
Algorithms and Data Structures II.

Lecture Notes: Trees

Tibor Ásványi
Department of Computer Science

Eötvös Loránd University, Budapest

asvanyi@inf.elte.hu

August 27, 2021

Contents

1 Introduction 4

2 AVL Trees 4
2.1 AVL trees: insertion . 8
2.2 AVL trees: removing the minimal (maximal) node 17
2.3 AVL trees: deletion . 19

3 General trees 22

4 B+ trees and their basic operations 25

2

References

[1] Ásványi, T, Algorithms and Data Structures I. Lecture Notes
http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs1/AlgDs1LectureNotes.pdf

[2] Burch, Carl, B+ trees
(See http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs2/B+trees.pdf)

[3] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.,
Introduction to Algorithms (Third Edititon), The MIT Press, 2009.

[4] Cormen, Thomas H., Algorithms Unlocked, The MIT Press, 2013.

[5] Narashima Karumanchi,
Data Structures and Algorithms Made Easy, CareerMonk Publication,
2016.

[6] Neapolitan, Richard E., Foundations of algorithms (Fifth edition),
Jones & Bartlett Learning, 2015. ISBN 978-1-284-04919-0 (pbk.)

[7] Shaffer, Clifford A.,
A Practical Introduction to Data Structures and Algorithm Analysis,
Edition 3.1 (C++ Version), 2011
(See http://aszt.inf.elte.hu/∼asvanyi/ds/C++3e20110103.pdf)

[8] Weiss, Mark Allen, Data Structures and Algorithm Analysis in C++
(Fourth Edition),
Pearson, 2014.

[9] Wirth, N., Algorithms and Data Structures,
Prentice-Hall Inc., 1976, 1985, 2004.
(See http://aszt.inf.elte.hu/∼asvanyi/ds/AD.pdf)

3

1 Introduction

We need dictionaries, i.e. large sets of data with e�cient insertion, search
and deletion operations (where removing the maximal or minimal element
of the dictionary and removing an element with a given key are the cases
of deletion). We already have two solutions where the average performance
(AT) of these operation is good but the worst case performance (MT) is too
slow (n is the size of the set / data structure):

• Binary search trees (BSTs): AT (n) ∈ Θ(log n),MT (n) ∈ Θ(n).

• Hash tables: AT (n) ∈ Θ(1) (if the load factor is not too high),
MT (n) ∈ Θ(n). (Removing the maximal and minimal elements is
not supported.)

We are going to discuss some kinds of balanced search trees where we can
guarantee MT (n) ∈ Θ(log n) for each dictionary operation.

• AVL trees: balanced BSTs for storing data in the central memory.1

• B+ trees: perfectly balanced multiway search trees optimized for stor-
ing data on hard disks.2

In the next section we consider AVL trees. In the last one we describe B+
trees.

2 AVL Trees

Being BSTs, AVL trees have linked representation typically. In these notes,
we suppose that they have linked representation. Everywhere letter n denotes
the size (number of nodes) of the tree, and h denotes the height of the tree.

De�nition 2.1 The balance of node (∗p) of a binary tree is
p→ b = h(p→ right)− h(p→ left). This means that the balance of a node
is the height of its right subtree minus the height of its left subtree.3

1Red-black trees are also specially balanced BSTs and can provide another e�cient
solution.

2B trees are an older solution.
3The balance notion above is sometimes called height-balance, in order to distinguish

it from other kinds of balances. For example, the size-balance of a node is the size of its
right subtree minus the size of its left subtree. A node is size-balanced, i� its size-balance
is in {−1, 0, 1}. A tree is size-balanced, i� all of its nodes are size-balanced. In these notes,
balance means height-balance by default.

4

1

2 −

3 +

4

5 =

8 −

6

9

The binary tree on the left in

• simple textual form:
(((1) 2−) 3+ (((4) 5= (6)) 8− (9)))

• elegant parenthesized form:
{ [(1) 2−] 3+ [(〈4〉 5= 〈6〉) 8− (9)] }

Figure 1: The same binary tree in graphical and textual representations.
The balance of each leaf is zero, so we omit the balances of the leaves. We
show the balance of each internal node next to it (or next to the key identify-
ing it). In the example trees, we use the following notation for the balances:
0 ∼ = ; 1 ∼ + ; 2 ∼ ++ ; −1 ∼ − ; −2 ∼ −−

Example 2.2 See the BST on Figure 1. Deleting node 1 from it, we receive
BST { [2] 3++ [(〈4〉 5= 〈6〉) 8− (9)] }. And inserting node 7 into the
BST on Figure 1, we receive the following BST.
{ [(1) 2−] 3++ [(〈4〉 5+ 〈 6+ {7} 〉) 8−− (9)] }.

Exercise 2.3 Draw each tree which is given in textual represen-

tation in these lecture notes. Drawing them provides easier and

deeper understanding, and better long-term knowledge. One can

see a pattern above, at Figure 1.

De�nition 2.4 Node (∗p) is perfectly balanced, i� its balance, p→b = 0.4

De�nition 2.5 Node (∗p) is balanced, i� its balance, i.e. p→b ∈ {−1, 0, 1}.
Otherwise it is imbalanced.

Consequence 2.6 The leaves of a binary tree are perfectly balanced, be-
cause both of the right and left subtrees of a leaf are empty.

De�nition 2.7 A binary tree is balanced, i� each (internal) node of it is
balanced. It is imbalanced, i� at least one of its nodes is imbalanced.

De�nition 2.8 A binary tree is perfectly balanced, i� each (internal) node
of it is perfectly balanced.

Consequence 2.9 A binary tree is perfectly balanced, i� it is complete.

4i� means if and only if.

5

De�nition 2.10 An AVL tree is a balanced BST.5

Remember that MT (h) ∈ Θ(h) for the basic operations of BSTs (insertion,
search and deletion). Fortunately, the BST and the balanced tree properties
can be maintained e�ciently throughout insertions and deletions on balanced
BSTs, and the next theorem guarantees that the height of an AVL tree never
goes far form the ideal case. Thus we can guarantee the high e�ciency of
these operations on AVL trees.

Theorem 2.11 Given a nonempty balanced binary tree,

blog nc ≤ h ≤ 1.45 log n, i.e. h ∈ Θ(log n)

We provide an outline of the proof of this theorem. The lower bound given
there is the lower bound of the height of all the binary trees, thus it is also
true for balanced binary trees. The upper bound given here follows from the
properties of Fibonacci trees.

De�nition 2.12 A binary tree is Fibonacci tree, i� each internal node of it
is balanced, but not perfectly balanced.

These are called Fibonacci trees, because a Fibonacci tree with height h > 0
consists of a root plus a left subtree with height h−1 and a right subtree
with height h−2 or vice versa where both subtrees are Fibonacci trees. And
this recursive description is similar to the recursive de�nition of Fibonacci
numbers.

It is easy to prove that among the balanced binary trees with a given
height, the Fibonacci trees have the smallest size. Let fh be the size of a
nonempty Fibonacci tree with height h. Clearly
f0 = 1, f1 = 2, fh = 1 + fh−1 + fh−2 (h ≥ 2).

5It is easy to prove that the size-balanced binary trees are special cases of the nearly

complete binary trees. And we know that the height h of a nearly complete binary tree is
minimal among the binary trees of a given size n, i.e. h = blog nc, plus MT (h) ∈ Θ(h) for
the basic operations of BSTs (insertion, search and deletion), consequently these operations
are most e�cient on nearly complete and especially size-balanced BSTs. Thus one may
ask, why we do not use size-balanced or nearly complete BSTs instead of AVL trees. Well,
the size-balanced and the nearly complete properties turn out too strong requirements in
most cases, because we cannot maintain these properties e�ciently throughout insertions
and deletions on BSTs. Therefore these properties are often lost throughout insertions
and deletions, and the height of a resulting BST may go far from the ideal case. Thus
we use AVL trees, because the AVL tree property can be maintained extremely e�ciently
throughout insertions and deletions, and the height of an AVL tree is quite close to the
minimal height h = blog nc even in the worst case.

6

These formulas are similar to the de�nition of the Fibonacci sequence:
F0 = 0, F1 = 1, Fh = Fh−1 + Fh−2 (h ≥ 2).

It can be proved with mathematical induction that fh = Fh+3 − 1 where
h is a natural number. Clearly fh ≤ n where n is the size of a balanced
binary tree with height h. With some mathematical skill, we can get the
upper bound given in the previous theorem. (We omit the details.)

From the previous results, it can be proved that MT (n) ∈ Θ(log n) for the
basic operations of AVL trees (insertion, search and deletion). In order to
see it, still we have to see that MT (h) ∈ Θ(h) even for the AVL tree version
of these operations where each operation keeps the AVL tree property.

In order to achieve this aim, �rst we describe our representation of the
nodes of AVL trees. Then we develop the algorithms of the basic operations
of the AVL trees. It will be clear that these operations go down and possibly
up only once in the tree, and the number of elementary operations can be
limited with the same constant at each level, so MT (h) ∈ Θ(h) is true. See
the representation �rst.

Node
+ key : T // T is some known type
+ b : −1..1 // the balance of the node
+ left, right : Node*
+ Node() { left := right := � ; b := 0 } // create a tree of a single node
+ Node(x:T) { left := right := � ; b := 0 ; key := x }

We can see that the balance of a node is stored explicitly in the node. When
a tree is modi�ed, clearly the balances of some nodes change. Thus we have
to adjust the data members b of these nodes. This process will be called
rebalancing in these notes. When we illustrate an operation on a BST, we
will show the balance values stored in the node objects. (Although a stored
balance value and the corresponding proper one must be equal before the
operation, and also after it, they may be di�erent during the transformation.)

Let us consider the e�ciency and some details of the basic opera-
tions of AVL trees. Remember that the height of an AVL tree is Θ(log n).
Thus the functions search(t, k), min(t) and max(t) of BSTs [1] (which do not
modify the tree and just go down in the tree once) can be applied to AVL
trees with MT (n) ∈ Θ(log n) e�ciency.

Procedures insert(t, k), del(t, k), remMin(t,minp) and remMax(t,maxp)
of BSTs [1] applied to AVL trees also run on AVL trees with MT (n) ∈
Θ(log n) e�ciency, and the result will be a BST, but possibly imbalanced.
(See Example 2.2. The input of both operations is the same AVL tree, but

7

the outputs are imbalanced BSTs.) Clearly, after many modi�cations the
resulting tree may become too high for e�cient run of the operations of
BSTs. Therefore we need some modi�cations on these recursive procedures:
When we return from a recursive call, we check whether the actual node of
the tree became imbalanced, and if so, we perform the appropriate rotations
in order to make it balanced. The extra elementary operations needed can be
limited by the same constant at each level, so e�ciency MT (n) ∈ Θ(log n)
remains true.

The rules of rotations of AVL trees can be found on Figures 2-7. One can
see that each rotation keeps the original inorder traversal of the tree. Con-
sequently, if the input of a rotation is a BST, its output is also a BST.

And after an addition or deletion, we consider the smallest imbalanced
subtree containing the position of the insertion or deletion, and apply the
appropriate rotation to it. Thus its subtrees are balanced, and the result of
the rotation is a balanced subtree. Sometimes some rotations must be done
also at higher levels of the tree afterwards.

2.1 AVL trees: insertion

First we consider procedure insert(t, k) of BSTs [1].

For example, given AVL tree { [2] 4+ [(6) 8= (10)] }.

• Inserting key 1, we receive AVL tree
{ [(1) 2−] 4= [(6) 8= (10)] }.

• Alternatively, inserting key 3, we receive AVL tree
{ [2+ (3)] 4= [(6) 8= (10)] }.

• Alternatively, inserting key 9, we receive imbalanced BST
{ [2] 4++ [(6) 8+ ({9} 10−)] }.

• Alternatively, inserting key 7, we receive imbalanced BST
{ [2] 4++ [(6+ {7}) 8− (10)] }.

We can see that in the last 2 cases the tree became imbalanced. If we want
to receive an AVL tree, we have to make the appropriate rotations on the
tree. Let us see some detailed examples.

Example 2.13 Insert key 3 into AVL tree { [2] 4+ [(6) 8= (10)] }.

8

t

T

α

R

β
γ

++

+

h

h

h+ 1

h(t) =
h + 3

(++,+)

t

R

T

α β γ

=

=

h h h+ 1

h(t) =
h + 2

Figure 2: rotation (++,+).

t

T

L

α
β

γ

--

-

h+ 1

h

h

h(t) =
h + 3

(--,-)

t

L

α

T

β γ

=

=

h+ 1 hh

h(t) =
h + 2

Figure 3: rotation (−−,−).

9

t

T

α

R

L

β γ
δ

++

-

-
=
+

h
h
h

h− 1

h− 1
h
h

h

h(t) =
h + 3

(++,-)

t

L

T

α β

R

γ δ

=

=
=
-

+
=
=

h h
h

h− 1

h− 1
h
h

h

h(t) =
h + 2

Figure 4: rotation (++,−).

t

T

L

α

R

β γ
δ

--

+

-
=
+

h

h
h

h− 1

h− 1
h
h

h

h(t) =
h + 3

(--,+)

t

R

L

α β

T

γ δ

=

=
=
-

+
=
=

h h
h

h− 1

h− 1
h
h

h

h(t) =
h + 2

Figure 5: rotation (−−,+).

10

t

T

L

α β

γ

--

=

h+ 1 h+ 1

h

h(t) =
h + 3

(--,=)

t

L

α

T

β
γ

+

-

h+ 1

h+ 1

h

h(t) =
h + 3

Figure 6: rotation (−−,=).

t

T

α

R

β γ

++

=

h

h+ 1 h+ 1

h(t) =
h + 3

(++,=)

t

R

T

α
β

γ

-

+

h

h+ 1
h+ 1

h(t) =
h + 3

Figure 7: rotation (++,=).

11

Solution: The key of the root of { [2] 4+ [(6) 8= (10)] } is 4.
3<4, so we go to the left subtree: [2].
3>2, so a new leaf 3 is inserted into the right, empty subtree of node 2 .
Now we are at the new leaf 3 . The actual subtree was empty. After inserting
key 3, The actual subtree is (3). It has become higher.
Considering the balance information explicitly stored, this is the whole tree:
{ [2= (3)] 4+ [(6) 8= (10)] }. It is not rebalanced yet.
(Some of) the ancestors of the new leaf must be rebalanced.
We go up in the tree. First we arrive at node 2 .
Its right subtree became higher, so its balance is increased by one.
Now, this is the whole tree: { [2+ (3)] 4+ [(6) 8= (10)] }.
The actual subtree is [2+ (3)], and it has become higher.
We step up in the tree. We arrive at the root node: 4 .
Its left subtree has become higher, so its balance is reduced by one.
The actual subtree is the whole tree: { [2+ (3)] 4= [(6) 8= (10)] }.
We have �nished rebalancing, and we can see that the result of insertion is
a balanced BST, i.e. an AVL tree. Thus we have also �nished insertion. We
do not need any rotation here.

Exercise 2.14 Insert key 1 into AVL tree { [2] 4+ [(6) 8= (10)] }, and
show the details.

Example 2.15 Insert key 9 into AVL tree { [2] 4+ [(6) 8= (10)] }.

Solution: We insert key 9. The key of the root is 4.
9>4, so we go to the right subtree: [(6) 8= (10)].
9>8, so we go to the right subtree: (10).
9<10, so we go to its left subtree, which is empty.
Thus we put the new node here: { [2] 4+ [(6) 8= (〈9〉 10=)] }.
Then we go up and rebalance the ancestors at each level of the tree, but we
stop when the �rst imbalanced node is found.
The subtree corresponding to this imbalanced node is the whole tree now:
{ [2] 4++ [(6) 8+ (〈9〉 10−)] }.
We can use rotation (++,+) now (see also Figure 2):

[α T++ (β R+ γ)] → [(α T= β) R= γ]

Notice that in these rotation schemes the Greek letters are the subtrees and
the English uppercase letters followed by the balance signs (like ++,+,=
etc.) are the keys of the nodes.

We use the rotation scheme above on the imbalanced BST above where
α=[2]=(2) ; T=4 ; β=(6) ; R=8 ; γ = (〈9〉 10−) = [(9) 10−].
Finally we receive AVL tree { [(2) 4= (6)] 8= [(9) 10−] }.

12

Example 2.16 Let us see an example of using rotation (++,−). Insert key
7 into AVL tree { [2] 4+ [(6) 8= (10)] }.

Solution: In order to keep the BST property, we �nd the appropriate empty
subtree and insert node 7 there.
We receive tree { [2] 4+ [(6= 〈7〉) 8= (10)] }. Then we go up and rebalance
the ancestors of the new leaf 7 at each level of the tree, but we stop when the
�rst imbalanced node is found. We receive the following imbalanced BST:
{ [2] 4++ [(6+ 〈7〉) 8− (10)] }.
Rotation(++,−) is needed (see also Figure 4):

{ α T++ [(β L−=+ γ) R− δ] } → { [α T==− β] L= [γ R+== δ] }

In this (++,−) rotation scheme, T++ is the root of the imbalanced BST.
Its right child is R−. The left child of R is L.

L is the right-left grandchild of the imbalanced node T++. After the
rotation, L becomes the new root of this (sub)tree. L's parent and grandparent
become its two children. and the four subtrees: α, β, γ and δ remain in their
original order. The inorder traversal of the whole (sub)tree remains the same.

L may have balance −, =, or +. After rotation, the new balance of T
and R depends on the old balance of L. If the old balance of L was −, the
new balance of T will be =, and that of R will be +, etc. (See Figure 4 for
more details.) We use this later rotation scheme on the previous imbalanced
BST { [2] 4++ [(6+ 〈7〉) 8− (10)] } where α=[2]=(2) ; T=4 ; β=� ; L=6
; γ=〈7〉=(7) ; R=8 ; δ=(10). The old balance of L=6 was +, so the new
balance of T=4 will be −, and the new balance of R=8 will be =. Applying
this rotation rule, we receive AVL tree
{ [(2) 4−] 6= [(7) 8= (10)] }.

Let us notice, if the balance of node L was b before applying this (++,−)
rotation rule, then (after applying this rotation rule) the new balance of T
will be bt, and that of R will be br where

bt = −b(b+ 1)/2c and br = b(1− b)/2c.

We get similarly the rotation rules of the cases when the balance of the root
of the smallest imbalanced subtree is −− (see also Figures 3 and 5.):

[(α L− β) T−− γ] → [α L= (β T= γ)]
{ [α L+ (β R−=+ γ)] T−− δ } → [(α L==− β) R= (γ T+== δ)]

bl = −b(b+ 1)/2c and bt = b(1− b)/2c

13

where b was the balance of node R before applying the (−−,+) rotation rule;
but after applying this rule the new balance of L will be bl, and that of T
will be bt.

In the (−−,+) rotation scheme, T−− is the root of the imbalanced BST.
Its left child is L+. The right child of L is R:

R is the left-right grandchild of the imbalanced node T−−. After the
rotation, R becomes the new root of this (sub)tree. R's parent and grandparent
become its two children. and the four subtrees: α, β, γ and δ remain in their
original order. The inorder traversal of the whole (sub)tree remains the same.

Let us see the detailed codes of insertion. Compared to the insert
procedure of BSTs, we use an extra parameter here: d is a reference parameter
of Boolean type. After the call, it is true, if the height of the actual subtree
increased by one, and it is false, if its height did not change.

�� �AVLinsert(&t:Node* ; k:T ; &d:B)

AA
t = �

��

t := new
Node(k)
d := true

AA
k < t→ key

AVLinsert(t→ left, k, d)

AA d ��

leftSubTreeGrown
(t, d)

SKIP

AA
k > t→ key

AVLinsert(t→ right, k, d)

AA d ��

rightSubTreeGrown
(t, d)

SKIP

AAELSE

d :=
false

�� �leftSubTreeGrown(&t:Node* ; &d:B)

AA
t→ b = −1

��

l := t→ left

AA
l→ b = −1

��

rotateMMm(t, l) rotateMMp(t, l)

d := false

t→ b := t→ b− 1

d := (t→ b < 0)

�� �rightSubTreeGrown(&t:Node* ; &d:B)

AA t→ b = 1 ��

r := t→ right

AA r → b = 1 ��

rotatePPp(t, r) rotatePPm(t, r)

d := false

t→ b := t→ b+ 1

d := (t→ b > 0)

14

�� �rotatePPp(&t, r : Node*)

t→ right := r → left

r → left := t

r → b := t→ b := 0

t := r

�� �rotateMMm(&t, l : Node*)

t→ left := l→ right

l→ right := t

l→ b := t→ b := 0

t := l�� �rotatePPm(&t, r : Node*)

l := r → left

t→ right := l→ left

r → left := l→ right

l→ left := t

l→ right := r

t→ b := −b(l→ b+ 1)/2c
r → b := b(1− l→ b)/2c

l→ b := 0

t := l

�� �rotateMMp(&t, l : Node*)

r := l→ right

l→ right := r → left

t→ left := r → right

r → left := l

r → right := t

l→ b := −b(r → b+ 1)/2c
t→ b := b(1− r → b)/2c

r → b := 0

t := r

Notice that the rotation rules (−−,=) and (++,=) on Figures 6 and 7 are
never applied in insertion. (They will be applied in deletion.)

And one insertion applies maximum one of the rotation rules on Figures
2-5 and maximum once, because a successful insertion creates a new leaf,
and then we go up level by level in the tree rebalancing the ancestors of the
new leaf until

• we �nd an imbalanced node. In this case, the height of the actual
subtree has been increased by one. Then we apply the appropriate
rule, i.e. one of those on Figures 2-5. And each of them decreases the
height of the actual subtree by one. (See Figures 2-5 for the details.)
Thus the original height of this subtree has been restored, and we
just leave insertion. Consequently, in insertion, we never modify
the balances of the nodes outside of the smallest imbalanced
subtree.

• rebalancing a node we �nd that it is perfectly balanced. This means
that one of its direct subtrees has grown to the height of the other.
Therefore the height of the subtree corresponding to the actual node has
not been changed by the insertion. Thus we have �nished rebalancing.

15

We did not �nd imbalanced node, and the insertion has been �nished
without rotation.

• we arrive at the root of the whole tree but do not �nd imbalanced node.
This case is similar to the previous one: no rotation is needed, because
the BST remained balanced.

Example 2.17 Let us see an example of the �rst case above, especially when
the imbalanced node is not the root of the whole tree. Insert key 7 into AVL
tree { [(1) 2−] 3+ [(〈4〉 5= 〈6〉) 8− (9)] }.

Solution: After inserting key 7, but still before rebalancing we have the
following tree: { [(1) 2−] 3+ [(〈4〉 5= 〈 6= {7} 〉) 8− (9)] }.
We rebalance nodes 6 , 5 , and 8 . We stop rebalancing here, because node
8 −− has become imbalanced (thus node 3 + is not rebalanced):
{ [(1) 2−] 3+ [(〈4〉 5+ 〈 6+ {7} 〉) 8−− (9)] }
Next we apply rotation (−−,+) at node 8 −−.
The actual rule of rotation is
[(α L+ 〈β R+ γ〉) T−− δ] → [(α L− β) R= (γ T= δ)]
with α=〈4〉, L=5, β=�, R=6, γ={7}=〈7〉, T=8, δ=(9)=〈9〉
(see also Figure 5).
The result: { [(1) 2−] 3+ [(〈4〉 5−) 6= (〈7〉 8= 〈9〉)] }.

Exercise 2.18 Let us modify the Node type of AVL trees so that we store
the height of the corresponding subtree in each node, but we do not store the
balances.

The four simpler rules of rotations on �gures 2, 3, 6, 7 can be reduced to
two rules + recalculating the heights of the modi�ed subtrees. The two simple
rotations:
Right-to-left rotation: [α T (β R γ)] → [(α T β) R γ]
Left-to-right rotation: [(α L β) T γ] → [α L (β T γ)]
Which one should be used in the di�erent cases?

The more complex rules of rotations which correspond to �gures 4 and 5
can be considered double rotations now, because we can get them as two sim-
ple rotations applied at the appropriate points of the the tree + recalculating
the heights of the modi�ed subtrees.

How to use the simple rotations above in the di�erent cases?

Exercise 2.19 At structogram (and/or C/C++) level, implement insertion
using the new rules of rotations developed in Exercise 2.18.

Compare your implementation of insertion to the corresponding struc-
tograms given above. What can we say about the complexity of the code?
What can we tell about e�ciency issues?

16

2.2 AVL trees: removing the minimal (maximal) node

On nonempty BSTs, procedure remMin removes the minimal node (i.e. the
node with minimal key):�� �remMin(&t,&minp : Node*)

AA
t→ left = �

��

minp := t

t := minp→ right

minp→ right := �
remMin(t→ left,minp)

Applying this to AVL tree { [2] 4+ [(6) 8= (10)] }, we receive the imbalanced
BST { 4++ [(6) 8= (10)] } while minp refers to the minimal node of the
original tree where minp→ key = 2 ∧ minp→ left = minp→ right = �.
Notice that we show the theoretical balances above. At representation level,
the code above does not do anything with the balances (b attributes). After
removing the minimal node, we have to go up from the place of it, and level
by level rebalance the ancestors of it. If we �nd a node with �++� balance,
the appropriate rotation must be applied. (Notice that balance �−−� is not
possible when we remove the minimal node.)

Rotation (++,=) is needed here (see Figure 7 for the details):

{ α T++[β R= γ] } → { [α T+ β] R− γ }.

Notice that this rotation does not modify the height of the actual subtree.
Therefore, neither more rebalancing nor more rotations are needed after this
rotation, even if this rotation is applied to a proper subtree of the whole
BST. The �nal result is { [4+ (6)] 8− (10) } here.

Notwithstanding, when rotation (++,+) or (++,−) is needed, then the
rotated subtree becomes lower, and after the rotation, rebalancing goes on.
Then it is possible that two or more rotations are needed at di�erent levels.
However, each rotation needs constant time, and the number of levels is not
more than 1.45 log n. Thus the maximal runtime is still Θ(log n).

Example 2.20 Remove the minimal node from AVL tree
{ [(1) 2+ (3+ 〈4〉)] 5+ [(〈6〉 7+ 〈 {8} 9− 〉) 10− (11+ 〈12〉)] } .
We need two rotations here.

Solution: We remove the leftmost node, i.e. node 1 . The appropriate
subtree becomes empty. Its height is decreased by one. Then the balance
of node 2 becomes �++�. The subtree rooted by node 2 needs rotation

17

(++,+): [2++ (3+ 〈4〉)] → [(2) 3= (4)]. The height of this subtree
is decreased by one. (Rotation (++,+) always decreases the height of the
rotated subtree by one.) Consequently the balance of node 5 is increased
by one. The whole tree now:
{ [(2) 3= (4)] 5++ [(〈6〉 7+ 〈 {8} 9− 〉) 10− (11+ 〈12〉)] }.

The right child of node 5 ++ is 10−. Thus we need rotation (++,−).

The left child of 10− is 7 +. After rotation (++,−) (see Figure 4 for the
details), always the right-left grandchild of the root of the rotated subtree
becomes its root. This is 7 + now. Its original parent and grandparent
becomes its two children, and the four subtrees are arranged in order:
{ [(〈2〉 3= 〈4〉) 5− (6)] 7= [(〈8〉 9−) 10= (11+ 〈12〉)] }.
The balances of the three nodes are determined by the old balance of the
original grandson (7 + here), according to Figure 4. The four subtrees are
not changed. (Just the brackets were rewritten here for better reading.)

Based on the rules discussed above, we can complete the code of procedure
remMin(t,minp) above. For AVL trees, we need an extra Boolean parameter
d which is true, i� the height of the appropriate subtree has been decreased
by one. (It cannot decrease by two or more.) When we return from a recursive
call, we check d. If it is true, we have to go on with rebalancing and possibly
rotations. If d is false, neither subsequent rebalancing nor rotations are
needed.

�� �AVLremMin(&t,&minp:Node* ; &d:B)

AA
t→ left = �

��

minp := t

t := minp→ right

minp→ right := �

d := true

AVLremMin(t→ left,minp, d)

AA d ��

leftSubTreeShrunk(t, d) SKIP

�� �leftSubTreeShrunk(&t:Node* ; &d:B)

AA t→ b = 1 ��

rotate_PP(t, d)
t→ b := t→ b+ 1

d := (t→ b = 0)

18

�� �rotate_PP(&t:Node* ; &d:B)

r := t→ right

AA
r → b = −1

rotatePPm(t, r)

AA r → b = 0

rotatePP0(t, r)

d := false

AA r → b = 1

rotatePPp(t, r)

�� �rotatePP0(&t, r : Node*)

t→ right := r → left

r → left := t

t→ b := 1

r → b := −1

t := r

Exercise 2.21 Based on procedure AVLremMin(t,minp, d) above, write the
structograms of procedure AVLremMax(t,maxp, d). You will need the code
of rotation rules (−−,−), (−−,+) and (−−,=) de�ned on Figures 3, 5 and
6. You should write new code for rotation rule (−−,=) de�ned on Figure 6.

2.3 AVL trees: deletion

Procedures del(t, k) and delRoot(t) for BSTs:

�� �del(&t:Node* ; k:T)

AA
t 6= �

��

AA
k < t→ key

del(t→ left, k)
AA
k > t→ key

del(t→ right, k)
AA

k = t→ key

delRoot(t)
SKIP

19

�� �delRoot(&t:Node*)

AA
t→ left = �

p := t

t := p→ right

delete p

AA
t→ right = �

p := t

t := p→ left

delete p

AA
t→ left 6= � ∧ t→ right 6= �

remMin(t→ right, p)

p→ left := t→ left

p→ right := t→ right

delete t ; t := p

These are completed below as it was done in case of procedure
AVLremMin(t,minp, d) in section 2.2. We add Boolean parameter d which
is true, i� the height of the appropriate subtree has been decreased by one.
(It cannot decrease by two or more.) When we return from a recursive call,
we check d. If it is true, we have to go on with rebalancing and possibly
rotations. If d is false, neither subsequent rebalancing nor rotations are
needed.

�� �AVLdel(&t:Node* ; k:T ; &d:B)

AA
t 6= �

��

AA
k < t→ key

AVLdel(t→ left, k, d)

AA d ��

leftSubTreeShrunk
(t, d) SKIP

AA
k > t→ key

AVLdel(t→ right, k, d)

AA d ��

rightSubTreeShrunk
(t, d) SKIP

AA
k = t→ key

AVLdelRoot
(t, d)

d :=
false

�� �AVLdelRoot(&t:Node* ; &d:B)

AA
t→ left = �

p := t

t := p→ right

delete p

d := true

AA
t→ right = �

p := t

t := p→ left

delete p

d := true

AA
t→ left 6= � ∧ t→ right 6= �

rightSubTreeMinToRoot(t, d)

AA d ��

rightSubTreeShrunk(t, d) SKIP

20

�� �rightSubTreeMinToRoot(&t:Node* ; &d:B)

AVLremMin(t→ right, p, d)

p→ left := t→ left ; p→ right := t→ right ; p→ b := t→ b

delete t ; t := p

When rotation (++,=) or (−−,=) is performed, it does not modify the
height of the actual subtree. Therefore, neither more rebalancing nor more
rotations are needed after one of these rotations, even if the rotation is applied
to a proper subtree of the whole BST.

Notwithstanding, when rotation (++,+), (−−,−), (++,−) or (−−,+)
is needed (see Figures 2-5), then the rotated subtree becomes lower, and
after the rotation, rebalancing goes on. Then it is possible that two or
more rotations are needed at di�erent levels. However, each rotation needs
constant time, and the number of levels is not more than 1.45 log n. Thus
the maximal runtime of deletion is also Θ(log n).

Exercise 2.22 Based on procedure leftSubTreeShrunk(t, d) write procedure
rightSubTreeShrunk(t, d) together with its auxiliary procedures. (See rotation
rule (−−,=) given on Figure 6.)

Example 2.23 Delete key 2 from AVL tree
{ [(1) 2+ (3+ 〈4〉)] 5+ [(〈6〉 7+ 〈 {8} 9− 〉) 10− (11+ 〈12〉)] } .

Solution: We delete node 2 . AVLremMin is called on its right subtree,
and node 3 is removed from it, so it will be AVL tree (4). No rotation is
needed during AVLremMin, but the height of this right subtree is decreased
by one, so AVLremMin returns with d = true. Node 2 is substituted by
node 3 which inherits the balance of node 2 . Then its balance is decreased
by one because d = true. Thus the actual subtree becomes [(1) 3= (4)].
The height of this subtree has been decreased by one. Consequently the
balance of node 5 is increased by one. The whole tree now:
{ [(1) 3= (4)] 5++ [(〈6〉 7+ 〈 {8} 9− 〉) 10− (11+ 〈12〉)] }.

The right child of node 5 ++ is 10−. Thus we need rotation (++,−).

The left child of 10− is 7 +. After rotation (++,−) (see Figure 4 for the
details), always the right-left grandchild of the root of the rotated subtree
becomes its root. This is 7 + now. Its original parent and grandparent
becomes its two children, and the four subtrees are arranged in order:
{ [(〈1〉 3= 〈4〉) 5− (6)] 7= [(〈8〉 9−) 10= (11+ 〈12〉)] }.

21

The balances of the three nodes are determined by the old balance of the
original grandchild (7 + here), according to Figure 4. The four subtrees are
not changed. (Just the brackets were rewritten here for better reading.)

Example 2.24 Delete key 5 from AVL tree
{ [(1) 2+ (3+ 〈4〉)] 5+ [(〈6〉 7+ 〈 {8} 9− 〉) 10− (11+ 〈12〉)] } .

Solution: In order to delete node 5 , �rst AVLremMin is called on its
right subtree: [(〈6〉 7+ 〈 {8} 9− 〉) 10− (11+ 〈12〉)]. AVLremMin is
called recursively on its left subtree: (〈6〉 7+ 〈 {8} 9− 〉). We remove its
lefmost node 6 . The balance of its parent 7 + is increased by one. The
corresponding subtree is (7++ 〈 {8} 9− 〉). Rotation (++,−) is performed
on it. The result is (〈7〉 8= 〈9〉). Its height is decreased by one, so the

recursive call to AVLremMin returns with d = true, and the balance of 10−
is increased by one. The corresponding subtree is
[(〈7〉 8= 〈9〉) 10= (11+ 〈12〉)].
Its height is decreased by one, so the �rst call to AVLremMin returns with
d = true. After the run of AVLremMin the whole tree is
{ [(1) 2+ (3+ 〈4〉)] 5+ [(〈7〉 8= 〈9〉) 10= (11+ 〈12〉)] }.
Node 5 is substituted by node 6 :
{ [(1) 2+ (3+ 〈4〉)] 6+ [(〈7〉 8= 〈9〉) 10= (11+ 〈12〉)].
d = true still shows that height of its right subtree was decreased by one, so
the balance of 6 + is also decreased by one. The �nal AVL tree is
{ [(1) 2+ (3+ 〈4〉)] 6= [(〈7〉 8= 〈9〉) 10= (11+ 〈12〉)].

Exercise 2.25 Write an alternative code of procedure AVLdel(t, k, d). It
shall be similar to the previous one, but if key k is in a node with two children,
it shall substitute this node with the maximal node of its left subtree.

3 General trees

Compared to binary trees, a node of a rooted tree may have unlimited (al-
though �nite) number of children. A rooted tree is ordered if the order of the
children of nodes is important. An ordered rooted tree is also called general
tree. (See Figure 8.) We will not de�ne empty subtrees of general trees.

Using general trees we can model hierarchical structures like

• directory hierarchies in computers

• (block) structure of programs

22

• di�erent kinds of expression in mathematics and computer science

• family trees etc.

General trees can be represented with linked binary trees in a natural way.
Type Node of the nodes of general trees is given below.

• Pointer firstChild refers to the �rst child of a node.
p→ firstChild = �, i� node (∗p) is a leaf.

• Pointer nextSibling refers to the next sibling in a list of children.
p→ nextSibling = �, i� (∗p) is the root node of the tree, or it is the
last sibling in a list of children.

Node
+ firstChild, nextSibling : Node*
+ key : T
+ Node() { firstChild := nextSibling := � }
+ Node(x:T) { firstChild := nextSibling := � ; key := x }

In the nodes, there might be parent pointers referring to the parent of the
children. We will not use parent pointers here.

Exercise 3.1 Try to invent alternative (linked) representations of general
trees. Compare your representations to the linked binary representation
above. Consider memory needs and �exibility.

In the textual or parenthesized representation of general trees we start with
the root of the actual (sub)tree. Thus a nonempty tree �ts the general scheme

(R t1 . . . tn)

where R is the content of the root node and t1 . . . tn are the direct subtrees
of node R.

Example 3.2 In general tree { 1 [2 (5)] (3) [4 (6) (7)] }, 1 is in the root.
Its children are the nodes with keys 2, 3 and 4. The corresponding subtrees
are [2 (5)], (3) and [4 (6) (7)] in order. The leaves of the tree are the
nodes with keys 5, 3, 6 and 7. (See Figure 8.)

23

5

2 3

1

4

6 7

1 �

2 � 3 4 �

� 5 � � 6 � 7 �

Figure 8: The abstract structure of a general tree on the left and its linked
binary representation on the right. Its textual or parenthesized representa-
tion is { 1 [2 (5)] (3) [4 (6) (7)] }. (The di�erent kinds of brackets may
vary.)

Exercise 3.3 Write a procedure printing a general tree given in linked bi-
nary representation. The result should be in textual representation.

Write another procedure which can build a general tree in linked binary
representation. Its input is a text�le where the tree is given in parenthesized
form.

Write these printing and reading procedures for the linked representations
you invented in Exercise 3.1.

(The printing procedures are usually more straightforward than those
which build up the linked representation from the textual form.)

In order to make the preorder traversal of a general tree, we have to tra-
verse its binary representation also with preorder traversal where firstChild
corresponds to left and nextSibling corresponds to right.

But the the postorder traversal of a general tree requires the inorder
traversal of its binary representation.6

The preorder and postorder traversals of a general tree are given below,
provided that it is given in linked binary representation.

6A search in the �le system of a computer requires preorder traversal, while evaluating
an expression requires postorder traversal of the general (i.e. theoretical) expression tree.

24

�� �preorder(t:Node*)

t 6= �
process(t)

preorder(t→ firstChild)

t := t→ nextSibling

�� �postorder(t:Node*)

t 6= �
postorder(t→ firstChild)

process(t)

t := t→ nextSibling

Exercise 3.4 Write the traversals of general trees above for the representa-
tions you invented while solving Exercise 3.1.

Given a general tree in some representation, write a procedure copying it
into another given representation.

4 B+ trees and their basic operations

See �le http://aszt.inf.elte.hu/∼asvanyi/ds/AlgDs2/B+trees.pdf.

25

