.3.3b Suppose that we represent the graph G = (V, E) with adjacency lists. Give a simple implementation of Dijkstra's algorithm for this case that runs in $O(|V|^2)$ time.

24.3.3c^{*} Suppose that we represent the graph G = (V, E) with adjacency lists. Give a sophisticated implementation of Dijkstra's algorithm for this case that runs in $O((|V| + |E|) * \log |V|)$ time.

Hint: Use a binary minimum heap to represent the priority queue of the vertexes (organized according to the d values of the vertexes). When we decrease d(v) for a vertex v, it must be compared with its parent in the heap (concerning their d attributes), and they possibly must be swapped, recursively. Therefore, we need an indexing array to know the place of each vertex in the heap.

25 All-Pairs Shortest Paths

25.2 The Floyd-Warshall algorithm

25.2-1 As you have seen in the classroom, illustrate the run of the Floyd-Warshall algorithm on the weighted graph below. Show the matrix pairs $(D^{(0)}, \Pi^{(0)}), \ldots, (D^{(4)}, \Pi^{(4)})$. Finally, draw the shortest path trees represented by the rows of the last pair of matrices.

	1	2	3	4
1	0	5	3	1
2	5	0	1	∞
3	3	1	0	1
4	1	∞	1	0

25.2.2 As you have seen in the classroom, illustrate the run of Warshall's transitive-closure algorithm on the unweighted, directed graph below. Show the matrices $T^{(0)}, \ldots, T^{(4)}$.

	1	2	3	4
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	0	0	0