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Introdution



P

rogramming languages are thought by many to provide as a notation form
for program description. This view does not take into account – or does not
even know –, how high level or user-centered languages can aid in managing

program complexity. Different languages with their possibilities suggest different
programming approaches, so the common practice, which is still used nowadays
in many places, is highly dangerous, when programming methodology is taught
through particular programming languages, not independently from them – this
could only lead to narrow concerning all the programming possibilities.

The goal of programming is to produce a good quality software product, so
the education of programming must start with the general definition of the
task and its solving program [Fó83]. Then based on this principle, the different
concrete language tools should be acquainted to the programmers, which support
the implementation. However, as it is questionable to teach the methodology
through particular concrete programming languages, it also leads to a dead end,
if the used programming language is said to be not important for the sake of the
methodology. This is – as described by Bertrand Meyer [Mey00] – like “a bird
without wings”. The idea is inseparable from the possibilities of formulation. It is
not a coincidence that in programming no single language has become dominant,
nor that always newer programming languages are designed, which support even
more the adaptation of different methodological concepts and requirements into
practice.

Designers of programming languages must deal with three problems [Hor94]:

• The representation provided by the language must fit the hardware and
the software at the same time.

• The language must provide a good nomenclature for the description of
algorithms.

• The language must serve as a tool to manage program complexity.
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Aspets of software quality

The software is a product, and as for every product, it has – as defined by many
([Mey00], [Hor94] and [LG96]) – different quality characteristics and require-
ments. One of the most important goals of the programming methodology is
to specify a theoretical approach for creating good quality program products.
The design and the evaluation of already existing programming languages are
definitely influenced by methodological considerations.

Next, characteristics of “good” software will be discussed according to the
work of Bertrand Meyer [Mey00]. After that, language features will be examined
for supporting the methodology – through numerous programming languages.

Software quality is influenced by many factors. One part of these – such
as reliability, speed, or ease of use – are basically perceived by the user of the
program. Others – such as how easy it is to reuse some parts of it for a different,
but similar problem – affect program developers.

Corretness

Correctness of the program product means that the program solves exactly the
problem and fits the desired specification. This is the first and most important
criterion, since if a program is not working like it should, other requirements
do not really count. The elementary basis for this is the precise and the most
complete specification.

Reliability

A program is called reliable if it is correct, and abnormal – not described in
the specification – circumstances do not lead to catastrophe, but are handled in
some “reasonable” way.

This definition shows, that reliability is by far not as a precise notion as
correctness. One could say, of course with a more specific specification reliability
would mean correctness exactly, but in practice there are always cases which are
not covered by specification explicitly. That is why reliability is of high priority
for the program product quality.

Maintainability

Maintainability refers to how easy it is to adjust the program product to speci-
fication changes.

The users often demand further development, modification, adjustment of the
program product to new external conditions. According to some surveys 70 %
of program product costs are spent on maintenance, so it is understandable
that this requirement significantly affects the quality of the program. (This is
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relevant especially if developing big programs and program systems, since for
small programs usually no change is too complex.)

To increase maintainability, design simplicity and decentralization (to have
independent modules) can be seen as the two most important basic principles.

Reusability

Reusability is the feature of the software products, that they can be partly or as
a whole reused in new applications.

This is different to maintainability, since the same specification was modified
there, but now the experience should be utilized, that many elements of software
systems follow common patterns, and reimplementing already solved problems
should be avoided.

This question is particularly important, not only when producing individual
program products, but for a global optimization of software development, as
the more reusable components are available to help problem solving, the more
energy remains to improve other quality characteristics (at the same costs).

Compatibility

Compatibility shows how easy it is to combine the software products with each
other. Programs are not developed isolated, so efficiency can go up by orders
of magnitude, if ready software can be simply connected to other systems.
(Communication between programs is based on some standards, such as, for
example, in Unix.)

Other harateristis

From the quality characteristics of the program product, portability, efficiency,
user friendliness, testability, clarity etc. are also important to pay attention to.

Portability regards how easy it is to port the program to another machine,
configuration or operating system – usually to have it run in different runtime
environments.

The efficiency of a program is proportional to the running time and used
memory size – the faster, or the less memory is used, the more efficient it is.
(These requirements often contradict each other, a faster run is often set off by
bigger memory requirements, and vice versa.)

The user friendliness is very important for the user: this requires data input
to be logical and simple, the output of the results must be clearly formatted.

Testability and clarity are important for the developers and maintainers of
the program, without these the reliability of the program cannot be guaranteed.
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Aspets of software design

Some of these requirements – the improvement of correctness and reliability
– require primarily the development of specification tools. The easier it is to
verify if a piece of program code is really an implementation according to the
specification, the easier it will be to developed correct and reliable programs.
The main role here have programming language features for specification (type
invariant, pre- and postconditions) descriptions – this is supported for example
by Eiffel [Mey00], by Ada 2012 [NG+98] etc.

Implementation of another group of requirements – mainly maintainability,
reusability and compatibility – can be best supported by designing the programs
as independent program units having well defined interconnections. This is the
basis of the so called modular design. (A module here is not a programming
language concept, but a unit of the design.) This question will be handled in
more detail in Chapter ??.

Our goal is to examine the features of different programming languages to
support professional programmers in developing reliable software of good quality.

Study of the tools of programming languages

It is a natural question, why it is not enough to know one programming language,
for what purpose it is good to deal with all the possible features of different
programming languages. In the following – primarily based on the work of
Robert W. Sebesta [Seb13] – we will try to summarize the advantages coming
from this:

Inrease of the expressive power

Our thinking and even abstraction skills are strongly influenced by the possi-
bilities of the language used. Only that can be expressed, for which there are
words. Likewise during program development and designing the solution, the
knowledge of diverse programming language features can help programmers to
widen their horizon. This is also true if a particular language must be used, since
good principles can be applied in any environments.

Choosing the appropriate programming language

Many programmers have learnt programming through one or two languages.
Others know older languages which are now considered obsolete, and they are
not familiar with the features of modern languages. This could result in not
selecting the most appropriate language if there would be more programming
languages as options to choose from for a new task – since they do not know the
possibilities the other languages could offer. If these programmers would know
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the unique features of the available tools, they could make considerably better
decisions.

Better attainment of new tools

Newer and newer programming languages will appear, thus quality programming
requires continuous learning. The more the basic elements of the programming
languages are known, the easier it will be to learn and keep up with progress.

In our book most examples are in Ada, C/C++ or Java language for certain
language constructs, there are only a few chapters (except of course those about
logical and functional programming) where these languages are not referenced
in almost every paragraph.

Our book is aimed at facilitating primarily, the studies of university and
college students to learn about programming languages, and to help the work
of IT and computer specialists. Some degree of knowledge of informatics is a
prerequisite to fully understand our book: readers must have already solved
some programming tasks on some programming languages.
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Logi programming and

Prolog1

Povided that our knowledge about a problem is
modelled by axioms, we can pose queries in the
form of statements to be proved, in order to find
objects satisfying these statements to be proved. The
process of formal, constructive proof or deduction is
some kind of computation. If this computation is
controlled by an algorithm, then our statements
together with the algorithm form a program, and
writing such programs is logic programming (LP).
In other words, a logic program is a set of axioms
and a statemement to be proved + a machine
controlling deduction. It is similar to an automated
theorem prover. The main difference is the
simplicity of the control component of logic
programs: the process of computing is trackable,
controlable, predictable. Its termination can be
ensured. Its time and space complexity can be
calculated: an LP language is a general purpose
programming language, and effectivity is a main
point.
In this chapter we survey the development of logic
programming, its key concepts, and its (up till now)
most important realization: the Prolog language. We
discuss the programming methodology of Prolog,
give examples, consider some extensions, and new
trends. We emphasize the practical methods of
Prolog programming; how to write valid and
effective programs.



1.1 Introdution

The roots of logic programming (LP) reach as far as Hilbert, who proclaimed
his program to axiomatize mathematics because the naive set theory had been
found burdened with contradictions. Also he proposed to work out the methods
of automated theorem proving.

The birth of the resolution algorithm [Rob65] is an important milestone
of research, because we can extract answers from the run of the algorithm.
Therefore it is a tool for constructive proof, and the deduction is a program
searching or computing objects with given properties.1

Provided an automated theorem prover, the algorithm of proof or computa-
tion consists of two components:

1. The logical (declarative) description of the problem;

2. And the control component of the deduction or computation.

Shortly:

Algorithm = Logic + Control.

After some unsuccessful american efforts, in the beginning of the seventies Robert
Kowalski realised that a general purpose programming language can be based
on these principles [Kow79]. Alain Colmerauer and his colleagues designed and
implemented the first LP language with acceptable performance in Marseille,
1972. This was the first version of Prolog. It was implemented as an interpreter.

The practical purpose of the developers was a natural language interface for a
data base handler, and this became the first practical application of Prolog.2

1 Familiarity with first order logic, and with resolution algorithm ([Nil82] and [Kow79]) is
supposed, although the main flow of this chapter is understandable even without them.

2 The name Prolog is an abbreviation of the French expession Programmation en logique.
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The first effective Prolog compiler was developed by David H. D. Warren and
his colleagues at Edinborough in the second half of the seventies. Considering
effectivity, it was comparable with best Lisp implementations of the time. It
became a de facto standard of Prolog, determined the direction of its later
development, and indirectly even its ISO standard, which was developed in the
middle of nineties. Unfortunately, still there are compatibility problems between
the module systems of the major Prolog compilers. And there are the extensions
of the language allowed by the standard. Consequently, program code written
on one Prolog compiler will not necessarily work on others, except if only the
core of the language is used. Whenever we go beyond this, we sign it and we
follow SICStus Prolog 4 [C+12], because nowdays this is one of the most popular
implementations, and it follows closely the standard. (Our example programs
have been tested in SICStus Prolog 4.2.3.)

Up till now, Prolog is the most widely used LP language. Its designers proved
a practical sensibility. The compromises they made were theoretically criticized.
Nevertheless, Prolog helps us in a good programming style, and in the fast
development of programs with just a few errors, producing effective codes. This
is the secret of its relative success.

Maybe there is no other language in which good programming style is so
basic from the point of view of producing robust and effective code. Therefore,
in this short chapter we concentrate on the basic features of the Prolog language,
and on its programming methodology. We prefer this to a general introduction
to LP, because we believe that this approach gives more to the newcomer. And
we hope, at the end of the chapter we give good pointers to the reader yearning
for wider knowledge.

1.2 Logi programs

A logic program is a set of logic axioms referring to a model, and a query referring
to this model. The axioms describe the properties and relations of the objects
of this model. For example, given statemens defining who is who’s father. These
axioms describe the relation father with arity two. If we tell who are male, the
appropriate axioms describe the relation male with arity one (1.2.1).

A subset of axioms describing a relation is called a predicate. The run of
a program is a constructive proof of a theorem being the consequence of the
axioms. In other words, the run of the program computes an answer to a query
or goal. During this computation or proof the predicates work as procedures.

In today’s LP languages, any axiom is a fact or a rule. The axioms and queries
(i.e. goals) are called sentences (although the queries may not be part of the
source program). In some LP languages, the sentences can also be declarations
referring to the predicates, and directives to be performed while loading the
program. The declarations modify the run of the predicates, i.e. procedures,
while the directives may modify the workspace of the program. The declarations
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describe special properties of the predicates they refer to, while the directives
are goals containing predicate invocations.

In Prolog, the declarations and the directives have the same form:
: −goal.
Each sentence is terminated by a dot, and at least one whitespace character.

The axioms of a logic program are also called definite clauses. The state-
ments (the axioms and queries together) of a logic program are also called Horn
clauses, but we will simply use the word clauses, because we will speak just about
Horn clauses, and this abbreviation is quite common in logic programming.

1.2.1 Fats

The simplest logic programs consist of facts only.
The facts are formally atomic formulas. In the next example father(x, y)

means that x is the father of y, while male(x) means that x is a male.

father(’Abraham’,’Isaac’). father(’Abraham’,’Ishmael’).

father(’Abraham’,’Anon’).

father(’Isaac’,’Jacob’). father(’Isaac’,’Esau’).

mother(’Sarah’,’Isaac’). mother(’Hagar’,’Ishmael’).

mother(’Rebeka’,’Jacob’). mother(’Rebeka’,’Esau’).

male(’Abraham’). male(’Isaac’). male(’Ishmael’).

male(’Jacob’). male(’Esau’).

female(’Sarah’). female(’Hagar’). female(’Rebeka’).

female(’Anon’).

These facts express simple properties and relations of objects. The objects or
entities are represented by their names: an identifier starting with a lower-case
letter, or any sequence of characters delimited by single quotes or by single
back-quotes. The name of a relation follows the same syntax.

Examples for the simplest queries:3

| ?- father(’Abraham’,’Isaac’).

yes

| ?- mother(’Sarah’,’Jacob’).

no

3 The | ?- is the Prolog prompt: the Prolog environment waits for our query. We can type
our commands and queries to this prompt. A command or query is always finished by a
dot and <Enter>. The response of the Prolog system is yes, if it finds that our query as a
statement is implied by the program, but its response is no if it finds that it is not implied
by it. The proof is just one step here: either we find the fact identical to the query or not.
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If you want to ask: Is there some X, whose father is Isaac? – then you receive
two solutions according to the program above. X indicates the unknown entity
in the query, i.e. an existentially quantified logical variable:

| ?- father(’Isaac’,X).

X = ’Jacob’ ? ; X = ’Esau’ ? ;

no

| ?-

Note: The names of logic variables are written as identifiers starting with an
upper-case letter or underscore character.

The results above come from matching goal father(′Isaac′, X) against the
appropriate facts.4 During the process of matching, the variables of the goal
are substituted by the appropriate nonvariables of the fact. Such substitutions
represent the solutions of the goals.

Up till now we posed atomic goals, that is atomic queries to the Prolog en-
vironment. We can form compound goals as conjunctions of atomic ones. An
atomic query in a compound goal is called its subgoal. For example, let us find
Abraham’s daughters:

| ?- father(’Abraham’,X), female(X).

X = ’Anon’ ? ;

no

The solutions of a goal are the common solutions of its subgoals. We can say,
a subgoal solved later provides a selection on the solutions of a subgoal solved
earlier (iff they have common logic variable(s)).5

In logic programming, the variables are always logic variables. They stand
for unknown objects. They may be universally or existentially quantified. The
variables of goals are always existentially quantified. The run of the program
produces constructive answers to the query, that is, it computes possible values
of its variables.

Warning: Because a logic variable stands for an unknown object, destructive
assignment statements like X := X + 1 do not have stand in pure logic program-
ming. (For example, in X := X + 1, which value of X stands for the unknown
object?)

1.2.2 Rules

A proper conjunction of subgoals defines a new relation. For example, the con-
junction “father(′Abraham′, X), female(X)” refers to the daughters of Abraham.
4 The question marks refer to the questions of the SICStus Prolog environment, whether we

ask for another solution. Our response ; means that we ask for that. (If we do not need
further solution, we press <Enter>. Then the system finishes the current conversation with
yes.) In the example above, the finishing no abbreviates no more solutions.

5 The word iff abbreviates the expression if and only if.
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Assigning a name to this new relation, we receive a rule. Beside facts, rules form
the second class of axioms in LP (logic programming).

‘Abraham’s daughter‘(X) :- father(’Abraham’,X), female(X).

This reads: X is Abraham’s daughter if Abraham is father of X and X is female.
(This rule does not contain the information that no one has more fathers.) The
logical variables of a rule are universally quantified, as it is with the rule above.
The general form of a rule:

A : − B1, B2, ... , Bn. (n > 0)
(A, B1, . . . , Bn are atomic formulas.)

The consequence part of a rule (above A) is the head of the rule. The condition
part of a rule (above B1,. . . ,Bn) is the body of the rule.

Note: The facts have only head. A fact can be considered a rule with empty body
or a rule with the condition part true. A proper rule is a rule which is not a
fact.

Even a fact may contain (universally quantified) logic variables. Then it is called
a universal fact. For example, the next fact says that everybody likes Sarah.

likes( anybody,’Sarah’).

And the next one says that anything is equal to itself. (Note that this predicate,
i.e. ′ =′ /2 is a standard built-in of Prolog. Notice also that its name can be
written between its parameters. This is posible, if infix operator notation (1.9)
is defined to the name.)

X=X.

In such a way, we do not have to repeat the appropriate axiom for each element of
the universe of the program. Anyway, the universe of a practical logic program
is usually infinite, so we are not able to do this. There is another important
difference between a set of facts and the appropriate universal fact. If you ask,
who likes Sarah:

| ?- likes(Who,’Sarah’).

true ? ;

no

The answer true means that the solution found did not substitute the logical
variable Who. We may interpret this as a generic answer:

The statement likes(Who,′ Sarah′) is true for each element of the universe,
that is, the unsubstituted varible can be substituted by any element “x” of
the universe, and the statement likes(x,′ Sarah′) still remains true. It is quite
natural that the Prolog machine did not find any other answer, just this generic
one.
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A relation and the predicate defining it can be specified by its name and arity,
in the form name/arity. (The arity is the number arguments (i.e. parameters) of
a predicate. An argument is a position in the program text, where a parameter
is written.)

A relation is often defined by more axioms or rules. (Remember that facts
can be considered as special rules with empty or true body.) In such a case,
this relation is the union of the relations defined by the individual rules. The
scope of a logical variable is the sentence containing it. It is visible in the whole
sentence, because there are neither more local, nor more global variables. (It
is visible exacly in its scope, because it cannot be hidden by other variables:
there is no hierarchy of scopes, unlike in first-order logic, or in block-structured
languages.) For example, in the next program the relation parent/2 is the union
of the relations mother/2 and father/2:

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

son(X,Y) :- parent(Y,X), male(X).

daughter(X,Y) :- parent(Y,X), female(X).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

On the other hand, the relation son/2 is the intersection of parent/2 and
male/1, and we receive similarly relation daughter/2, too. The last rule differs
from the others, because it contains a new logical variable in the rule body. In
this way, it has two different, but equivalent readings:

• For each X, Y, Z, grandparent(X, Y), if
parent(X, Z) and parent(Z, Y).

• For each X, Y, grandparent(X, Y), if
there exists a Z so that parent(X, Z) and parent(Z, Y) hold.

1.2.3 Computing the answer

The above readings of rules correspond to the declarative meaning of them. This
is contrasted by the procedural meaning, which corresponds to the run of logic
programs, i.e. to the process of the constructive proof of goals. In each case
we pose a query. This is the goal to be proved. Now the Prolog system has to
prove the subgoals, i.e. it has to eliminate them. The proof is finished when
each subgoal has been eliminated (proved), and so just an empty conjunction of
goals has been remained. The goal may be proved in top-down, or in a bottom-up
manner. There are still other strategies that can be studied in [Kow79]. In each
cases, the elementary step is the unification of two atomic formulas. Unification
means the calculation and application of the most general unifier substitution
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(mgu) of the atomic formulas. This is a substitution of the variables of the
formulas, making them identical. Not each pair of atomic formulas are unifiable.
In order to unify them, it is necessary, but insufficient, that they must refer to
the same relation (same name and arity), and they must not contain different
constants (or functors) at the same position. For example, the mgu of the atomic
formulas p(a, b) and p(X, Y ) is {X = a, Y = b}. The mgu of p(a, Y ) and p(X, b)
is also {X = a, Y = b}. The mgu of p(a, Y ) and p(X, Z) is {X = a, Y = Z},
although {X = a, Y = b, Z = b} and {X = a, Y = a, Z = a} unify them, too.
But the first one is more general than the others: {X = a, Y = b, Z = b} = {X =
a, Y = Z}{Z = b} and {X = a, Y = a, Z = a} = {X = a, Y = Z}{Z = a}.
Next, p(a, b) and p(b, Y ) do not have mgu: a substitution like {a = b, Y = b}
is NOT possible, because only variables can be substituted. (We do not know
anything about the identity of two constants.) Similarly p(a, b) and p(Y, Y ) do
not have mgu, because {Y = a, Y = b} is not a substitution: a variable like Y
denotes something unknown entity of the universe, but cannot refer to two or
more of them. (More details about unification can be found in any introductory
material about first-order logic.) Now let us consider the top-down, and the
bottom-up proofs of goals.

1. The bottom-up proof means that the conditions of the rules are unified
with facts, and so they are eliminated one by one. In this way we receive
new facts from the rules, until the facts unify with the subgoals of the
original goal. When each subgoals have been eliminated the original goal
have been proved. However, using this bottom-up method it is hard to
direct the proof to the goal. Therefore in practice the top-down method
is more often used. Here we start from the goal and go to the facts. This
approach has been adopted up till now in most of the logic programming
systems, for example in Prolog.

2. Shortly, the top-down proof consists of steps of reduction. One step of
reduction means that one of the atomic formulas (i.e. subgoals) of the goal
is unified with a fact or with a head of a rule. (Just like in resolution, the
sentences taking part in the unification must not share common variables.
This can be ensured by the appropriate renaming of the variables of the
rule [i.e. fact or proper rule] taking part in the unification.) If we unify a
fact, the appropriate subgoal is eliminated from the goal. If we unify the
head of a proper rule, the appropriate subgoal is substituted by the rule
body. In both cases, the unifying substitution is applied to the resulting
conjunction of subgoals. This is a step of reduction. If a sequence of such
steps of reduction, i.e. a top-down proof results in an empty conjunction
of subgoals, then the original goal has been proved. This is a constructive
proof. During the process, substitutions of the logical variables of the
clauses have been performed. The results of these substitutions referring
to the variables of the original goal provide for us the objects (terms)
satisfying the conditions defined by the original goal.
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For example, let us suppose that given a goal which is a Q1, Q2, . . . , Qn

conjunction of subgoals. And given a fact A sharing no common variable
with this goal. Now, if Q1θ = Aθ, where θ is the mgu of the atomic
formulas A and Q1, then it is enough to prove (Q2, . . . , Qn)θ in order to
prove the original goal. This is the first case of a step of reduction referring
to the goal to be proved.
The other case goes as follows: Consider our original goal Q1, Q2, . . . , Qn,
and rule A: −B1, . . . , Bm sharing no common variable with this goal. Let
us suppose that θ is the mgu of A and Q1. Then it is enough to prove
(B1, . . . , Bm, Q2, . . . , Qn)θ in order to prove the original goal. This is the
second case of a step of reduction referring to the goal to be proved.
In both cases, if the result of the step of reduction is a C conjunction
of subgoals, which we prove by the substitution ϕ, that is Cϕ is proved
to be true, then (Q1, Q2, . . . , Qn)θϕ is proved, too. This means that the
substitution θϕ is a solution of the original query.

There is a theorem that both of the top-down and the bottom-up method of
proof is correct and complete, i.e. exactly the goals following from the program
can be proved if one of these strategies is used.

However, we will prefer the top-down method here, because it is easier to
control, and it is preferred by logic programming languages, too. Corresponding
to this method, there is a procedural reading of rules, i.e. facts and proper rules:

• The fact A means that subgoal A can be directly solved.
• The proper rule A : − B1, B2, ... , Bn means that subgoal A can be solved

by solving the subgoals B1, B2, ... , Bn.

Note that the subgoal, and the fact or rule head are rarely identical in practice.
However, they must refer to the same relation (same name and arity). They must
be unifiable as well. Let us suppose, that θ is the mgu of the atomic formulas A
and Q. Then

• the fact A means that subgoal Q can be directly solved by the substitution
θ, and

• the rule A : − B1, B2, ... , Bn means that subgoal Q can be solved by
solving the subgoals B1θ, B2θ, ... , Bnθ. Provided that the substitution
ϕ is their common solution, θϕ is a solution of Q.

For example, the rule “grandparent(X, Y) : − parent(X, Z), parent(Z, Y).” has
the following procedural meaning: In order to solve goal grandparent(X, Y), solve
goals parent(X, Z), and parent(Z, Y).

1.2.4 Searh trees

A subgoal may be unifiable by many facts and/or rule heads of our program.
Therefore the possible goal reductions may have many branches forming a tree.
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The root of this tree is the original goal, its nodes are conjunctions of subgoals
derived through the top-down proof processes, its edges are the steps of different
reductions, and its leaves are the empty conjunctions of subgoals, the solution
leaves, and those nodes, where the subgoal selected for reduction cannot be
reduced: these are the fail leaves. The solutions of the original goal correspond
to the solution leaves. This tree is called derivation tree, proof tree, search tree
or search space.

In the example in Figure 1.1 the levels of this tree are shown by the indenta-
tion. In each step we select the first subgoal for reduction. We try to eliminate it
then, unifying it with a fact, or substitute it with the body of an appropriate rule
(after unifying the subgoal with the head of the rule). This is the leftmost subgoal
selection strategy. In the search tree we show only the substitutions referring to
the variables of the actual goal. They are called output substitutions. They are
shown in the form variable< −substuting_term.

For simplicity, if during the unification of a subgoal and a rule head or fact
two variables must be unified, we always substitute the variable of the subgoal
into the variable of the rule head or fact.

It is clear that in the steps of reduction where we select the first subgoal of
the actual goal, we could choose another subgoal, and we would receive different
search trees, if we applied different subgoal selection strategies.

The question is this: Whether we would receive different solutions or not?
Fortunately, it is true that although the different subgoal selection strategies
lead to different search trees, but each search tree containes the same solutions.
Unfortunately, the different search trees usually have different sizes, as it can be
checked easily by the reader, if he or she selects another subgoal selection strategy
in the example in Figure 1.1. (Therefore the effectivity of the computation can
be different, if our subgoal selection strategy is changed.)

The leftmost subgoal selection strategy has produced a search tree with minimal
size here. However, if we posed the query grandparent(X,′ Jacob′), the minimal
search tree would be produced by a strategy selecting always the rightmost
subgoal.

Notice that if we pose a query of the kind grandparent(X, Y), after the first
step of reduction we receive a goal like parent(X, Z), parent(Z, Y). Next it is
better to choose the subgoal containing less variables. This method is often
useful, even in other programs, because a subgoal containing less variables often
leads to a search tree with fewer branches. But this is just heuristics.

In general, (when we allow recursive rules) it may happen that one search
tree of the same query is finite, while the other is infinite. (We will see examples
later.) In this case the search may go to an infinite branch, which leads to infinite
computation. This means that we should choose a subgoal selection strategy
producing finite search trees, if it were possible. Fortunately, if our rules are
nonrecursive, the search tree is clearly finite.
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?- grandparent(’Abraham’,X).

parent(’Abraham’,Z),parent(Z,X).

mother(’Abraham’,Z),parent(Z,X). % fails
father(’Abraham’,Z),parent(Z,X).

{ Z <- ’Isaac’ }

parent(’Isaac’,X).

mother(’Isaac’,X). % fails
father(’Isaac’,X).

{ X <- ’Jacob’ } % 1. solution
{ X <- ’Esau’ } % 2. solution

{ Z <- ’Ishmael’ }

parent(’Ishmael’,X).

mother(’Ishmael’,X). % fails
father(’Ishmael’,X). % fails

{ Z <- ’Anon’ }

parent(’Anon’,X).

mother(’Anon’,X). % fails
father(’Anon’,X). % fails

Figure 1.1: search tree of query grandparent(’Abraham’,X)

1.2.5 Reursive rules

Let us suppose that we want to describe the following relation.

ancestor(X,Y) :- X is ancestor of Y.

It is clear that this new relation is a generalisation of the union of the relations
parent/2, grandparent/2, ′great − gandparent′/2, and so on:

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

’great-grandparent’(X,Y) :- parent(X,Z), grandparent(Z,Y).

After all, X is ancestor of Y iff X is parent of Y or X is parent of some ancestor of
Y. This means that there are two cases and the second one is recursive. Therefore
this may be expressed by a non-recursive and a recursive rule:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

This is declaratively simple, but the question is, if there are infinite search trees
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or not. And how to select the appropriate subgoal selection strategy to ensure
the finiteness of the search tree.

For example, let us suppose temporarily, that the next fact (and only the
next fact) defines the relation parent/2.

parent(’First’,’First’).

Now let us ask about the descendants of First, and look at the rightmost branch
of the search tree (applying the leftmost subgoal selection strategy):

?- ancestor(’First’,X).

parent(’First’,Z1), ancestor(Z1,X).

{ Z1 <- ’First’ }

ancestor(’First’,X).

parent(’First’,Z2), ancestor(Z2,X).

{ Z2 <- ’First’ }

ancestor(’First’,X).

. . .

Clearly, it is infinite. And it is infinite with any subgoal selection strategy.
Now, let us reconsider the relation parent/2. We either consider the original

relation or the temporary one, it defines a directed, finite graph. Its edges are
given by the relation parent/2, and its nodes are the endpoints of the edges. The
temporary graph consists of a trivial loop, but the original one is acyclic. Then
the relation ancestor/2 corresponds to nonempty, finite paths in the graph.
These paths in the temporary graph are looping, but in the original one they
contain no cycle, and their length has an upper limit. (These later properties of
the original graph are based on the earthly nature of relation parent/2.) Now,
let us omit the temporary definition of parent/2.

And let us consider the query ancestor(′Abraham′, X). It is easy to see, that
it is useful to apply the leftmost subgoal selection strategy: In this case in the
subgoals of the form parent(X, Y) the first parameter will be always known. This
property makes the search tree more slim. And it is more important, that the
search tree will be finite, because in each recursive call we process one additional
edge of a directed, finite path starting from node ′Abraham′.

Now let us consider the query ancestor(X,′ Isaac′). In order to generate
the search tree, it may seem useful to choose the rightmost subgoal selection
strategy, because the second parameter of the rightmost subgoal will be always
a constant. However, the rightmost subgoal will be always a recursive call, and
we generate an infinite search tree. If we prefer the second rule in goal reduction,
we find its infinite branch immediately. If we prefer the first rule, first we find the
solutions, and then go to the infinite branch. In general, a computation does not
know, when it has found the last solution. Therefore this can be troublesome.

However, if we reconsider the query ancestor(X,′ Isaac′), and we prefer the
leftmost subgoal selection strategy, then the first parent(X, Y) call selects an edge
from the graph, and then the searching of the path to the node ′Isaac′ goes on
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from its right endpoint. Therefore, the search tree remains finite, although it will
be probably fatter, than with the previous query. And it can be seen similarly,
that here, the search tree of any query of the form ancestor(X, Y) is finite.

One might suggest another subgoal selection strategy now: given a conjunc-
tion of subgoals, we should select a subgoal defined by a nonrecursive predicate.
This strategy is often useful, but there are some cases, when it does not help:

ancestor00(X,Y) :- parent(X,Y).

ancestor00(X,Y) :- ancestor00(X,Z), ancestor00(Z,Y).

This definition of relation ancestor00/2 is logically equivalent with predicate
ancestor/2. However, a query of the form ancestor00(X, Y) always has an
infinite search tree, regardless of the actual parameter values, regardless of the
subgoal selection strategy.

In addition, the more complex a subgoal selection strategy is, the harder it is
to follow its behaviour, to prove the finiteness of the corresponding search tree,
and to calculate the effectivity of our logic program.

After all, we can conclude that good formulation is more essential than
sophisticated subgoal selection strategy. The formulation of a logic program
must match the expectable queries, and ensuring this is easier if the subgoal
selection strategy is simple.

1.3 Introdution to the Prolog programming language

Therefore the invertors of the Prolog programming language decided in favour
of the leftmost subgoal selection strategy.

The program is performed by the Prolog machine, which is a virtual ma-
chine. It may work as an interpreter or emulator, but it may be built into an
independent, executable file, too.

The search tree is traversed by backtracking, but its branches are not built up
in advance, and the actual branch is always destroyed when Prolog backtracks
from it. In such a way, always just one branch of the search tree is stored in the
call stack containing the call frames of the predicate invocations and the choice
points for the alternative branches. In this way, Prolog tries to minimize the
memory needed by the run of the program. The facts and rules are tried in their
order.

Prolog serves for Programming in logic. In reality, Prolog is a very high
level, general purpose programming language, and it is not a tool for automated
theorem proving. Its logic formulas and its inference machine are too simple for
the later purpose. Yes, the Prolog machine is simple enough to be controlled by
the programmer, so that he or she can prove the finiteness of the search tree,
and calculate the time and space complexity of the program.

The correctness of a Prolog program is always related to goals to be solved.
Partial correctness simply means correct formalization. In order to prove the
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termination of the program it is enough to prove, that the search trees of the
possible goals are finite.

If there is no (directly or indirectly) recursive rule in the program, then the
finiteness of the search trees is a trivial statement. If there is a (directly or
indirectly) recursive predicate, then we consider the possible goals invoking it,
and prove the finiteness of the related search trees: usually we define a terminator
function whose value is a nonnegative integer for each node of the tree, and its
values are strictly decreasing while going down in the tree. These properties
make sure that value of the function at the predicate invocation is an upper
bound of the depth of the related search tree.

For example, in the case of the predicate ancestor/2 the length of the
unprocessed path is an appropriate terminator function (1.2.5). Surely, this
is decreasing by processing a subgoal of the form parent(X, Z), and it cannot
be negative. Therefore, the search tree is finite, and the predicate invocation
terminates.

However, in the case of the predicate ancestor00/2 the search tree is infinite
(1.2.5), and there is no terminator function.

A Prolog system nomally offers the user an interactive programming environ-
ment, using an internal or external text editor.

It is typical that the Prolog system and a standard text editor (for example
Emacs) communicates through an interface supported by both of them, and the
Prolog environment starts inside the text editor, benefiting from the services of
it, like automatic indentation and text colouring of the source code, highlighting
the match of different kinds of brackets, compiling and loading programs, source
level debugging, and so on.

The Prolog environment normally starts in a special console window (al-
though it may have a GUI). We type our commands and queries at the Prolog
prompt of this console, and we can read the standard output of the Prolog
system on it. If we want to make an executable file [C+12], the program must
contain at least one directive (a goal to be performed while loading the program).
This or these provide a primary control of its execution. A source program may
consist of many files. We can variously load the program files into the Prolog
environment. If we want to run the program in an interpreted way we can use
the consult(File) command: we can type it at the Prolog prompt (?−), where
File must be a Prolog source file. (Traditionally, .pl is the de facto standard
extension of Prolog sources, and this extension can be omitted.) Any predicate
of the program loaded can be queried.

For example, let us suppose that the Prolog predicates defined in this book
are in the source file lpp.pl.
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| ?- consult(lpp).

% consulting c:/documents and settings/pl/book/lpp.pl. . .
% consulted c:/documents and settings/pl/book/lpp.pl
% in module user, 0 msec 8 bytes
yes

| ?- grandparent(’Sarah’,GrandChild).

GrandChild = ’Jacob’ ? ;

GrandChild = ’Esau’ ? ;

no

| ?- ancestor(A,’Jacob’).

A = ’Rebeka’ ? ;

A = ’Isaac’ ? ;

A = ’Sarah’ ? ;

A = ’Abraham’ ? ;

no

Therefore, any predicate of the program loaded can be directly tested. We need
no testbed.6

1.4 The data strutures of a logi program

The data structures of a logic program are called terms (like in mathematical
logic). According to ISO Prolog, a Prolog term can be a logical variable called
var (referring to an unknown term) or a partially or properly known term called
nonvar.

A nonvar can be a constant called atomic, or a structured term called
compound.

An atomic term can be a name constant called atom, or it can be a number.
A number can be an integer or a float. (The syntax of numbers will be

familiar to C, C++ or Java programmers.)
A name constant or atom is syntactically an identifier starting with a lower-

case letter, a sequence of characters between quotes or backquotes, special char-
acter sequences of the characters + − ∗/\∧ <>= : .?@#&$ (for example: =<,
@ >=, ?−, ∗$, etc.), or one of the following extras: ; (called or, else, or elsif), !
(called cut), [] (called nil), and {} (called empty).

The name of a variable is syntactically an identifier starting with an upper-
case letter or underscore sign. A variable denotes an unknown entity, like the
variables of mathematical equations and formulas. They are very different from
the variables of procedural (OOP) languages like Pascal, C, C++, and Java.
The aim of the computations is the determination of the possible values of the
variables of the queries, like in the case of the mathematical equations. Therefore

6 In LP languages, like Prolog, any data structure can be described at the source code level,
and even the private predicates of a module can be accessed.



1.4 The data strutures of a logi program

•
21

it is not reasonable, and it is not possible to write assignment statements. When
a logical variable has been subtituted by a nonvar term, then it cannot be
distinguished from the substituting term, except if the program backtracks before
the substitution, when the variable looses its value. This may be strange for a
programmer used to procedural programming languages, but after some practice
in logic programming it becomes natural. As we work with variable substitutions
instead of assignment statements, we get rid of the most dangerous source of
programming mistakes.

Summary: A var is a logical variable which has not been substituted by a nonvar

(on the actual branch of the search tree).

It is a tradition that a variable the value of which is important is denoted by an
identitifer starting with an upper-case letter, but a variable the value of which
is not important is denoted by an identitifer starting with an underscore sign:

father(SomeBody) :- father(SomeBody, Child).

If there is a sentence in a source file of a logic program, and a variable of this
sentence has just one occurence in this sentence, then the value of this variable
is not important, because there is no place where to pass its value.

Note: Therefore, many Prolog environments suppose that an identifier starting
with an upper-case letter denotes an important variable. If there is a sentence
in the source code with just one occurence of such a variable, then it sends a
warning, in order to help us to get rid of typing mistakes.

On the other hand, if we type a query at the Prolog prompt, and it contains
a variable starting with an underscore sign, then its value is not automatically
printed when the query has been solved:

| ?- grandparent(GrandParent,GrandChild), male(GrandParent).

GrandChild = ’Jacob’, GrandParent = ’Abraham’ ? ;

GrandChild = ’Esau’, GrandParent = ’Abraham’ ? ;

no

| ?- grandparent(GrandParent, GrandChild), male(GrandParent).

GrandParent = ’Abraham’ ? ;

GrandParent = ’Abraham’ ? ;

no

There is the anonymous variable consisting of just an underscore sign, the
occurences of which are different logical variables, even inside a single sentence.
Therefore it can denote only unimportant variables. The scope of any other
variable is the sentence containing it. For example:

father and son(SomeBody) :-

father(SomeBody, ), parent( ,SomeBody).
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In order to store structured information we can use compound terms of the
form f(t1, ..., tn), where f is an atom, t1, ..., tn are arbitrary terms, and the
function symbol or functor is f/n, which unites the terms t1, ..., tn into a single
compound term (although this strict form is sometimes relaxed by so called
syntactic sugars). Therefore the functors are specified by their name/arity pairs,
like relations and predicates. Any parameter ti may be atomic, var, or compound,
too.

A term which is not compound, is called a simple term. This means that a simple
term is atomic or var.

A callable term is a compound or an atom, because these terms may represent
the goals (queries) of a program.

A ground term is a term containing no var. Recursively, a ground term is an
atomic, or a compound with ground term parameters.

Therefore the compound terms may represent recursive data structures like
lists and trees. For example, an empty tree may be represented by the atom [],
and a nonempty tree by the compound term .( root, t1, ... , tn ),
where each ti denotes a direct subtree.

Now a list is a unary tree. For example, a list of the numbers 1, 2, and 3
is .(1, .(2, .(3, []))). (Syntactic sugars will make the notation more convenient,
especially here.)

And the tree .(4, .(2, .(1, [], []), .(3, [], [])), .(5, [], [])) is a binary search tree with
depth two.

Surely, we may choose any other notation. The important thing is to apply
it consistently. For example, the empty tree may be denoted by the atom o.
The functor name of the nonempty trees may be the atom t, and, especially in
binary trees, it may be convenient to put the root in the middle, in the form t(
leftSubTree, root, rightSubTree).
Using this notation, the previous binary seach tree looks like
t(t(t(o, 1, o), 2, t(o, 3, o)), 4, t(o, 5, o)).

1.5 List handling with reursive logi programs

We have seen, that we can represent lists as unary trees. Now, before discussing
the basic list handling predicates, let us see the different kinds of lists and list-like
structures.

A list may be proper or partial. A non-list is a term which is not a list. A
proper list may be empty or nonempty. The standard representation of the empty
list is the atom [] read as nil. The standard constructor of a nonempty list is
′.′/2. A term .(X, Xs) is proper list iff Xs is proper list.7

7 In this chapter, the two-letter identifiers As, Bs, Cs, ..., Xs, Ys, Zs usually refer to lists.
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According to this, the list [1, 2, 3] can be written as .(1, .(2, .(3, []))). For-
tunately, we have three standard syntactic sugars to allow an easier-to-read
notation. (The notation convention implied may seem too complicated at the
first glance, but it is easy to learn and useful.)

In order to introduce these syntactic sugars, still we need some definitions:
X == Y means that the terms X and Y are identical. (Actually, ′ ==′ /2 is a

built-in predicate in Prolog with the same meaning.)
A list-term is a compound term with the main functor ′.′/2. (Therefore, the

notion of list-term is a generalisation of the notion of nonempty list: The list
.(1, .(2, .(3, []))) is a list-term, and the non-list .(1, .(2, .(3, non_nil))) is a list-
term, too.)

X is the (first) head and Ys is the (first) tail of the term T, iff T == .(X, Ys).
X is the (i+1)th head and Ys is the (i+1)th tail of term T, iff T == .(A, Bs),

and X is the ith head and Ys is the ith tail of term Bs, where i is a positive integer
number. The ith head of a term is also called its ith element.

Now let us see the standard syntactic sugars allowing the easier-to-read notation.

1. A list-term .(X, Xs) can be written as [X|Xs].

2. The front elements of a list-term T can be separated by commas:
if X1, X2, ..., Xn are the first n heads of T, and Ys is its nth tail,
then T == [X1, X2, ..., Xn|Ys].

3. “|[]” may be omitted in [X1, X2, ..., Xn|[]].

In this way

| ?- .(X,Xs)==[X|Xs], [X1|[X2|Xs]]==[X1,X2|Xs],

[X1,X2,X3|[]]==[X1,X2,X3],

.(1,.(2,.(3,[])))==[1,2,3].

true

An element of a list is an arbitrary term. It may be even a variable or a list. For
example, [a|[_]] is a proper list, and [[_]|[_]] is also a proper list, but [[_]|a] is
not a list, because the atom a is not a list.

A term is partial list, iff it is a var or it is a term of the form [X|Xs], where
Xs is a partial list. A var is an empty partial list.

Therefore a nonempty partial list always has the form
T == [X1, X2, ..., Xn|Vs], where Vs is a var. And a term is partial list, iff it is
not a proper list but after an appropriate substitution it becomes a proper list.
Actually, if the var at the end of a partial list is substituted by a proper list,
then the partial list becomes a proper list. If the var at the end of a partial
list is substituted by another partial list, then the first partial list still remains a
partial list. If the var at the end of a partial list is substituted by a non-list, then
the partial list becomes a non-list, because a list-term is a non-list, iff at its end
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there is a nonvar different from the empty proper list, that is []. No substitution
maps a non-list to a list.

Conventionally, iterative data structures are represented by lists in Prolog,
and there are a lot of built-in and library predicates supporting list handling in
the different implementations.

At last, a ground list is a variable free list, i.e. a list which is a ground term.
Therefore the ground lists form a proper subset of proper lists.

For example, let us suppose that Xs is a var. Now Xs and [1, 2|Xs] are partial
lists, but [Xs] and [1, 2, Xs] are proper lists of one and three elements. Neither of
these four lists is a ground list. However, if Xs == 3, then neither Xs nor [1, 2|Xs]
is list, but [Xs] and [1, 2, Xs] are ground lists.

Consider the next predicate.

list([ ]).

list([ X|Xs]) :- list(Xs).

If the goal list(Ys) is parameterized by a proper list, it will be successful with no
variable substitution. Parameterized by a partial list, this goal will have infinite
search tree, and infinite number of solutions. These solutions will be the most
general proper list samples of Ys. For example:

| ?- list(Ys).

Ys = [ ] ? ; Ys = [ A] ? ; Ys = [ A, B] ? ;

Ys = [ A, B, C] ? ; Ys = [ A, B, C, D] ? <Enter>

yes

The goal list(Ys) parameterized with a non-list will fail.
Now, using the notations above, let us consider some list handling predicates.

And we discuss some useful programming methods used in logic programs which
handle lists and recursive data structures in general.

We need a definition: The precondition of a predicate specifes the set of goals
allowed to invoke that predicate. For example, we may prescribe that the first
parameter must be a proper list, the second parameter must be positive integer,
and so on.

1.5.1 Reursive searh

First let us consider the classic predicate member_/2.8 ,9

% PreCond: Xs is a proper list.
% member (X,Xs) :- X is a member of list Xs.
member (X,[X| Xs]).

member (X,[ X|Xs]) :- member (X,Xs).

8 The character % followed by any sequence of characters up to the end of the line is comment.
9 member/2 and append/3 are the built-in counterparts of our member_/2 and append_/3 (1.5.2)

in many Prolog implementations. Therefore we cannot redefine them.
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So the members of a list are its head, and the members of its tail. Invoking
this predicate, the appropriate item is found directly, or through recursive calls.
Therefore this programming method is called recursive search.

Let us consider the precondition of member_(X, Xs): If Xs were a partial list,
the search tree of the query would be infinite. If it is a proper list, its length
is strictly decreasing throughout the recursion. This guarantees the finiteness of
the search tree. For example:

| ?- member (X,[1,2,3]).

X = 1 ? ; X = 2 ? ; X = 3 ? ; no

| ?- member (2,[1,2,3,X,4]).

true ? ; X = 2 ? ; no

Notice that also ancestor/2 applies recursive search.

1.5.2 Step-by-step approximation of the output

The next predicate is the standard predicate for appending or splitting lists.
Notice that we have two rules: One of them refers to the case when the first
parameter is an empty list, and the other handles nonempty lists in the first
argument, recursively, while the length of a proper list parameter is strictly
decreasing through the recursion, guaranteeing the finiteness of the search tree.
Therefore this is quite a usual way of organizing list handling predicates in
Prolog.

% PreCond: Xs or XsYs is a proper list,
% the other two parameters are lists.
% append (Xs,Ys,XsYs) :-
% appending lists Xs and Ys we receive list XsYs.
append ([ ],Ys,Ys).

append ([X|Xs],Ys,[X|Zs]) :- append (Xs,Ys,Zs).

Appending the empty list and any other lists we receive the other list. Appending
a nonempty list [X|Xs] and another list Ys, the head of the connected list is X,
while the tail of the connected list is the result of appending Xs and Ys. Notice
that in the recursion the length of the first parameter, and the length of the
third parameter is also decreasing. Therefore, the precondition above is strong
enough: If one of the first and third parameters is a proper list, the search tree
is finite. (However, if both of them are partial lists, the search tree is clearly
infinite.) The second parameter may be proper or partial list. Notice that if the
first parameter is a non-list, the call will surely fail: this case is not handled.
And if the second or third parameter is a non-list, we may fail or receive non-list
results.

Consider now the search tree of query append_([1, 2], [3, 4], Zs) in Figure 1.2.
(We suppose that the LP system renames each variable V of a rule to Vi, where
i is the sequence number of the actual step of the goal reductions.)
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append ([1,2],[3,4],Zs)

{ Zs <- [1|Zs1] }

append ([2],[3,4],Zs1)

{ Zs1 <- [2|Zs2] }

append ([ ],[3,4],Zs2)

{ Zs2 <- [3,4] } % (solution)

% After all:
Zs=[1|Zs1]=[1|[2|Zs2]]=[1,2|Zs2]=[1,2|[3,4]]=[1,2,3,4]

Figure 1.2: Search tree of query append_([1,2],[3,4],Zs)

| ?- append ([1,2],Ys,Zs).

Zs = [1,2|Ys] ? ;

no

| ?- append (Xs,Ys,[1,2,3]).

Xs = [ ], Ys = [1,2,3] ? ;

Xs = [1], Ys = [2,3] ? ;

Xs = [1,2], Ys = [3] ? ;

Xs = [1,2,3], Ys = [ ] ? ;

no

Figure 1.3: Queries of append_/3

Notice that the search tree is linear (unary) tree here. Everywhere just the
head of one of the rules have unified the goal. On the other hand, the appended
proper list has been approximated in more steps, through partial lists. In each
steps, we substituted the var tail of the actual partial list, computing bigger and
bigger part of the output list, until we received the appended proper list as a
result.

Here we have built up the result data structure in a top-down manner.
First, we built its topmost level, but we left some details undefined. Then these
details were refined by variable substitutions in the same manner again and
again. Therefore, this way of computing the result is called the step-by-step
approximation of the output.

Exercise: Try to draw the search tree of both of the queries in Figure 1.3.
Observe the process of the approximation of the output.

In the first query the result is a partial list: its front is equal to the first
parameter, and its tail is the second parameter, whatever it may be.
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In the second query we receive a search tree with branches, and the results
(at the leaves of the tree) are the possible cuts of the list (in the third parameter)
into two parts.

1.5.3 Aumulator pairs

Accumulators are used to build the result in a bottom-up manner. Their usage
is shown through the following example.

% PreCond: Xs is a proper list, Ys and Zs are lists.
% rev app(Xs,Ys,Zs) :-
% Xs reversed and appended before Ys provides Zs.
rev app([ ],Ys,Ys).

rev app([X|Xs],Ys,Zs) :- rev app(Xs,[X|Ys],Zs).

The empty list reversed and appended before another list provides this other list.
The nonempty list [X|Xs] reversed and appended before another list provides Xs

reversed and appended before [X|Ys].

The length of the first parameter strictly decreases through the recursion.
Therefore, if Xs is a proper list, the search tree of the query rev_app(Xs, Ys, Zs)
is finite. If Xs is a partial list, the search tree is clearly infinite. Both of Ys and
Zs may be proper or partial list, especially var. Let us consider the search tree
of the query rev_app([1, 2], [3, 4], Zs).

rev app([1,2],[3,4],Zs)

rev app([2],[1,3,4],Zs)

rev app([ ],[2,1,3,4],Zs)

{ Zs <- [2,1,3,4] } % solution

The resulting data structure is built up in the second argument, in bottom-up
manner, through the recursion. Therefore the second argument is an accumula-
tor. The result is completed at the bottom of the recursion. In order to return
the result we need a third argument, a tunel: it is passed through the recursion
without change, and it is substituted by the result at its bottom. An accumulator
and a tunel argument form an accumulator pair, because they are found in the
logic programs always in pair.

In practice, we often write a predicate containing more accumulator pairs,
and/or parameters calculated by step-by-step approximation.

For example, notice that in the query ? − append_(Xs, Ys, [1, 2, 3]) the first
parameter is calculated by step-by-step approximation. The second argument is a
tunel, while the third one behaves like a so called negative accumulator: the data
structure to be returned through the tunnel is not built up, but appropriately
pulled down in it.
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1.5.4 The method of generalisation

The next predicate is an example of generalisation. In such a case the problem is
generalized, solved, and its program is used to handle the original, more specific
problem. This method is often used in human problem solving, especially in
programming, and even more specially in LP. It is often used when we write
a recursive procedure: It is able to solve a more general problem, and it is
appropriately parameterized when it is called:

% PreCond: Xs is a proper list.
% reverse(Xs,Ys) :- the reverse of Xs is Ys.
reverse(Xs,Ys) :- rev app(Xs,[],Ys).

The reverse of list Xs is Ys, if Xs reversed and appended before the empty list
provides Ys.

Therefore, this predicate inherits the condition of finiteness from rev_app/3:
If the first parameter of goal reverse(Xs, Ys) is a proper list, then the search
tree of this goal is finite. But if Xs is a partial list, then this search tree is infinite.

For example, if Xs is a var, then the invocation reverse([1, 2, 3], Xs) calcu-
lates its only solution Xs = [3, 2, 1], and its search tree is finite. Naturally, the
query reverse(Xs, [1, 2, 3]) has the same, only solution. But its search tree is
infinite.

Especially, in the Prolog predicate rev_app/3, the fact finishing the recursion
precedes the recursive rule. Therefore, we will find the solution of the query
reverse(Xs, [1, 2, 3]). Nonetheless if we instruct the Prolog environment to find
another solution, it always backtracks, and tries to unify longer and longer lists
of vars with the second parameter of the goal, but fails.

Let the reader explain the following behaviour now.

| ?- reverse([X,Y,Z],[1,2,3]).

X = 3, Y = 2, Z = 1 ? ;

no

The four methods discussed above are used while handling recursive data struc-
tures in LP, especially lists and trees.

1.6 The Prolog mahine

Full Prolog contains meta-logical and extra-logical constructs, too. Up till now
we have omitted these extensions and concentrated on pure Prolog, which is the
core of the language: it is based on pure mathematical logic. In this section
we provide a detailed explanation of the abstract interpreter performing pure
Prolog programs. However, we remain mainly at the abstract level, and explain
just a few implementation details. We try to help Prolog programmers rather
than Prolog implementors.
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A pure Prolog program is a set of the Prolog programmer’s predicates, and a
query or goal to be answered or solved: the predicates manifest our knowledge in
the topic. Each predicate is a set of rules at the declarative level, and a sequence
of rules at the procedural level. Each rule is a fact or a proper rule. No rule body
or query contains any subgoals referring to a built-in predicate.

1.6.1 Exeuting pure Prolog programs

Executing a program, the Prolog machine performs preorder traversal of the
search tree (1.2.4) of the query. During the traversal just the actual branch of
the tree is stored. This branch is the path from the root to the actual node. A
node of this branch is labelled by the appropriate goal, by the predicate its first
subgoal refers to, and by the untried rules of this predicate in their original order.
The edges of the actual branch represent the goal reduction steps leading to the

actual goal. An edge is labelled by the rule used in this step of reduction, and by
the variables of the parent goal substituted in the connected unification. Notice
that we do not have to remember the unifying substitutions. See the algorithm
of the execution of Prolog programs coming here. We use the word matching
instead of unifying. This will be explained in (1.6.2).

1. In the beginning, the root of the search tree is labelled only by the original
query (goal). Now, the root is the actual node, and only this root is stored.
(Each time the node furthest from the root on the actual branch is the
actual node.)

2. If the actual node is labelled by the empty conjunction of subgoals, we
have found a solution: this is the actual substitution of the variables of
the original query. In this case we print the solution, and ask the user,
whether he or she asks for another solution.
If so, we continue from (9). (Backtracking.)
If not, we have finished the search successfully.

3. If the actual node is labelled by a nonempty goal, let us consider its first
subgoal. Let us label this node also with the predicate referred to by this
subgoal, and with the list rules of this predicate. (Note that if this list
contains two or more rules, it forms a choice point, which remains living
while it is nonempty.) Now let us rename the variables of the rules, so that
they share no variable with the goal. (It is the most effective to generate
completely new variable names.)

4. If the actual list of clauses is empty, we have arrived at a dead end, that
is, at a fail node, and we continue form (9). (Backtracking.)

5. Let q be the first item of the actual list of rules. Delete q from this list. (If
the list becomes empty, the choice point possibly generated above lives
no more.)

6. Try to match the first subgoal of the actual goal with the head of q (see
1.6.2).
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7. If this matching fails, we continue from (4).
8. If this matching is successful, we perform a step of reduction: The vari-

ables substituted during the matching are appropriately substituted ev-
erywhere in the goal and in the rule. (This is usually ensured by a linked
representation of the variables.) The actually stored branch of the search
tree is extended by a new node. The edge leading to this node is labelled
by the actually substituted variables of the actual node, and by q. In
order to compute the first label of the new node, we substitute the first
subgoal of the actual goal with the (possibly empty) body of q, where the
matching substitution has already been performed on each participants.
Next the new node becomes the actual node. Then we continue from (2).

9. Backtracking: If the actual node is the root of the tree, then the execution
of the program finishes with fail.
Otherwise, we delete the actual node of the actually stored branch of
the search tree, and its parent will be the actual node. During this the
substitution of the variables labelling the edge between this two nodes
are also deleted. Then we continue from (4).

1.6.2 Pattern mathing

We have seen that the basic operations of the Prolog machine are goal reduction
and backtracking. And the key of a step of reduction is the unification of the
actual subgoal and rule head. Theoretically, the Prolog machine should compute
the mgu of them (see Section 1.2.3); it should try to unify atomic formulas with
the same name and arity. Therefore, it should unify two sequences of formulas of
the same length. Procedurally, a predicate is a procedure, and this unification is
a kind of parameter passing. Now, we face the problem that computing the mgu
is too expensive to be used as parameter passing. Provided that it is adopted,
logic programs become unacceptably slow. Therefore, a simplified unification
called pattern matching is adopted in Prolog:

1. If the too sequences of terms are empty, We are ready. Otherwise, we
match the pair of the first elements of the two sequences according to (2).
Then we continue with matching the rests of the two sequences according
to (1).

2. Provided that we have two atomic terms (see 1.4), they match, iff they are
identical. If they are identical, they match without variable substitution.
If they are different, then this algorithm of pattern matching fails.

3. If one of the terms is atomic, but the other one is compound, then this
algorithm of pattern matching fails.

4. If both of them are compound terms, and their functor names and arities
are the same, then their sequences of parameters are matched according
to (1). If both of them are compound terms, but their functornames or
arities are different, then this algorithm of pattern matching fails.
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5. Provided that we have two var terms, any of them may be substituted
by the other one. (However, in our examples, we will always subtitute the
var term of the rule head with the var term of the goal, because it is
easier to follow, and it usually allows a more effective implementation.)

6. If just one of the terms is a var, then we substitute it with the other
term, which is an atomic or a compound.

The variable substitutions of the algorithm above are performed on each
occurence of these variables in the goal and rule taking part in the actual step
of reduction.

We keep a record of each substitution of the variables of the goal. If the
pattern matching eventually fails, the substitutions of the variables of the goal
are deleted according to our records. If the pattern matching succeeds, then
the appropriate edge of the actual branch of the search tree is labelled by this
recorded set of variables (1.6.1).

In the first point of this algorithm, the pattern matching of the appropriate
term pairs of the two term sequences may be performed in arbitrary order, or
even in parallel.

Notice that in point (6) of the algorithm of pattern matching above we substitute
a var with a compound unconditionally. Nonetheless in the original algorithm
of unification, this is allowed iff the compound does not contain the var. The
obligatory check of this condition before a var is substituted by a compound is
called occurs check ([FGN90], [Kow79], [DEDC96], [ISO95] and [SS94]). The
Prolog machine omits the occurs check for reasons of efficiency, because its
operational complexity is O(size(compound)), and the size of the compound may
be extremely large in practice.

For example, consider the built-in predicate ′ =′ /2 (see Section 1.2.2, i.e. fact
“X = X.”). Query Y = f(Y) should fail, at least according to mathematical logic.
However, according to a typical Prolog implementation the solution of the query
is the substitution {X < −f(Y), Y < −f(Y)}. According to mathematical logic,
this is not a unifying substitution. According to the Prolog standard, the result
is undefined, if during the pattern matching a var faces a compound containing
it ([DEDC96] and [ISO95]). Our algorithm of pattern matching is more special
than that of the Prolog standard ([DEDC96] and [ISO95]), wich may even abort
or go to an infinite loop in this situation. First we subtitute X with Y, and
then Y with f(Y). Therefore, we avoid the explicite computation of the unifying
substitution. In this way, we avoid infinite loops and program aborts, and we may
say (following Colmerauer [Col82]), that the substitution {Y < −f(Y)} generates
a cyclic term Y = f(Y). Some Prolog implementations even give us tools to handle
cyclic terms [C+12]. However, we will not take benefit of such tools here, and
even try to avoid generating cyclic terms, because it may be difficult to port a
program working with cyclic terms between Prolog platforms.
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After all, in programming practice it is extremely rare that we face the
problem that Prolog omits occurs check. Most of the applications work well even
if we are not aware of the possibility of the unhappy situations following this
omission. One must admit that this omission is one of those briliant compromises
which make Prolog a practical programming language: Without this compromise
the cost of unifying a var and a compound would be proportional to the size of
the compound, and this cost would arise in each predicate invocation where we
work with structured terms. Many applications work with long lists and/or big
trees. Then the cost of a simple procedure call would be proportional to the
length of the list or size of the tree. However, in a typical Prolog environment a
var and a structured term are matched with constant cost which is independent
from the size of the structure.

After all, the Prolog standard handles the occurs check problem in an elegant
and effective manner. And now we are going to discuss this topic.

1.6.3 NSTO programs

In NSTO programs the occurs check can be omitted safely. Now, we consider
how to write programs where even the original algorithm of unification would
perform no successful occurs check. Such predicate invocations, that is subgoals
are called NSTO (Not Subject To Occurs check), otherwise we speak of STO
subgoals. If each of the subgoals of a program is NSTO, then the program is also
NSTO. Otherwise the program is STO.

Note that these subgoals may occur in the query at the Prolog prompt, in
the bodies of the rules of the program, and in the directives of the program. A
subgoal may refer to a programmer’s predicate, or to a built-in predicate, too.

Based on [DM93], the following simple, sufficient condition of the NSTO
property of a subgoal is suggested here, which is sophisticated enough for most
practical cases.
If a subgoal g referring to a predicate p satisfies any of the following conditions,
then this subgoal is NSTO.

1. g does not contain double var (a var with more than one occurence).
2. No head of any rule of p contains double variable.
3. The actual parameters of g are simple terms, and each rule head of p

- contains just simple terms in its formal parameters,
- or does not contain double variable.

Provided that we want to write an NSTO program, the conditions above call our
attention to the critical rule heads. If a head of a rule contains double variable,
and some subgoal referring to it contains double var, and the rule head or this
subgoal contains compound parameter, then this goal may be STO, and then the
whole program may be STO.

If we find a rule head like this, we may still prove the NSTO property of
the goals referring to it, considering their special features. Or we can follow the
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method shown in the next example. Let us suppose that we coded the predicate
member_/2 in the usual way:

% member (X,Xs) :- X is member of list Xs (?NSTO?).
member (X,[X| Xs]).

member (X,[ X|Xs]) :- member (X,Xs).

Clearly, the first rule may imply STO property. Its head contains the double
variable X, and even the compound [X|_Xs]. Considering programming practice,
in this case the first sufficient condition of the NSTO property is almost always
satisfied, as the subgoals of the form member_(Y, Ys) contain no double var.

However, if some goal of this form might contain double var, and we cannot
prove that this goal is NSTO (or it is surely STO), we can produce a safe version
of member_/2, and make this goal refer to it:

% safe member(X,Xs) :- X is member of list Xs (NSTO)
safe member(X,[Z| Xs]) :- unify with occurs check(X,Z).

safe member(X,[ X|Xs]) :- safe member(X,Xs).

In predicate safe_member/2 goal unify_with_occurs_check(X, Z) invokes
the appropriate built-in predicate of Prolog, which calculates the mgu of X and
Z. (If they do not have unifier, it fails.) For example:

| ?- member (X,[f(Y,Y),f(X)]).

X = f(Y,Y) ? ;

X = f(f(f(f(f(f(f(f(f(f(.. .)))))))))) ? ;

no

| ?- safe member(X,[f(Y,Y),f(X)]).

X = f(Y,Y) ? ;

no

| ?- member (f(X,X),[f(Y,g(Z)),f(Y,g(Y))]).

X = g(Z), Y = g(Z) ? ;

X = g(g(g(g(g(g(g(g(g(g(.. .)))))))))),

Y = g(g(g(g(g(g(g(g(g(g(.. .)))))))))) ? ;

no

| ?- safe member(f(X,X),[f(Y,g(Z)),f(Y,g(Y))]).

X = g(Z), Y = g(Z) ? ;

no

In general, if we use compound terms together with a predicate, then we consider
the rules containing double variables in their head. If we cannot prove the
NSTO property of the goals referring to them, we make the following trans-
formation on these rules: while we find double variable (critical from the point
of NSTO property) in the head of the rule (let it be X), we rename one of
its occurences to a fresh variable (let it be Z), and then we insert the subgoal
unify_with_occurs_check(X, Z) as the first subgoal of the body of the rule.
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In this way each predicate invocation of our program becomes NSTO, except
the subgoals of the form unify_with_occurs_check(X, Z) generated by the
program transormation above. Then our Prolog program works as if everywhere
mathematical unification were used, but it runs much faster, because mathe-
matical unification is used only when it is necessary. Otherwise, we use its much
simpler and much more effective version: pattern matching.
Note: Considering the built-in predicates of Prolog, in most cases the subgoals re-
ferring to them are automatically NSTO. Selecting those mentioned in this work,
the list of exceptions is the following: (=)/2 and (\ =)/2 (1.7), arg/3 (1.8.3),
read/2 (1.10.2), retract/1 and retractall/1 (1.10.3), findall/3 (1.11), and
catch/3 (1.12).

The NSTO property of the subgoals referring to the built-in predicates listed
here can be checked and handled with a method similar to the one shown
here. For example, if built_in(X, X) is an unsafe subgoal, in many cases it
can be replaced by built_in(X, Z), unify_with_occurs_check(X, Z), where
Z is a fresh variable. (It migth cause a problem that the search tree of the call
built_in(X, Z) may be (much) bigger than that of built_in(X, X).)

In the next two subsections we go on with two de facto standard optimizations of
the Prolog machine. Taking them into consideration, we can significantly reduce
the runtime and memory needs of our Prolog programs.

1.6.4 First argument indexing

During goal reduction, first argument indexing may significantly reduce the costs
of searching through the rules of the appropriate predicate. According to a rough
criteria it selects a subset of the rules of a predicate, appropriately narrowing the
search tree. It often selects just one rule, so increases the effeciency dramatically,
as generating a choice point and handling it is quite expensive.

However, the predicate invocations of the Prolog programs are often de-
terministic. This means that just one rule head matches the goal.10 Provided
that the Prolog machine recognises the determinism of a predicate invocation,
it generates no choice point. First argument indexing supports it to recognise
determinism. Let us see the details: Consider point (3) of the abstract Prolog
interpreter described in (1.6.1). We labelled the actual node of the search tree
with the list of each of the rules of the predicate to be invoked there. Provided
that this list contains more than a single rule, we generate a choice point there,
where the search tree branches according to rule heads possibly matching the
predicate invocation.

10 A predicate invocation is called nondeterministic, iff more rule heads match it, because in
this case the run of a logic program can continue on the different branches of the search tree,
although a standard Prolog environment resolves this nondeterminism with backtracking on
these branches.
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Clearly, it would be enough to put the rules whose head match the subgoal
onto this list. However, it would be too expensive to produce this list before we
try the branches. Therefore, most Prolog implementations apply a compromise
here. This is called first argument indexing:

1. Provided that the first actual parameter of the predicate invocation is
atomic term, only those rules are put onto the list, where the first formal
parameter of the rule head is the same atomic or a var.

2. Provided that the first actual parameter of this invocation is compound

term, only those rules are put onto the list, where the first formal param-
eter of the rule head is a var, or a compound whose functor is identical
with the functor of the first actual parameter of the subgoal.

3. Provided that the first actual parameter of this invocation is a var, each
rule of the predicate to be invoked is put onto the list.

The possible lists of rules are usually generated compile time, and a table is
made of them. Then the run time selection of the appropriate list needs minimal,
constant time. The variable renaming of the rules is solved like in the case of
procedural languages. On the other hand, multiple argument indexing is rarely
used, because the size of the table to be generated becomes too large.
Let us suppose that any of the predicates list/1, append/3, rev_app/3 (1.5)
is called with proper list actual parameter in ist first argument. Then neither
its call nor its recursive calls generate any choice point while it runs. Namely, if
the first actual parameter is an empty list, we will index on the first rule; and
if it is a nonempty list, we will index on the second rule. The run of predicate
member_/2 is not affected by first argument indexing, because the first formal
parameters of its rules are variables.

1.6.5 Last all optimization

Normally, each predicate invocation needs some space in the call stack. However,
when this optimization is applied, the called predicate can reuse the memory
needed by the caller. Eventually, a constant size of memory may be enough to
run a recursive procedure.

In order to understand how it works, consider point (5) of the abstract Prolog
interpreter described in (1.6.1). If the actual list has contained just one rule there,
then after removing this single rule, an empty list of clauses remains. This means
that a later backtracking to this node results in another bactracking from here.
Therefore in point (8), instead of extending the momentarily represented part of
the actual branch of the search tree, the actual node may be overwritten. The
set of variables labelling the edge pointing to this node is extended by the set
of variables which would label the edge pointing to the new node in the original
algorithm. Therefore, in this case the actually represented branch of the search
tree does not become longer.
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Therefore, given the last subgoal of a rule body, consider the call of this
subgoal. If there is no living choice point from the node and time, where and
when the predicate containing this rule was invoked, than that node of the
optimized representation of the search tree is equal to the node which is the result
of invoking this last subgoal. Therefore, in this case this last subgoal can reuse
the memory needed by its parent subgoal (i.e. the invocation of the predicate
containing this last call). This memory reuse is called last call optimization.

Especially, if this last subgoal invokes the predicate containing it, this is tail
recursion, and it can work like a loop in procedural languages. Then last call
optimization can be simplified to the so called tail recursion optimization.

For example, because during the run of the predicates
list/1, member_/2, append_/3, and rev_app/3 (1.5)
there is no living choice point when they are called recursively, in each case
tail recursion optimization can be applied. However, when predicate reverse/2

invokes rev_app/3, last call optimization can be applied.

1.7 Modifying the default ontrol in Prolog

Language pure Prolog containes no possibility to express any form of negation.
For example, it is easy to express that two terms can be matched (A = B), because
we can define it with the universal fact X = X. However, we have no tool to express
its negation (A\ = B).11

Similarly, we have defined predicate member_/2 in (1.5.1), but we have no
tool to define predicate nonmember_/2. Now it follows, that still we are not able
to phrase the union or intersection of two unsorted lists, because we should say
what to do when an element of one of the lists is not found on the other list.

In general, our rules are not suitable to derive negative information from our
programs. At best, we can decide if a statement follows from our program or not.
For example, if the search tree of a query is finite, then we can decide, whether
it follows from the program.

For example, given a ground term X, and a ground list Xs, the search tree
of the query member_(X, Xs) is finite. Therefore we can decide, if the statement
member_(X, Xs) follows from our program or not. But this statement is true, iff
it follows from the program. In practice, there are many similar statements. (For
example, consider the queries referring to the list handling predicates of (1.5).)
Therefore, if we could tell what to do when a goal were successful, and what to
do when it failed, we would have a limited but practical tool to manage negation.

11 In fact, (=)/2, and (\=)/2 are built-in predicates ([DEDC96] and [ISO95]) of standard
Prolog, and we cannot overdefine them. When we use them, we can write them in infix
manner, i.e. between their parameters (1.9).
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1.7.1 Disjuntions

To define this limited but practical negation, the first step is to introduce
disjunctions. We already have implicit disjunction:

sibling(X,Y) :- sister(X,Y).

sibling(X,Y) :- brother(X,Y).

However, in Prolog we have explicit disjunction, too:

sibling(X,Y) :- sister(X,Y) ; brother(X,Y).

There is a strong tradition here: the “;” sign used to express explicit disjunction
is written with French spacing, i.e. there is a blank before it. In addition, it is
never put at the end of a line, but at the beginning of the next line.

Both of conjunction “,”, and disjunction “;” are right associative. Conjunction
“,” binds stronger than disjunction “;”, so the parentheses in the next example
are essential.

son(Y,X) :- ( mother(X,Y) ; father(X,Y) ), male(Y).

However, the overuse of disjunctions is discouraged in Prolog. A rule should be
as simple as possible. The earlier definition in (1.2.2) is more structured, and in
many implementations it performs a bit better.

1.7.2 Conditional goals and loal uts

Perhaps the most important control structures are the conditional goals. They
support structured programming, and define negation as failure. Their basic
form is the following:

( if − > then
; else
)

Here the if, the then, and the else parts are arbitrary Prolog goals. The if
part is the decisive condition. If goal if is successful, then the solutions of the
conditional goal are the solutions of goal then. Otherwise the solutions of the
conditional goal are the solutions of goal else.
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It follows that it is not possible to backtrack into goal if. If it is successful,
the Prolog machine will calculate just its first solution. For example:

% PreCond: Xs and Ys are ground lists.
% union(Xs,Ys,Zs) :-
% Those members of Xs which are not members of Ys
% concatenated in order before Ys produce list Zs.
union([],Ys,Ys).

union([X|Xs],Ys,Zs) :-

( member (X,Ys) -> union(Xs,Ys,Zs)

; Zs = [X|Us], union(Xs,Ys,Us)

).

| ?- union([1,2,3,4,5],[1,3,5],Us).

Us = [2,4,1,3,5] ? ;

no

| ?- union([1,2,3],[1,1,3,3,5],Us).

Us = [2,1,1,3,3,5] ? ;

no

The second test shows that just the first solution of condition
member_(X, Ys) is considered. If we forget the arrow, this happens:

malfunctioning union([ ],Ys,Ys).

malfunctioning union([X|Xs],Ys,Zs) :-

( member (X,Ys), malfunctioning union(Xs,Ys,Zs)

; Zs = [X|Us], malfunctioning union(Xs,Ys,Us)

).

| ?- malfunctioning union([2,3],[1,3,3,5],Us).

Us = [2,1,3,3,5] ? ;

Us = [2,1,3,3,5] ? ;

Us = [2,3,1,3,3,5] ? ;

no

The first solution is found twice, because goal member_(3, [1, 3, 3, 5]) finds num-
ber 3 on list [1, 3, 3, 5] twice. The second solution was found, because goal
member_(X, Ys) is not a decisive condition here. Instead of a conditional goal,
we coded just a disjunction.

In the conditional goals, the arrow “− >” is a local cut, and the semicolon is
the operator of disjunction. Considering the three operators forming compound
Prolog goals, their (decreasing) priority order is “, − > ;”. And each of them is
right associative. Procedurally speaking, when a disjunction of the form
( if − > then ; else )
is called, a choice point with two alternatives is generated. Its first alternative
is goal if − > then containing the local cut, and its second alternative is goal
else. Provided that goal if succeeds, the local cut is performed, and it cuts the
choice points (if any) left by goal if, and the choice point left by the disjunction.
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Then goal then is called, and there is no possibility to backtrack neither into goal
if nor to goal else. Provided that goal if fails, we backtrack, remove the choice
point left by the disjunction, and call goal else. However, if any of goals then
or else succeeds, it is still possible to backtrack into it, and find its alternative
solutions. Because the operator “;” is right associative, goals
( if1 − > then1 ; if2 − > then2 ; else ), and
( if1 − > then1 ; ( if2 − > then2 ; else ) ) are equivalent.
We may also omit the “ ; else ” part. Then “ ; fail ” is the default, where
fail/0 is a standard built-in predicate of Prolog, and it always fails. Similar is
true/0, but it always succeeds.

Now we can solve the problems posed at the beginning of this section (1.7):

% /+=(X,Y) :- X does not match Y.
/+=(X,Y) :- ( X=Y -> fail ; true ).

% PreCond: Xs is a proper list.
% does not have(Xs,Y) :- no member of Xs matches Y.
does not have([ ], Y).

does not have([X|Xs],Y) :-

( X = Y -> fail

; does not have(Xs,Y)

).

% nonmember (X,Xs) :- does not have(Xs,X).
nonmember (X,Xs) :- ( member (X,Xs) -> fail ; true ).

% PreCond: Xs and Ys are gound lists.
% intersection(Xs,Ys,Zs) :-
% those members of Xs which are found also on Ys,
% form in order proper list Zs.
intersection([], Ys,[ ]).

intersection([X|Xs],Ys,Zs) :-

( member (X,Ys) ->

Zs = [X|Ms], intersection(Xs,Ys,Ms)

; intersection(Xs,Ys,Zs)

).

Notice that the order of the arguments of the recursive predicates
does_not_have/2, intersection/3, and union/3

is chosen to exploit first argument indexing (1.6.4). Tail recursion optimization
can be applied to each recursive call (1.6.5).
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Note on assignment statements

In predicates intersection/3, and union/3 any goal of the form Zs = [X|Vs]
tries to match its two parameters. Namely, standard Prolog does not have any
form of assignment statement, because any logic variable refers to an unknown
term (1.4), [DEDC96], [ISO95], [O’K90] and [SS94]: it refers to an object un-
known when the program is coded, but it refers to an object to be computed while
the program is being executed. Therefore, when a variable is substituted by a
nonvar, its value (determined by the relation coded in our program) is computed,
and it does not have sense to overwrite it. (If there were an assignment statement
like Xs := [Y|Xs], which occurence of Xs would stand for the unknown object?)

A typical error of a programmer starting to study logic programming is the
use of Prolog goals like Xs = [Y|Xs]. This goal will surely fail to perform the
assignment desired. For example, if Xs is a proper list, the pattern matching
between Xs and [Y|Xs] will clearly fail. If Xs is a var, the goal is STO, and a
cyclic list will be generated, which is not the desired case now. If Xs is a partial
list, it may fail or generate a cyclic term wich is not the behaviour desired.

How to get just one solution from a query?

At last we show two solutions for checking whether a term is member of a
list. Namely, goal member_(X, Xs) may have many solutions, even if X, and
Xs are ground terms (provided that Xs has multiple occurences of X). After
producing a solution, goal member_(X, Xs) always leaves a choice point which
needs extra memory, and may prevent last call optimization. However, if we
need just member checking, we need a goal with at most one solution which
does not leave choice points.

Our first solution, predicate member1/2 shows that a conditional goal can
help us even to get rid of unwanted choice points. The second one, predicate
member_check/2 shows that failing rules should not be programmed explicitly.
If we want to emphasize that we have not forgotten those cases, it is better to
put the failing rules into comment, in order to keep efficiency.

member1(X,Xs) :- ( member (X,Xs) -> true ).

% member check( X,[ ]) :- fail.
member check(X,[Y|Ys]) :-

( X = Y -> true

; member check(X,Ys)

).
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1.7.3 Negation and meta-goals

Let us suppose that predicates student/1, and married/1 are given, and we
want to define predicate unmarried_student/1. Based on the previous subsec-
tion, the following solution springs up.

unmarried student(X) :- student(X), unmarried(X).

unmarried(X) :- ( married(X) -> fail ; true ).

student(’Peter’). student(’John’).

student(’James’).

married(’Peter’). married(’Joseph’).

Notice that the common scheme of predicates
(\ =)/2, nonmember_/2, and unmarried/1 follows.

not(P) :- ( P -> fail ; true ).

The question is, whether this more general scheme of negation is a Prolog
predicate or not.

Considering it in a context free manner a Prolog goal is a callable term, i.e.
a compound term or an atom. This makes it possible to compute and call it with
the program: The program part computing it handles it just like any compound

or atom. Then it is called like a meta-goal. A trivial example: goal X = p(Y), X

is equivalent with goal p(Y).
Considering a meta-goal in the source code in context-free manner, it is a

logical variable. But in context-dependent manner, it is a goal: it is part of the
body of a rule, query, or directive. The important thing is that by the time it is
invoked, it must be substituted by a callable term which can be interpreted as
a valid goal of the program. (The appropriate predicates must be defined.)

A meta-goal appearing in the body of a rule may be formal parameter of the
head of the rule, like in predicate not/1 above. The appropriate argument of
the head of that rule is a meta-argument. A predicate consisting of such rules
is a meta-predicate. When a meta-predicate is invoked, its meta-arguments can
be parameterized by goals. The parameter in a meta-argument is called meta-
parameter.

For example, predicate unmarried_student/1 can also be defined as follows.

unmarried student(X) :- student(X), not(married(X)).

The only formal parameter of meta-predicate not/1 above is P which is invoked
in the rule body as a meta-goal. If P (for example married(X) in the previous
example) is successful, the local cut cuts its choice points (if any), and also
cuts the else branch of the conditional goal. Then on the then branch goal
fail is performed and invocation not(P) (for example not(married(X))) fails.
If P (for example married(X)) fails, we backtrack to the else branch of the
conditional goal, goal true succeeds, and also invocation not(P) (for example
not(married(X))) succeeds. Summarizing this, goal not(P) succeeds, iff goal P
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fails (and therefore there is no solution of goal P). And goal not(P) fails, iff goal
P succeeds.

This is negation as failure. It is not a logical negation, but it can be imple-
mented quite effectively,and usually it can be used instead of that, if applied by
some care.12

Notice the first four properties of goal not(P):

1. It never leaves any choice points.

2. Independently from goal P, goal not(P) never substitutes its variables.

3. not(P) succeeds, iff the search tree of P is finite, and it contains no
solution.

4. not(P) fails, iff the search tree of P contains some solution, but there is
no infinite branch before the first solution.

(Notice that these observations are valid even if the negation is implicit, when it
is programmed with conditional goals like in the like in the cases of predicates
(\ =)/2, nonmember_/2, and unmarried/1.)

It is clear from (2) that a negated goal produces no solution. One cannot
use them to produce any (partial) solution, just to test and validate (partial)
solutions. According to this, it is not all the same, where the negated goal is inside
a compound goal: the desired behaviour of the negated goal usually assumes that
its variables have been substituted. For example:

| ?- unmarried student(X).

X = ’John’ ? ; X = ’James’ ? ; no

This is the desired behaviour, independently from the actual one of the two
definitions of predicate unmarried_student/1 above. However, if we exchange
the order of the subgoals in its body:

| ?- unmarried student(X).

no

Namely, in this case goal unmarried(X) or not(married(X)) fails, because
married(X) succeeds (provided that X is still var).

In general, it is a sufficient condition of the logical soundness of Prolog
negation that the negated goal must be ground when it is invoked, and its search
tree must be finite.13

12 Let us note that although goals not(married(X)), and unmarried(X) mean the same, in
today’s Prolog implementations usually not(married(X)) is the less effective one, because
most often the metagoals cannot be optimized while we compile the Prolog source code.

13 Considering negation we adopt the closed world assumption. This means, we suppose that
we have enough information: each statement of the actual model which does not follow from
our axioms is false.
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This negation defined with predicate not/1 is implemented in Prolog more
effectively with the built-in predicate (\+)/1. It can be used as a prefix operator
like in the next version of predicate married_student/1.

unmarried student(X) :- student(X), /+ married(X).

1.7.4 The ordinary ut

The local cut introduced in Subsection (1.7.2) is considered usually a better
alternative of the more traditional ordinary cut to be discussed here. However,
there are millions of lines of Prolog code with ordinary cuts around. In order to
allow the reader to understand such code, we are going to present them through
a simple example now.

Let us suppose that we want to define the relation max(X, Y, Z), where X and Y are
integer values given in advance, and it is true iff Z matches their maximum. Pro-
cedurally speaking, if X and Y are integer numbers, the invocation max(X, Y, Z)
tries to match Z with the maximal one. Let us suppose that the arithmetic
relations ′ >′ /2 and ′ =<′ /2 are given as usual. Our “zeroth” solution does not
use any cuts:

max0(X,Y,X) :- X > Y.

max0(X,Y,Y) :- X =< Y.

Notice that in the first rule we have condition X > Y instead of X >= Y in order to
avoid duplicated solutions. Clearly, this program is correct. But it is not effective:
if X and Y are integers, X is greater than Y, Z matches X, and max0(X, Y, Z) is
invoked, the query will be successful with the first rule of the predicate, and it
leaves a choice point referring to the second rule.14 Thus, if this call is element of
a sequence of invocations, and we backtrack to it from a later one, we know that
it will fail. Therefore, in this case the subgoal max0(X, Y, Z) leaves an unnecessary
choice point which needs extra space, its handling eats extra runtime, and it may
prevent last call optimization(s) in the program using this predicate.

In order to solve the problem of unnecessary choice points, the inventors of
Prolog introduced a control tool, the (ordinary) cut statement into the language.
It is denoted by “!”. Let us see the improved version of predicate max/3:

max1(X,Y,X) :- X > Y, !. % green cut after test selects the rule
max1(X,Y,Y) :- X =< Y. % contra test

The cut (i.e. “!”) statement is a procedural construction: a predicate is considered
as a procedure. When it is called, and while it runs, it may generate many choice
points, many branches of the program. When the cut is invoked, it tells Prolog
that the actual branch of the predicate containing it is the only possible winner.
Therefore, the other branches are pruned. We inform Prolog that if any, the rule

14 For example, consider the subgoal max0(3,2,M) where M is a var.
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containing the cut will perform the calculation associated by the predicate, and
in the rule body the subgoals before the cut serve to test this selection. Prolog
replies and prunes each choice point generated since the call of the predicate:

1. If a choice point was left when the predicate containing the cut was
invoked, and it exists, then it is pruned.

2. All the choice points left by the subgoals preceding the cut in the actual
rule body or query are pruned.

Let us consider predicate invocation max1(X, Y, Z) where X and Y are integers
and Z is a var. If X > Y, the cut is called, and it prunes the choice point left
by invoking the max1/3. The test X > Y did not leave a choice point. But if
it left any choice point, the cut would prune it, too. If the test X > Y fails,
Prolog backtracks from the first rule, automatically prunes the choice point left
by the predicate invocation, and selects the second rule. Then the contra test
X =< Y succeeds. There is no cut statement after the contra test, because there
is no choice point to be pruned. In both cases the predicate invocation succeeds,
and it does not leave any choice point, reflecting the fact that there is just one
maximum of two numbers.

However, this cut has been inserted into a correct predicate, and it does not
alter its semantics. It only implies some optimization in the code. Therefore, it is
called a green cut. We remain close to “pure logic programming”: first we write
the program without cuts, and then we insert the green cuts necessary to prune
the redundant choice points.

Let us reconsider the predicate invocation max1(X, Y, Z) where X and Y are
integers. Notice that the first rule fails even if X > Y, provided that Z is a
nonvar different from X. The second rule fails even if X =< Y, provided that Z
is a nonvar different from Y.

Nevertheless, some Prolog predicates contain red cuts modifying their seman-
tics. Considering the code of predicate max1/3, one may think that the contra
test is superfluous: “if X > Y fails, and we go to the second rule, it is just
waisting time to test whether X =< Y stands, because it is surely true”. Then
the following solution may be proposed.

max2(X,Y,X) :- X > Y, !. % red cut
max2( X,Y,Y). % contra test omitted, procedural code

This is a red cut: without the cut, even goal max2(3, 2, M) (where M is a var)
would have two solutions, namely M = 3 and M = 2. With the cut, the only
solution is M = 3. Therefore, predicate max2/3 is no more a logic program, just a
procedure written in Prolog. There is one even more serious problem. Provided
that X and Y are integers, goal max2(X, Y, Z) should succeed iff Z matches their
maximum. However, the reasoning which is the base of predicate max2/3 implic-
itly supposes that condition X > Y is always evaluated. Nonetheless it is true
only if Z is a var or Z is identical with X. Otherwise query max2(X, Y, Z) tries the



1.7 Modifying the default ontrol in Prolog

•
45

first rule, but its head does not match it and fails.15 Then it tries the second rule
without evaluating X > Y. For example, goal max2(3, 2, 2) succeeds. In general,
simply omitting the contra test is dangerous.

Clearly, if we want to spare the contra test, we can use a conditional goal:

max3(X,Y,Z) :-

( X > Y -> Z = X

; Z = Y

).

Unlike here, the contra test is often expensive, and such solutions can save run-
time. Fortunately, if one uses a conditional goal, rules representing different cases
are melted into a single one, and the programmer must have formal parameters
general enough to cover each case. In this way, the condition is evaluated, and
the contra test can be safely omitted, except if the condition part contains more
than the condition selecting the appropriate branch of the conditional:

max4(X,Y,Z) :-

( X > Y, Z = X -> true. % WRONG SOLUTION!!!
; Z = Y

).

This predicate tries to match the output before the local cut, and this matching
becomes part of the condition. So we have the same problem with the predicates
max2/3 and max4/3: if Z does not match X, the second alternative is tried,
independently from condition X > Y (although there is no early failure here).

But this kind of error is quite rare. Even beginners intuitively use the con-
ditional goals in the correct way. The main disadvantage of using conditionals
is that we have to restructure the “pure logic programs” in order to include the
local cuts. Although most programmers do not feel this to be a problem.

Nevertheless, sometimes ordinary cuts can be preferred. Therefore, we will
show the safe use of ordinary red cuts. Reconsidering the conditional goals used
here and in (1.7.2) it is easy to see that the local cuts are usually red cuts: the
control test in the next branch of the disjunction is normally omitted. And the
output matching is done normally after the local cut. This is useful even with
ordinary cuts. Therefore let us see the correct use of ordinary red cuts:

max5(X,Y,Z) :- X > Y, !, Z = X. % output matching after the cut.
max5( X,Y,Y). % contra test omitted: procedural, but safe.

Clearly, this solution prevents early failure. Condition X > Y really selects the
appropriate clause. The method can be used in any “deterministic” predicate
for pruning unnecessary choice points while avoiding redundant contra tests. (A
predicate is called deterministic iff for any given data just one branch of it can
succeed.)

15 This is called early failure.
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The general rule of inserting cuts is this: cut as early as possible, i.e. where it
is already known that the actual branch of the program is the only candidate to
perform the actual computation. If we cut earlier, we select that branch before
the tests necessary to select it have been completed. If we cut later, we may try
alternative branches of the program, even when these branches should not run.

1.8 The meta-logial prediates of Prolog

In practical Prolog programming we often need information about the actual
state of the variables and other components of our program, but such questions
cannot be formulated with the tools we already have. We often have to compute
the numeric value of an expression, but numeric computations still cannot be
performed effectively with these tools. Also we have to make symbolic computa-
tions on terms with unknown functors, i.e. terms coming from external sources,
but we are able to formulate rules on terms with known functors only. In order
to solve such problems, we need meta-logical predicates.

1.8.1 Arithmeti

The usual symbols of arithmetic operations, like +, −, ∗, /, ∗∗ etc., are only
function symbols in Prolog, and these symbols can be written especially in
infix or prefix mode. Therefore they are only constructors of compound data
structures, and they force no computation. This is necessary because Prolog
supports symbolic computations, for example, the derivation or integration of
polynomials like −x2 + 3 ∗ x − 4. It follows that, for example, the expression
2 + 3 means just the Prolog term +(2, 3), and the Prolog environment does not
evaluate it, except if it occurs in an arithmetic argument of an invocation of an
arithmetic predicate. These are:

• The right-hand side argument of the built-in predicate is/2;

• And both arguments of the arithmetic comparison predicates
. (=:=)/2, (= \ =)/2, (<)/2, (>)/2, (=<)/2, (>=)/2.

When we invoke any of these predicates its name can be used with infix notation.
Goal Term is Exp first evaluates the arithmetic expression Exp, next it tries to
match the result with Term. An arithmetic comparison compares the arithmetic
values of its parameters.

An arithmetic expression is a number (integer or float), or a compound
term with arithmetic functor, and arithmetic expressions in the arguments. (The
arithmetic functors are the usual arithmetic operators, logarithmic, trigonomet-
ric function symbols etc. [C+12], [DEDC96] and [ISO95]) This means that the
variables of the arithmetic arguments of a Prolog goal must be appropriately
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substituted by the time of invoking this goal. For example (// denotes the integer
divison, floor denotes the integer part):

| ?- X is -2**4, Y is floor(cos(0))+3*(8-7//2), Z is -2+1.0.

X = 16.0, Y = 16, Z = -1.0

| ?- X = -2**4, Y = floor(cos(0))+3*(8-7//2), Z = -2+1.0.

X = -2**4, Y = floor(cos(0))+3*(8-7//2), Z = -2+1.0

| ?- 5 is 2+3, 5.0 =:= 2+3, -4+1 =< -2-1.0.

yes

| ?- 2+3 is 2+3.

no % 5 does not match 2+3 which is a compound.
| ?- 5.0 is 2+3.

no % 5 does not match 5.0 although they are arithmetically equal

A typical error of Prolog beginners is the goal “X is X + 1”. Nonetheless this goal
never performs the operation desired. If X has been substituted by a number, the
value of X + 1 does not match X, because these are two different constants. If X is
a compound arithmetic expression, the value of X + 1 does not match X, because
a constant never matches a compound. If X is not an arithmetic expression (for
example, X is a var or atom), the evaluation of X + 1 raises the appropriate
exception (1.12).

Note that the arithmetic comparisons just compare the values of proper
arithmetic expressions. For example, goal Y =:= X + 1 cannot be used to get
the result of X + 1. A goal like Y is X + 1 serves for this purpose:

| ?- Y is 6+1.

Y = 7

| ?- Y =:= 6+1.

{INSTANTIATION ERROR: 157=:=6+1 - arg 1}

Finally, we consider some classic arithmetic computations. The next two predi-
cates calculate the sum and scalar product of two vectors represented by lists of
numbers of the same length.

% add(V1,V2,V) :-
% Vector V is the sum of vectors V1 and V2.
add([ ],[ ],[ ]).

add([X|Xs],[Y|Ys],[Z|Zs]) :-

Z is X+Y, add(Xs,Ys,Zs).

% mult(V1,V2,S) :-
% S is the scalar product of vectors V1 and V2.
mult([ ],[ ],0).

mult([X|Xs],[Y|Ys],S) :-

mult(Xs,Ys,S0), S is S0+X*Y.
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The predicates above are deterministic according to first argument indexing. In
case of add/3 even tail recursion optimization can be applied, and it is not hard
to tranform mult/3 accordingly: we introduce an accumulator in order to collect
the partial sums, that is, we generalize the original problem in order to add the
scalar product to some initial value.

mult(V1,V2,S) :- mult(V1,V2,0,S).

% mult(V1,V2,A,S) :- S = A+V1*V2.
mult([ ],[ ],A,A).

mult([X|Xs],[Y|Ys],A0,S) :-

A1 is A0+X*Y, mult(Xs,Ys,A1,S).

1.8.2 Type and omparison of terms

The standard types of Prolog terms are organized according to the hierarcy of
the different kinds of terms introduced in (1.4).

The list of standard types: var, nonvar, atomic, number, float, integer,
atom, compound.

The names of these types are the names of the standard type-checking predi-
cates, too. Each of them has arity 1. For example, the following test is successful.

| ?- var(X), var(Y), var(Z), var(U), X=1, Y=1.0, Z=a, U=f(a),

nonvar(X), nonvar(Y), nonvar(Z), nonvar(U), compound(U),

atomic(X), atomic(Y), atomic(Z), atom(Z),

number(X), number(Y), integer(X), float(Y).

In the next example the effectivity of predicate grandparent/2 (1.2.2) is in-
creased: If the grandson is known, and the grandparent is to be computed, we
exchange the order of the subgoals, in order to narrow the search tree. Otherwise,
we leave the original order and take advantage of first argument indexing.

grandparent(X,Y) :-

( var(X), nonvar(Y) -> parent(Z,Y), parent(X,Z)

; parent(X,Z), parent(Z,Y)

).

In Prolog two arbitrary terms are comparable. The identity of two terms can
be tested with the built-in (==)/2 and (\ ==)/2. For example, the following
test is successful, because the two logical variables are originally different, but
having matched them they are identical: | ? − X \ == Y, X = Y, X == Y.

In the standard order of terms a var is smaller than a float, this is smaller
than an integer, this is smaller than an atom, and this is smaller than a
compound. goal A @ < B is succcessful iff A precedes B in the standard order
of terms, that is A is smaller than B
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In the standard order, the floats are compared arithmetically, and the inte-
gers, too. But do not forget that a float is always smaller than an integer:

| ?- 5 < 5.1, 5.1 @< 5, 9.9e99 @< -999999999.

yes

The names or atoms are compared lexicographically. And their characters
are compared according to their code values, in the actual coding system (for
example, latin-1, utf-8, etc.). The structures or compounds are compared first
according to their arities, next according to their functor names, and at last
according to their parameter lists, lexicographically. The parameter pairs are
compared according to the standard order of terms, recursively.

The standard order of the variables is implementation defined. The standard
order of two terms may be changed by substitution, if any of them is a var, or
any of them is a compound containing some var(s). For example, the following
test is successful.

| ?- X@<10.0, X=1, X@>10.0.

According to their standard order the terms can be compared with the built-ins
(@ >)/2, (@ <)/2, (@ >=)/2, (@ =<)/2. For example:

% PreCond: Ys is a proper list sorted increasingly
% according to the standard order.
% sorted insert(Ys,X,Zs) :-
% Zs is received by the sorted insert of X into Ys.
sorted insert([],X,[X]).

sorted insert([Y|Ys],X,Zs) :-

( X @=< Y -> Zs = [X,Y|Ys]

; Zs = [Y|Us], sorted insert(Ys,X,Us)

).

| ?- sorted insert([b(z(1,2)),a(X,Y),a(2,1)],a(2,3.14),Zs).

Zs = [b(z(1,2)),a(X,Y),a(2,3.14),a(2,1)]

1.8.3 Term manipulation

Up till now we have supposed that the functors, i.e. constructors of the terms
processed by our programs are known in advance. However, in many applications
this is not true (for example, when we process Prolog terms coming from an input
file or channel). In such cases the input terms can be analized and new terms
can be synthetised using the built-in predicates manipulating terms.

In order to handle compound terms constructed with unknown functors, the
most important built-ins are functor/3, and arg/3.

If Term is a nonvar, we can determine or test the functorname and/or arity
of Term using the invocation functor(Term, Functorname, Arity). (The arity of
an atomic is zero.) If Term is a var, Functorname is an atom, and Arity is a
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positive integer, the invocation generates an appropriate compound term with
fresh variables in its arguments and substitutes it into Term:

| ?- functor(t(a,b),F,N), functor(T,F,N).

F = t, N = 2, T = t( A, B)

The goal arg(I, Structure, Arg) matches Arg with the Ith parameter of the
compound term Structure, where 1 =< I =< Arity. Therefore this predicate
can read and/or fill the parameters of a compound:

% substitute(T0,X,Y,T) :-
% T is a copy of T0 except that each occurence of X in T0
% has a corresponding occurence of Y in T.
substitute(T0,X,Y,T) :-

( T0 == X -> T = Y

; compound(T0) ->

functor(T0,F,N), functor(T,F,N),

substitute args(N,T0,X,Y,T)

; T = T0

).

substitute args(N,T0,X,Y,T) :-

( N > 0 ->

arg(N,T0,A), substitute(A,X,Y,B), arg(N,T,B),

N1 is N-1, substitute args(N1,T0,X,Y,T)

; true

).

% Test:
| ?- substitute(a(X,nil,b(nil,2,B,nil)),nil,[],T).

T = a(X,[ ],b([ ],2,B,[]))

Constants, i.e. atomic terms can be taken into pieces and put together using the
built-in predicates
atom_codes(Atom, ListOfCharacterCodes), and
number_codes(Number, ListOfCharacterCodes).
(Futher term manipulators in [DEDC96], [ISO95] and [C+12].) Using these pred-
icates, any textual manipulation of a constant can be reduced to manipulating
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the appropriate list of character codes. For example:

% aA(A,B) :- B is a copy of atom A except that
% each lower-case letter in A is substituted
% by the appropriate upper-case letter in B.
aA(A,B) :-

atom codes(A,Cs), cC(Cs,Ds), atom codes(B,Ds).

cC([ ],[ ]).

cC([C|Cs],[D|Ds]) :- bB(C,D), cC(Cs,Ds).

bB(C,D) :- % the code of character a is 0’a
( 0’a=<C, C=<0’z -> D is C-0’a+0’A

; D = C

).

% Test:
| ?- aA(’How beautiful is She!’,Unknown).

Unknown = ’HOW BEAUTIFUL IS SHE!’

1.9 Operator symbols in Prolog

We have mentioned that the names of some predicates (like the names of arith-
metic comparisons) can be written in infix mode. Built-in negation can be
written like a prefix operator (1.7.3). And some arithmetic function symbols
(like +, −, ∗, /) can be written as operator symbols. However, considering these
predicate names and function symbols in a context-free manner, they are just
functors of compound terms. This means that the notion of operator (symbol)
in Prolog is just notational convenience. It is a completely syntactic category.
A Prolog operator does not do anything, unlike the operators of the procedural
(C,C++, etc.) and functional (Lisp, Haskell, etc.) languages. It is just a syntactic
sugar, an optional notation, like the list notation, although it is very important:
without operators it is hard to write easy-to-read Prolog programs.
An operator symbol is predifined or user-defined, and it has three basic properties:
priority, mode, and name. Its name is a Prolog atom.

There are 1200 piority levels. The operators of the 1st level bind the strongest
and those of the 1200th level bind the weakest. For example, the infix operators
+, and ∗ have priorities 500 and 400. Therefore a + b ∗ c == +(a, ∗(b, c)).
Each Prolog expression has priority, which is zero, if it is a var or atomic, it is
directly in brackets, it is written with list notation, or it is a compound written
in the standard functional notation in the form f(t1, . . . , tn). The priority of an
expression is equal to the priotity of its main functor, if this functor is written as
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operator, and the expression is not directly in brackets. For example, the priority
of a + b ∗ c is 500.

Considering roughly the mode, an operator can be infix (if it is written
between the operands), prefix (if it is put before the operand), or suffix (if it
comes after the operand). At the same time two operators may exist with the
same name. In this case, one of them is infix, and the other is prefix or suffix.

Let us consider first the infix operators. And let us suppose that p and q are two
infix operators where pr(p) and pr(q) are their priority levels, respectively. Let us
consider the expression apbqc. If pr(p) < pr(q) then apbqc = (apb)qc, because p
binds stronger. If pr(p) > pr(q) then apbqc = ap(bqc), because q binds stronger.
If pr(p) = pr(q), the interpretation of apbqc depends on the associativity of the
operators. There are three different associativities.

The exact mode or associativity of an infix operator is
yfx (left-associative, for example a − b − c == (a − b) − c), or
xfy (right-associative, for example (a; b; c) == (a; (b; c))), or
xfx (non-associative: a = b = c must be parenthesized explicitly).

In this notation f symbolizes the functor (i.e. operator) name, x and y
symbolize the parameters; y=yes: on this side of the operator there must be
an expression with the same or smaller priority level. x=no: on this side of
the operator there must be an expression with smaller priority level, and an
expression with the same priority level is not allowed. However, there are some
ambiguous expressions yet: if the right side of the first operator and the left
side of the second one are denoted by y, too. In these cases, the expression is
considered right-associative.

Based on these rules, this is the default bracketing of apbqc, provided that
pr(p) = pr(q), m(p) denotes the mode or associativity of operator p, and ? stands
for x or y:

• apbqc = (apb)qc if m(q) = yfx ∧ (m(p) = yfx ∨ m(p) = xfx),
• apbqc = ap(bqc) if m(p) = xfy ∧ m(q) =?f?,
• apbqc must be explicitly bracketed in any other case.

The exact mode or associativity of a prefix operator is fx or fy. And that of a
suffix operator is xf or yf . The meaning of f , x, and y is the same as before.

It follows that if pr(p) = pr(q),

• pbq = (pb)q if m(q) = yf ∧ m(p) = fx,
• pbq = p(bq) if m(p) = fy ∧ m(q) =?f ,
• pbq must be explicitly bracketed if m(p) = fx ∧ m(q) = xf .

The default bracketing of expressions like apbq, pbqc, etc. goes in a similar way.
A new operator is created by the statement op(Priority, Mode, Name), or it

can be overdefined in the same way.16 (Name can be an atom , or a proper list

16 op/3 is an example of extra-logical predicates (1.10).
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of atoms.) If Priority == 0, the operator with the given name and mode is
deleted. This statement is most often used in directives (see 1.2). For example:

:- op( 1200, xfx, [ :-, –> ]).

:- op( 1200, fx, [ :-, ?- ]).

:- op( 1100, xfy, [ ; ]).

:- op( 1050, xfy, [ -> ]).

:- op( 1000, xfy, [ ’,’ ]). % The priority of ’,’ is 1000.
:- op( 900, fy, /+ ).

:- op( 700, xfx, [ =, /=, ==, /==, @<, @>, @=<, @>=,

=. ., is, =:=, = /=, <, >, =<, >= ]).

:- op( 500, yfx, [ +, -, / /, // ]).

:- op( 400, yfx, [ *, /, //, mod, rem, «, » ]).

:- op( 200, xfx, ** ). :- op( 200, xfy, ^ ).

:- op( 200, fy, [ -, /]).

Now we have introduced the predefined operators of Prolog according to the
ISO standard ([DEDC96] and [ISO95]).

Notice that the comma symbol is a predefined right-associative infix operator,
too. An extra rule: if it is used as infix operator, it must be written without
apostrophes. However, commas separate the elements of a list-like term, and
the expressions of a parameter list, too. Therefore, in order to know the right
interpretation of the operator and separator commas in a Prolog expression, the
priority of an element of a (parameter) list must be less then 1000. (If the priority
of such an element is greater or equal to 1000, it must be put between brackets.

We have already known that each parameter of any atomic formula is a
term in mathematical logic, logic programming, and Prolog. Notice now that
the signs used to formulate the Prolog sentences (′ : −′, ′,′, ′;′, ′− >′, and ′\+′)
are predefined operators. This means that the goals, queries, heads and bodies of
rules, and even the sentences (rules, directives, and declarations) of the Prolog
programs are terms besides the parameters of atomic formulas. For example,
term p(X) can be a piece of data, a query, a head or body of a rule, or a fact of
a program depending on its context.

Another example: if negation were not a built-in predicate, we could define
it with the following rule.

/+ Goal :-

( Goal -> fail

; true

).

In this rule, the first occurence of logical variable Goal means a piece of data,
especially a formal parameter, but its second occurence denotes a Prolog goal.
(Notice that in this case the brackets of the conditional goal can be omitted,
but in order to increase the readability of the programs, we will always use such
brackets.) Because a rule considered in a context-free manner is just a term,
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using the functional notation of compound terms, the previous rule could be
written as follows (although this notation would destroy readability).

:-( /+(Goal),;(->(Goal,fail),true)).

We can conclude that in Prolog there is no strict difference between program
and data. This property of the language helps us to write language processors,
programs manipulating other programs like interpreters, compilers, program
transformators, intelligent programs which are able to learn and forget things,
and so on. Surely, it is the easier case of the language processors when the
sentences of the source and target languages are also fitting the term notion of
Prolog ([SB04] and [War80]). (If this is not the case, we can help us with logic
grammars [DM93], [C+12], [SS94], [SB04] and [War80].)

1.10 Extra-logial prediates of Prolog

These predicates do not have declative reading like pure Prolog programs. These
have only operational semantics. Theoretically, they lie outside the logic pro-
gramming model [SS94]. The predicates of pure Prolog, and the meta-logical
predicates communicate with their programming environment only through their
parameters, and their effects are backtrackable. The extra-logical predicates
access global information, usually have side-effects, and typically these side-
effects are not backtrackable. Therefore they allow us to pass information among
the different branches of the search tree of a Prolog query, so we need them, if
we want to write practical applications. They are responsible for the program
interfaces, and for the access and manipulation of the Prolog environment.
The different kinds of the interface predicates are those loading (and saving)
programs, the I/O predicates, the foreign language interfaces (C/C++, Java,
.NET, Tcl/Tk, etc.), data base handler, GUI, operating system, web, and other
interfaces ([C+12] and [SB04]).

In this chapter we consider only loading programs, I/O predicates, and
manipulating the program loaded.

1.10.1 Loading Prolog programfiles

Loading a program means loading a Prolog source or object code into the Prolog
environment (where it is activated through queries).

The only standard predicate of this category is ensure_loaded/1, whose
actual parameter can be a filename, or a proper list of filenames. For each file
it checks the time of its last modification, and loads it only if necessary. Some
Prolog implementations may allow the use of this predicate only in directives,
but usually it can be invoked without restrictions, even during the run of a query.
It compiles the loaded code into the memory.
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Most Prolog environments still provide the traditional predicates of loading
in interpreted mode (consult/1), and in compiled mode (compile/1); file-to-
file compilation producing object code, loading object code; there are special
predicates for loading module files (use_module/2 . . . (1.13.1)), etc. ([C+12]
and [SB04]).

The run of the predicates loaded in interpreted mode can traced (trace/0,
notrace/0, etc.), while loading in compiled mode results optimized code 5-20
times faster ([C+12] and [SB04]).

1.10.2 Input and output

We consider only the handling of sequential textfiles, and only its basic predicates
([DEDC96], [ISO95] and [C+12]). A textfile can be opened in read, write, or
append mode, using the query open(File, Mode, Stream). Then our operations
refer to the Stream, until we close it using close(Stream). The standard I/O
streams should not, and must not be closed. They can be referred to through
the name user. The I/O predicates read or write a single character or a whole
term with no restriction on the complexity of that term.

Consider first the character I/O. The goal peek_code(S, C) is true if the code
of the actual character of stream S is C (it tries to match it with C). The goal
get_code(S, C) is similar, but as a side-effect, the actual character becomes the
next one, even if the code of the old actual character does not match C, and
get_code(S, C) fails. The goal at_end_of_stream(S) is true, if stream S has
already been read until its end (S\ = user). The goal put_code(S, C) writes the
character with code C on stream S, while nl(S) sends a newline onto S. E.g.:

% PreCond: F1 and F2 are textfiles with appropriate access.
% appf(F1,F2) :- the content of F2 is inserted at the end of F1.
appf(F1,F2) :-

open(F1,append,A), open(F2,read,R),

af(A,R),

close(A), close(R).

af(A,R) :-

get code(R,C),

( C == -1 -> true % end of R
; put code(A,C), af(A,R)

).

Consider now the term I/O. The goal read(S, T) reads a whole term from stream
S. Then it tries to match it with T. Because any term can be continued with an
infix operator and a connected term, the term to be read must be terminated with
a dot, and at least one whitespace character (like the sentences of a program):
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| ?- read(user,X), read(user,Y).

|: 12. a+b*c.

X = 12, Y = a+b*c

The goal write(S, T) writes term T on stream S without the terminating dot.
(Term T can be any term, even a whole list.) But the atoms are never put between
quotes or backquotes, because these usually represent messages to be printed:

| ?- write(user,’Value of Pi = ’), read(user,Pi).

Value of Pi = 3.14159265358979323846.

Pi = 3.141592653589793

If we need an output readable for other Prolog programs, we use writeq(S, T):

| ?- writeq(user,father(’Isaac’,’Jacob’)), write(user,’. /n’).

father(’Isaac’,’Jacob’).

1.10.3 Dynami prediates

Up till now we have considered only static Prolog predicates: a predicate is
static by default, i.e. its code cannot change when it has been loaded. However,
a predicate may be defined dynamic. For example, if we have the following
declaration: : −dynamic(p/2). predicate p/2 will be dynamic, i.e. its code will
be variable even while the program runs. In this way, the running program can
dynamically learn new rules and forget obsolete ones.

A decaration must precede the first rule of the predicate referred to. But a
declared (and therefore existing) predicate does not necessarily have any rule.
If there is a predicate with no rule, each goal invoking this predicate silently
fails. But any goal invoking a non-existing predicate raises an exception called
existence_error (1.12).
We can add new rules to a dynamic predicate. Goal asserta(R) adds a fresh
copy of rule R to the predicate identified by the head of R as its new first rule,
while assertz(R) adds this copy of R to that predicate as its new last rule.17

Let us notice that this making a fresh copy of R is necessary because the further
run of the program may substitute some logical variables of term R, and later
backtracking may also delete some actual variable bindings in term R. Clearly
such modifications of term R must not modify the rule added to the program.

Consider now a simple example of dynamic predicates: let us suppose that
file lpp.pl contains predicate connected/2:

17 A fresh copy is a copy of the term where the variables are substituted by fresh (i.e.
new) variables. If a variable has more occurences, the same fresh variable is used for each
occurence, but the different variables are substituted with different fresh ones. And the
variable bindings to nonvar terms (i.e. variables substituted by nonvar terms) inside the
original term are substituted with direct references to the appropriate terms in the fresh
copy.
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:- dynamic(connected/2).

connected(X,X).

and it is processed as follows. (We suppose that predicate edge/2 defines an
acyclic directed graph.)

| ?- consult(lpp).

% consulting c:/documents and settings/pl/book/lpp.pl. . .
% consulted c:/documents and settings/pl/book/lpp.pl
% in module user, 0 msec 1536 bytes
yes

| ?- assertz((connected(X,Y):-edge(X,Z),connected(Z,Y))).

yes

| ?- listing(connected/2). % print the clauses of the predicate
connected(X, X).

connected(A, B) :-

edge(A, C),

connected(C, B).

A dynamic rule may be deleted by a goal like retract(RulePattern) where
the head part of RulePattern must be a Prolog atom or compound idetifying the
dynamic predicate referred to by the retract statement. This goal deletes the
first rule of the predicate referred to which matches term RulePattern. Forcing
backtracking even each rule matching RulePattern can be deleted:

| ?- retract((connected(X,Y):-Body)).

Y = X, Body = true ? ;

Body = edge(X, A),connected( A,Y) ? ;

no

Based on this example – if it were not a built-in predicate – we could define
predicate retractall/1 as follows.

retractall(P) :- retract((P:- )), fail.

retractall( P).

If we call any of the program manipulating predicates above, and it refers to a
non-existing predicate, then this predicate is created as a dynamic one:
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% my consult(F) :- read the sentences of file F,
% omit the declarations and directives, and
% create dynamic predicates from the rules.
my consult(F) :-

open(F,read,S),

consulting loop(S),

close(S).

consulting loop(S) :-

read(S,Sentence),

( Sentence == end of file -> true % end of S
; Sentence = :-( ) -> consulting loop(S)

; assertz(Sentence), consulting loop(S)

).

Dynamic predicates are typically used to memorize lemmas and negative lemmas
derivable from the actual run of a program, in order to avoid recomputing this
information ([SS94], [O’K90] and [SB04]).

For example, if predicate edge/2 defines a graph with complex structure, and
we are interested, which nodes can be reached from a given one, the following
program may be useful, because it remembers the visited nodes, it avoids infinite
looping, and if it fails to achieve goal from an internal node, after backtracking
and arriving at it again it does not recompute the pathes going out from that
node. (Note: ground/1 may not be a built-in in your Prolog, but it is easy to
program it: see Exercise 1.7 in Section 1.7.)

% Z can be reached form a given A.
reach from(A,Z) :-

ground(A), % A must be ground term
retractall(visited( )), asserta(visited(A)),

reach 2(A,Z).

% do not call directly:
reach 2(A,A).

reach 2(A,Z) :-

edge(A,B), /+ visited(B),

asserta(visited(B)), reach 2(B,Z).

However, we cannot encourage the use of dynamic predicates to emulate global
variables, especially if their usage can be avoided. This can lead to procedural
programming style. And the overuse of dynamic predicates implies high runtime
costs. For example, each modification of a dynamic predicate forces rebuilding
the tables used for first argument indexing, each assert call makes a fresh copy of
the whole rule to be inserted, independently from the size of the data structures
stored in it, etc.
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Especially in our previous problem, if we need even the pathes going form
node A to Z, or the structure of the graph is not so complex, or node A may not
be given in the query, the next solution is suggested.

% Example graph:
edge(a,b). edge(b,c). edge(b,d).

edge(c,a). edge(c,e). edge(d,e).

__________

/ \

V \

a----->b----->c

| |

| |

V V

d----->e

% path(A,Z,Path) :-
% Path is an acyclic list of nodes from A to Z.
path(A,Z,Path) :- path 2(A,[ ],Z,Path).

path 2(A,Ancestors,A,Path) :-

reverse([A|Ancestors],Path).

path 2(A,Ancestors,Z,Path) :-

edge(A,B), B /=A, /+member(B,Ancestors),

path 2(B,[A|Ancestors],Z,Path).

1.11 Colleting solutions of queries

A Prolog query may have many solutions, but these are at leaves of different
branches of the search tree of the query. Therefore, we can receive these solu-
tions through backtracking, and the Prolog environment forgets one, when it
backtracks to search for another. So we would never have them all together, but
Prolog has built-in predicates ([DEDC96], [ISO95], [O’K90], [C+12], [SS94] and
[SB04]) for collecting the solutions. The most important, and also the simplest
one is findall(Solution, Goal, Results), where Goal is any query (if it is a
conjunction or disjunction, it must be bracketed), Solution is the term to be
collected from the solutions of Goal, and Results is the list of the collected
terms. Usually Goal and Solution shares variables. Typically Solution is one
of the variables of Goal or it is a compound consisting of some variables of Goal.
Procedurally speaking, the following algorithm computes Results.
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Results := [ ];

while( still there is (another) solution of Goal )

{ solve Goal; % substituting some vars of Solution
append a copy of Solution to the end of Results;

backtrack Goal; % deleting the bindings of its vars
}

For example, using the example programs in the previous subsection (1.10.3):

| ?- findall(X,edge(X,Y),Xs).

Xs = [a,b,b,c,c,d]

| ?- findall(e(X,Y),edge(X,Y),XYs).

XYs = [e(a,b),e(b,c),e(b,d),e(c,a),e(c,e),e(d,e)]

| ?- findall(Z,reach from(a,Z),Zs).

Zs = [a,b,c,e,d]

| ?- findall(Z,reach from(d,Z),Zs).

Zs = [d,e]

| ?- findall(Path,path( , ,Path),Ps).

Ps = [ [ A],[a,b],[a,b,c],[a,b,c,e],[a,b,d],[a,b,d,e],

[b,c],[b,c,a],[b,c,e],[b,d],[b,d,e],

[c,a],[c,a,b],[c,a,b,d],[c,a,b,d,e],[c,e],[d,e] ]

Considering the first test of findall(Solution, Goal, Results), we can see that
the multiple solutions of Goal are put on the list Results in general. If we want
to eliminate the duplications, we need something like predicate sort(Xs, Ys)
which sorts list Xs into strictly increasing order according to (@ <)/2 (removing
duplications) and try to match the result with Ys. (It is a built-in of most
Prolog implementations. Anyway, it is not hard to write our own version: see
unionsort/2 in Section 1.6 in the solution of Exercise 1.6. sort(Xs, Ys) is very
effective: its computational complexity is Θ(n ∗ log(n)) where n is the length
of Xs.) Predicate collect/3 is similar to findall/3 except that it removes the
multiplications of the solutions:

% collect(Solution,Goal,Results) :- Result is a
% strictly increasing proper list of the Solutions of Goal.
collect(Solution,Goal,Results) :-

findall(Solution,Goal,ListOfSols), sort(ListOfSols,Results).

Considering the directed graph defined by predicate edge/2 we can compute the
set of nodes having successor as follows (compare to the first test of findall/3):

| ?- collect(X,edge(X, Y),Xs).

Xs = [a,b,c,d]
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1.12 Exeption handling in Prolog

Error and exception handling is standard part of modern programming lan-
guages. Therefore, it is also important part of the ISO Prolog standard.

In Prolog a query typically fails, succeeds (possibly leaving one or more choice
points) or goes into infinite recursion. However, sometimes a predicate invocation
cannot be interpreted. For example, this is the case with an invocation referring
to a non-existing predicate (in the given scope), the query arg(I, T, A) if I is a
negative integer or T is a simple term (see Section 1.4), the goal X is Exp where
Exp is not an arithmetic expression, and goal read(S, X) if it finds a non-term in
S. In such cases the invocation raises the appropriate exception like in other high-
level programming languages. And the call finishes with this exception instead
of success or fail.

A Prolog exception can be represented with an atomic or compound (i.e. a
nonvar). It can be raised also with the call throw(exception). The unhandled ex-
ceptions become runtime errors. However, the Prolog development environment
handles these errors (at the level of its interactive shell) printing the appropriate
error message, and the Prolog prompt (| ?− ).

If a Prolog goal raises an exception but does not handle it, we say that the
goal propagates the exception. Therefore, we can say that runtime errors are
exceptions propagated to the Prolog shell.

Exceptions can be handled with the built-in predicate
catch(Goal,ExceptionPattern,HandlerGoal).

A catch invocation may handle just the exceptions raised (but not handled)
during the evaluation of the Goal in its first argument. Therefore, the first actual
parameter of a catch invocation is a protected goal.

A catch invocation first calls its first parameter.

If Goal propagates no exception, then it works as if it were called bare
(without the catch protecting it).

However, if Goal propagates an exception E, first a fresh copy F of E is
made. Next, each variable bindings performed through the evaluation of Goal
are deleted, together with each choice point, each call frame pushed into the call
stack, and each backtrackable events. (However, the side-effects of the extra-
logical predicates are not deleted.)

Next F and ExceptionPattern are matched.

If this pattern matching is successful, then HanderGoal is called, and its
evaluation is equal to the further evaluation of the catch invocation.

Otherwise the catch invocation propagates exception F.
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The standard built-in predicates always raise exceptions of the form
error(IsoErr, ImpErr) where term IsoErr is defined by the standard,
while ImpErr is implementation dependent. For example:

| ?- catch( X is a, error(IsoErr,ImpErr), true ).

ImpErr = domain error( A is a,2,expression,a),

IsoErr = type error(evaluable,a/0)

In the next example, predicate read1term(Term) can read any term (terminated
by a dot and a whitespace character) from the standard input, and skips the
remainder of the actual input line. Nonetheless if the standard input starts with
a non-term (a term with syntax error), it prints the error-term defined by the
ISO standard, and repeats reading.

read1term(Term) :-

catch( ( read(user,Term), skip line(user) ) ,

error(Err, ), ( write1term(Err), read1term(Term) )

).

write1term(Term) :- writeq(user,Term), nl(user).

| ?- read1term(Term).

|: a*(b+ .

syntax error(’. cannot start an expression’)

|: a*(b+c.

syntax error(’) or operator expected’)

|: a*(b+c).

Term = a*(b+c)

1.13 Prolog modules

Although the “general core” of ISO Prolog ([DEDC96] and [ISO95]) is widely
accepted and supported by Prolog implementors, and there is also an ISO
standard for Prolog modules [ISO00], this latter is considered a failure, and
as far as we know, there is no implementation of this part of the standard.
Therefore, here we introduce only the module system of SICStus Prolog [C+12]
which is flat and predicate-based: it is widely accepted, and it is a starting point
of many new developments.

1.13.1 Flat, prediate-based module system

Predicate-based module system means that the Prolog terms are global, and
visible in each module. But each module has its own predicate space, and the
predicates are local to their module by default. However, they can be defined as
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public predicates, and then they can be imported (from their module) into other
modules, becoming part of these modules, and accessed directly in them.

Flat module system means that there is no hierarchy, and all the modules of
a program are at the same level. One file may contain just one modul, but one
module may be spread into several files.

There is a default module called user. Each source file is loaded into it by
default. The default type-in module of the queries at the Prolog prompt is also
module user. Therefore, if one does not want to use the module system, one
does not have to use it. However, programming in large makes it necessary.

The first sentence of a module file must be a module declaration in the
following form.
: − module( ModuleName, PublicPredicates ).
ModuleName must be a Prolog atom. PublicPredicates must be a proper list
of predicate specifications in the form name/arity. The predicates encountered
here are the public predicates of the module. The predicates of a module may be
defined in that module. Or these may be imported into it, using, for example,
one of the the built-in predicates
use_module( ModuleFileName, ImportList )
use_module( ModuleFileName )
called typically in a directive (1.2). ImportList must represent a subset of the
public predicates of the module defined in file ModuleFileName. If we invoke
use_module(MFN) in module M, each of the public predicates of the module
defined in file MFN is imported into module M. These calls load the file iff it is
necessary.

For example, let us suppose that we have the module file graph.pl with the
module graph_of_edges in it. The only public predicate of this module is
edge/2 defining the edges of the graph. We also suppose that goal edge(X, Y)
can check or return an edge, that is, there is no restriction on its use. For example:

:- module( graph of edges, [edge/2] ).

edge(a,b). edge(b,c). edge(b,d).

edge(c,a). edge(c,e). edge(d,e).

Let us write module search with the only public predicate path/3 which is able
to find simple pathes (i.e. pathes without loops) on a graph defined by predicate
edge/2. (Predicate path/3 has already been defined at the end of (1.10.3), and
tested in (1.11).)

:- module( search, [ path/3 ] ).

:- use module( graph, [edge/2] ).

:- use module( library(lists), [reverse/2] ).
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% path(A,Z,Path) :-
% Path is an acyclic list of nodes from A to Z.
. . .

In order to define the file containing the graph dynamically, we have to change
only the first two sentences of the module:

:- module( search, [ new graph/1, path/3 ] ).

new graph(File) :- use module( File, [edge/2] ).

. . .

We suppose that the latter version of module search is defined in the module
file called search_path.pl. Now we can initialize this module with any module
file defining the graph through the public predicate edge/2:

| ?- use module(search path).

% . . .module search imported into user. . .
yes

| ?- new graph(’../book/graph’).

% . . .module graph of edges imported into search. . .
yes

| ?- findall(Path,path( ,e,Path),Pathes).

Pathes = [ [e],[a,b,c,e],[a,b,d,e],

[b,c,e],[b,d,e],[c,a,b,d,e],[c,e],[d,e] ]

1.13.2 Module prefixing

The strict module system outlined above implies some basic problems.

First, it prevents us from testing our program without altering it, because we
cannot directly invoke the local predicates of a module. This problem is simply
solved: any goal can be prefixed with a module name in the form module:goal
overriding the source module of goal to module (op(550, xfy, :)). We can similarly
override the source module of a predicate specification, rule head or sentence
[C+12].

For example, predicate search : path_2/4 in the previous subsection (1.13.1)
can be invoked from any module using the prefix “search :”:

| ?- search:path 2(d,[b,a],E,Path).

E = d, Path = [a,b,d] ? ;

E = e, Path = [a,b,d,e] ? ;

no

If there are more module prefixes of some query, rule head or sentence, just the
rightmost one has effect. For example, goal k : m : n : p(X) is equivalent to goal
n : p(X).
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If you consult a module file (load it in interpreted mode: see (1.10.1)), even
the local predicates of the module loaded can be listed using module prefix. For
example:

| ?- listing(search:path 2/4).

search:path 2(A, Ancestors, A, Path) :-

lists:reverse([A|Ancestors], Path).

search:path 2(A, Ancestors, Z, Path) :-

graph of edges:edge(A, B),

B /=A,

/+member(B,Ancestors),

search:path 2(B, [A|Ancestors], Z, Path).

This means that this module system cannot really hide a predicate, but it can
prevent conflicts of predicates with the same name and arity in different modules.

Note that module prefixing used without sensible control may destroy the
module structure of our program.

1.13.3 Modules and meta-prediates

The problem shown through the next example is related to the interactions of
meta-predicates and modules. Predicate forall(P, Q) (below) enumerates the
solutions of goal P and for each solution it tries to find the first solution of goal
Q: if Q fails, forall(P, Q) also fails immediately. It does not collect the solutions.
It is used to check whether P implies Q, or it is invoked to force side-effect Q for
each solution of P:

% forall(P,Q) :- for each solution of P, Q can be solved,
% that is P implies Q.
forall(P,Q) :- /+ ( P, /+Q ).

?- forall(path(b, ,Path),(write(Path),write(’ ’))).

[b] [b,c] [b,c,a] [b,c,e] [b,d] [b,d,e]

The forall/2 form is a meta-predicate and its arguments are meta-arguments
parameterized with meta-goals. If that forall/2 is a public predicate of module
m and we invoke forall(path(b, _, Path), (write(Path), write(′ ′))) in module
h. Probably we want to use predicate path/3 visible in module h. But the
body of forall/2 is invoked in module m. Therefore, path(b, _, Path) is invoked
also in module m. But path/3 may not be visible in module m, or even worse,
m : path/3 may differ form h : path/3. (It follows that in the first case goal
path(b, _, Path) raises existence_error, in the second case it silently invokes
another predicate.)

One possible solution is to prefix the meta-parameters of a meta-predicate
invocation with the name of the calling module (notice that in general each meta-
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parameter needs module prefix, but in the next example the second parameter
refers only to built-in predicates and so this qualification may be omitted):

?- forall(h:path(b, ,Path),(write(Path),write(’ ’))).

Nevertheless, this manual qualification is inconvenient, and error-prone: one may
forget the qualification, and it may lead even to silent errors; or one may rename
the calling module, but forget to rename the module prefix with it. Therefore,
it is better if this qualification of the meta-parameters with the calling module
is automatic. This automatic qualification is called module name expansion.

Therefore, we can declare module name expansion for the meta-arguments
of the public predicates of the modules. In such a meta-predicate declaration
a meta-argument must be indicated with a colon (or an integer) [C+12]; a

non-meta-argument can be indicated with any ground term except the colon
and the integers. Then the meta-parameters of an invocation to the meta-
predicate are automatically prefixed with the calling module, while the other
actual parameters are not expanded:

:- module( m, [ forall/2, collect/3 ] ).

:- meta predicate forall(:,:), collect(?,:,?).

forall(P,Q) :- /+ ( P, /+Q ).

collect(Solution,Goal,Results) :-

findall(Solution,Goal,ListOfSols), sort(ListOfSols,Results).

The Prolog compiler expands the predicate invocation forall(C, D) into
forall(h : C, h : D) provided that h is its calling module. Similarly, the predicate
invocation collect(X, G, Xs) is expanded into collect(X, h : G, Xs) if h is its
calling module.

There is the same case when we call predicates loading program files like
compile(F) or consult(F), e.g. from module h. They must also know that
program code F must be imported into module h. Similarly, if module m is defined
in file lpp.pl, and use_module(lpp, [forall/2] is invoked in module user, this
invocation must also know that predicate forall/2 must be imported into
module user. And there are the predicates dynamically modifying the program
like asserta/1, assertz/1, retract/1, etc. They must know, into which module
to assert, or from which module to delete the rules.

Actually, the built-in predicates of SICStus Prolog are defined in the prede-
fined module prolog, and they are its public predicates. They are automatically
imported into each module. The predicates loading program files, those dynami-
cally accessing (and possibly modifying) the loaded program, and those working
with Prolog goals (like findall(Sol, Goal, Solutions)) are defined as meta-
predicates specifying the arguments waiting for Prolog goals, rules, file names
(or blackboard keys: see [C+12]) as meta-arguments, that is, arguments to which
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module name expansion is due. Then these invocations are informed about the
module they have to operate on.

1.14 Conlusion

Clearly, it is over the scope of this short introduction to discuss the whole field
of logic progamming or even to discuss the full language of Prolog and/or the
details of its programming methodology. Nevertheless, we hope we can give you
a hand if you want to start a detailed study.

1.14.1 Some lassial literature

There are easy-to-read introductions to the logical basis in [FGN90] and [Nil82].
There is a more general introduction to the topic in [Fla94] and [Kow79]. The
theoretical aspects of logic programming are detailed in [Llo87].

Originally published in 1981, the first textbook on programming in Prolog
was that of Clocksin and Mellish. It became popular because of its comprehesive,
tutorial approach, and general programming examples. An updated, extended
version is [CM03]. The book of Sterling and Saphiro is considered one of the
best handbooks on the programming methodology of Prolog [SS94] which is
suggested for students at beginner, and intermediate level. For advanced students
we suggest [O’K90], and still some chapters of [SS94].

There is a good description of the Prolog standard in the book of Deransart,
Ed-Dbali, and Cervoni ([DEDC96], [ISO95] and [ISO00]). The programs of
this chapter were tested in SICStus Prolog 4.2.3. The User’s Manual, and more
documentation is available at [C+12]. Finally, the Prolog 1000 database includes
more than 500 Prolog application entries, and it is available on the Internet.

1.14.2 Extensions of Prolog

Logic programming is not seperated from other branches of programming. There
have been several attempts to unify LP with functional programming, which is
the other main declarative programming paradigm. Some of them led to well
functioning systems, like implementations of ALF, λP rolog, Curry, Mercury,
etc. ([DL86], [Han94] and [C+13]). However, the practical use of the functional
logic prgramming (FLP) languages is extremely rare, maybe because of the lack
of a (de facto) standard, and the lack of the programmers properly trained.

There are interesting attempts to extend Prolog with object-oriented features
([Mos94] and [C+12]). These extensions are useful in building simulator pro-
grams, and expert systems.

Phil Vasey’s flex is a frame based extension of LPA, and Quintus Prolog.
Frames are similar to classes of OOP, but they are specialised for building expert
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systems. There are important business applications, intelligent query, registering,
diagnostics, and scheduling systems.

Prolog implementations typically know the definite clause grammar (DCG)
formalism as a built-in extension. The DCG formalism is strong enough to
define any language described with a Chomsky grammar, Turing automaton, or
attribute grammar. Their application makes it much easier to develop parsers,
compilers, text generators of formal and natural languages, and intelligent inter-
faces processing the texts of such languages, although these application areas
well fit Prolog in general. When we load a DCG into Prolog, its rules are
transformed one by one into Prolog rules using an algorithm of simple syntactic
transformations. In this way, the DCG notation is just a de facto standard
syntactic sugar in Prolog. Because of its comprehesiveness, it is very popular,
and in the Prolog folklore it is used even in application areas seemingly far from
text processing, for example in list handling utilities.

1.14.3 Problems with Prolog

Prolog, and library modules of C++, Java, etc. implementations containing
parts of Prolog are often used in practice.

It is an important problem that only the standard of the core of Prolog is
widely accepted ([DEDC96], [ISO95] and [ISO00]). But there is no de facto stan-
dard of modules, no standard of C/C++, Java, Oracle interfaces, no standard of
GUI, etc.; although these are part of any serious Prolog implementation. Clearly,
the developers of software packages do not want to depend on a particular Prolog
implementation, because any time it may disappear from the market. Therefore,
only half a dozen Prolog implementators are present in the business world and
they have been there for more than twenty years now, although their number is
much higher.

In many Prolog implementations, program tracing and debugging cannot go
through the foreign language interface. Therefore, C++, Java, etc. programmers
often switch from Prolog to a local package of their own language. (However,
logic programming studies are needed to use effectively also these packages.) On
the other hand, these local packages rarely have the effectivity and robustnes of
a professional Prolog implementation.

There is a myth that the Prolog programs are slow. Astonishingly, it is based
partly on an unsuccessful USA project in the sixties of the last century which
was trying to build an effective LP language [SS94]. The key of the successful
European projects in the seventies was adopting pattern matching instead of
unification in goal reduction, especially in parameter passing.18 On the other
hand, a good Prolog programmer needs special programming experiences, and
studies. The reputation of the language does not benefit from the fact that it is
misused by Prolog hackers.

18 See the occurs check problem in (1.6.2,1.6.3).
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1.14.4 Fifth generation omputers and their programs

Maybe Japan’s Fifth Generation Computer Systems project (FGCS) of the
eighties was the most famous initiative applying some kind of “Prolog” as its
main language. It aimed to develop highly parallel computers with many CPUs
instead of increasing the complexity of a single CPU. Some prototype computers
were created. They can be programmed with a committed choice concurrent
constraint logic programming language: its predicates consist of guarded Horn
clauses where each rule contains a guard which is similar to a Prolog cut. When
a predicate has been invoked, the rules matching the invocation start to work in
parallel, and when one of them arrives at the guard, it cuts the others. Therefore,
there are no search trees like in LP in general, and there is no possibility to find
the different solutions satisfying a query while traversing its search tree with
backtracking or other strategy.

So it has turned out that the committed choice feature conflicts with the
fundamental strength of logic programming compared to functional programming:
the applications needing intelligent search cannot take advantage of search trees.
And the prototype machines of the FGCS project were soon outperformed by
general purpose computers. (The same had happened before to the Lisp Machine
and to the Thinking Machine.) But in spite of these failures, for example “multi-
core architectures at the low-end and massively parallel processing at the high
end” seem to be winner ideas of the FGCS Project now.19

1.14.5 Newer trends

Mercury is a promising FLP language (1.14.2) developed at the University Of
Melbourne under the supervision of Zoltán Somogyi. The core of the language is
similar to pure Prolog; and a query is evaluated through backtracking traversal
of its search tree. But it is purely declarative with strict, static type and mode
system (in a predicate invocation one parameter can be only purely input or
purely output), which allows the highest level of compile-time checks and code
optimization while prevents the use of some effective and elegant programming
technics, that is the organisation of data with partial lists and trees ([SS94]
and [O’K90]), and therefore the step-by-step, top-down approximation of the
output (1.5.2). Probably these later features imply that it could not become
the successor of Prolog, although its strong, polymorphic type system, and its
module system allow the development of high quality, standard libraries.

The development of effective, parallel Prolog systems retaining backtracking
search and in general, the support of conventional Prolog programs so that the
goals and/or the branches of the program run in parallel without forcing the
programmer to organize parallelism, this is a strong trend of the search in the
field of LP. There are two basic approaches. If some branches of the search tree
are evaluated in parallel, the system is or-parallel (for example, the Aurora Prolog

19 See http://en.wikipedia.org/wiki/Fifth_generation_computer.
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by Warren; Gigalips project). If some goals of a goal sequence are reduced in
parallel, this Prolog is and-parallel (for example, the Muse version of SICStus
Prolog). Warren’s Andorra-I unifies both approaches. However, the best sequen-
tial Prolog implementations still often overperform these implementations.

Constraint Logic Programming (CLP) originates from the end of the eighties.
Today this is one of the most successful areas of LP ([Hen86], [MS98], [SB04] and
[C+12]). It is typically used to solve optimization problems. The program code
is similar to that of standard Prolog but it is more declarative than that and the
search is more intelligent: performing special computations it takes advantage
of the problem solving methods of other scientific areas. Beside Prolog goals
we have special goals called constraints behaving like demons. The variables of
these constraints have predefined domains (for example, X :: [1..5] means that
the domain of X is the integer range 1..5). The run of the program means the
backtracking traversal of the search tree, like in Prolog, but there is also a con-
straint store. When the consraints are encountered during the run of the program
they are put into the constraint store. When any parameter of a constraint in
this store is modified (for example, it is substituted by a value or its domain
narrows), the consistency of the constraint store is checked, and if it is found
inconsistent, the search backtracks. For example, the consistency check may find
that a modification of a variable of a constraint implies the modifications of
other variables, and if the domain of some variable contains just one element, it
is substituted. Any modification implies further check. If some domain becomes
empty, the search backtracks.

For example, SICStus Prolog contains three different constraint solvers im-
plemented in libary modules [C+12]. There are also constraint programming
packages built on OO languages, for example the ILOG Solver of IBM imple-
mented as a C++ library.

We mention that other newer trends are Abductive, Answer Set, and Induc-
tive Logic Programming.

1.15 Summary

Today – as a result of successes and failures – the place of LP seems to be
in the “thinking” components of multiagent systems. Using LP we can effec-
tively develop intelligent data base interfaces, packages needing intelligent search
(even on the Internet), text processors, translator programs, natural language
interfaces, expert systems, programs of logic puzzles, programs with symbolic
computations, optimizations, etc.

The approaches of the problems are different with LP, and different with
more traditional programming paradigms. Therefore, LP helps you to find new,
elegant solutions.
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Hagar Abraham Sarah

|------| |-----|

| |

| |-------|

Ishmael Anon Isaac Rebeka

|---------|

|---------------------|

| |

Leah Jacob Rachel Esau

|---------| |-----------|

| |

|-----|------|----|-------|-------| |

Reuben,Simeon,Levi,Judah,Issachar,Zebulun |

|--------|

Asenath Joseph Benjamin

|----------|

|----------|

Manasseh Ephraim

Figure 1.4: family/3 in Exercise 1.2

1.16 Exerises

Exercise 1.1. Apply the algorithm of goal reduction (1.6.1) to this query tested
in (1.5.2): append_(Xs, Ys, [1, 2, 3]). Draw the corresponding search tree.

Exercise 1.2. Let us suppose that we have facts of the form
“family(Father, Mother, Children).”. For example:

family(’Abraham’,’Sarah’,[’Isaac’,’Anon’]).

family(’Abraham’,’Hagar’,[’Ishmael’]).

family(’Isaac’,’Rebeka’,[’Jacob’,’Esau’]).

family(’Jacob’,’Rachel’,[’Joseph’,’Benjamin’]).

family(’Jacob’,’Leah’,[’Reuben’,’Simeon’,’Levi’,’Judah’,

’Issachar’,’Zebulun’]).

family(’Joseph’,’Asenath’,[’Manasseh’,’Ephraim’]).

Define predicates brother_or_sister/2, aunt_or_uncle/2, and
parent_in_law/2 based on family/3 with the usual meaning. (In order to help
their test, Figure 1.4 illustrates predicate family/3.)

Exercise 1.3. Write list handling predicates to receive the prefixes, suffixes, con-
tinuous sublists, and possibly discontinuous subsequences of a proper list. Write
predicate divide(Xs, Odds, Evens) which takes proper list Xs; puts the first, third,
fifth, etc. items into Odds, and the second, fourth, sixth, etc. items into Evens,
thus generating two subsequences of Xs of approximately equal length. Write
predicate sorted_union(Xs, Ys, Us) producing the sorted union of Xs, and Ys



72

•
Logi programming and Prolog

in Us where Xs, and Ys are strictly increasing proper lists according to the
standard order; and Us will have the same properties. Each predicate must be
able to check the appropriate property, and it must be able to generate the lists
satisfying that property. Take advantage of the programming methods (step-
by-step approximation of the output, accumulator pairs, etc.) while coding a
predicate. Verify the finiteness of the search tree of each corresponding query.

Exercise 1.4. Consider the representation suggested for binary trees introduced
at the very end of Section 1.4 , page 22.Using this representation (o is the empty
tree, and t( leftSubTree, root, rightSubTree ) is the scheme of a nonempty tree),
define predicate inorder(Tree, List) where List contains the inorder traversal
of Tree.

Exercise 1.5. Use the representation suggested above for binary search trees (sorted
according to the standard order of the Prolog terms). Write the usual operations
of such search trees (creating an empty tree, inserting a given piece of data,
checking for it, deleting it: the tree must not contain duplications).

Be careful: do not mix the notion of binary search tree with the notion of the
search tree of a Prolog query.

Exercise 1.6. Implement the well-known algorithms of sorting lists like Insertsort
and Mergesort in Prolog. Be careful that the computational complexity of the
Prolog programs should not be higher than that of the corresponding algorithm.
(For example, the computational complexity of Insertsort is O(n2), and that of
Mergesort is Θ(n ∗ log(n)) where n is the length of the proper list to be sorted.)

Note: The computational complexity (i.e. operational or time complexity) of
a Prolog program is measured in LI (number of Logical Inferences) which means
the number of predicate invocations performed during the run of the program.

Exercise 1.7. Try to implement your own version of ground/1: ground(Term) is
true, iff Term is a ground term (see Section 1.4).

Exercise 1.8. Try to implement your own version of predicate findall/3.
It can be called find_all/3. Put it into a module.

Exercise 1.9. Find the description of the standard Prolog predicate setof/3

([DEDC96], [ISO95], [C+12], [SS94] and [SB04]).
Compare it to predicate collect/3 in (1.11).

Exercise 1.10. Implement the standard operations of queues in a module.
empty(Q): Q is empty queue (create and check);
add(Q, X, QX): add X to the end of Q;
rem(XQ, X, Q): remove the first item of queue XQ.

Exercise 1.11. In Subsection (1.13.1) we defined predicate path/3, which is able
to traverse a graph in depth-first (backtracking) manner. Write another predicate
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which implements breadth-first-search on a graph computing a shortest path be-
tween a given start and goal node. Use the queue handling predicates defined in
Exercise 1.10. (A shortest path is a path consisting of the least number of nodes
here.)

Exercise 1.12. Implement the well-known algorithm of Quicksort on Prolog lists:
Quicksort selects an arbitrary item X of a nonempty list, and separates the
remainder of the list into two lists. The first list contains the items smaller
than X. The second list contains the items greater than X. (The items equal to
X can go into either of them.) Then the two lists are sorted recursively. The
resulting list is generated from the two sorted lists with X as a middle element:
these are concatenated together.

1.17 Useful tips

Tip 1.1. Consider now a search tree of query append_(Xs, Ys, [1, 2, 3]) referring
to predicate append_/3:

append_([],Ys,Ys). % a1

append_([X|Xs],Ys,[X|Zs]) :- append_(Xs,Ys,Zs). % a2

In the solution of Exercise 1 we use the following notations. The two rules of
append_/3 are called a1, and a2. If the depth of a goal in the search tree is i,
then it is denoted with gi. If there is a goal gi, a goal reduction is applied to
it, and rule aj is involved in it, then the goal reduction is denoted with a(i,j). If
rule aj is involved in a goal reduction a(i,j), then we suppose that the LP system
renames each variable V of rule aj to Vi. The kth solution is called sk. Only the
output substitutions (see Section 1.2.4) are shown.

Tip 1.2. You can choose a child using member/2.

Tip 1.3. Take care of the base cases and of the recursive cases of the predicates.
For each predicate, give a sufficient condition of the finiteness of the search tree
(“PreCond”). The finiteness of the search tree of each corresponding query can
be based on two facts:

1. The input is proper list;
2. And its length is decreasing through the recursion.

Tip 1.4. A straitforward solution contains two rules: the inorder traversal of the
empty tree is empty list, while that of a nonempty tree is that of the left subtree,
the root, and that of the right subtree concatenated into a single list. (Try to solve
it with single append/3 call in the rule body.) A more refined version avoids the
append/3 calls, and it has linear time complexity: we generalize the problem to
append the inorder traversal of a tree before a list. (Consider the note of Exercise
1.6.)
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Tip 1.5. The time complexity of the solutions should be proportional to the height
of the search tree. (Consider the note of Exercise 1.6.) This effectivity can be
achieved by distinguishing the cases of empty and nonempty trees: the recursive
cases go down into the appropriate subtree.

Tip 1.6. Generalize Insertsort to sorted_inserts(Xs, As, Ys) inserting the el-
ements of Xs into the sorted list As. Try to give tail recursive solutions. In
Mergesort the base cases are the empty list, and the lists of a single item. Longer
lists are divided into two lists of approximately equal lengths. (Use divide/3

from Exercise 1.3 to divide a list.) The two lists are sorted with Mergesort, and
then results are merged in a sorted way. The code of this sorted merge is similar
to the code of sorted_union/3 from Exercise 1.3, except that the duplicates are
preserved.

Note: If we use sorted_union/3 in Mergesort instead of sorted merge, we
receive unionsort/2 which is equivalent to sort/2 in Section 1.11.

Tip 1.7. Recursively, a ground term is an atomic or a compound with ground
arguments. Note: Although predicate ground/1 is not part of the Prolog standard,
many implementations contain it with the obvious meaning.

Tip 1.8. As a first try, one may assert the first parameter of find_all/3 for
each solution of the second argument (the parameterizing goal) into a dynamic
predicate local to the module. You may use assertz/1 for this purpose. Then
(using retract/1) you can retract the asserted facts while collecting the param-
eters into a list applying step-by-step approximation of the output (1.5.2).

It is a useful initialization of find_all/3 to delete each possible clauses of
the dynamic predicate used for collecting the solutions. In this way one gets rid
of the garbage left by any previous run propagating an exception.

Another problem is risen if one wants to embed a call to find_all/3 into
another invocation to it. Let us see a simple example of the appropriate be-
haviour (the example is a bit artificial, because Xs = Zs, but hopefully easy to
understand):

| ?- find_all( Zs+Ys,

( append(Xs,Ys,[1,2,3]),

find_all(Z,member(Z,Xs),Zs) ),

As ).

As = [[]+[1,2,3],[1]+[2,3],[1,2]+[3],[1,2,3]+[]]

Unfortunately, if the method above were programmed in a straightforward way,
the inner invocation of find_all/3 could modify the partial results of the outer
one, because they use the same dynamic predicate to collect their solutions. In
order to solve this problem we have to identify levels of the embedded find_all/3

invocations, and each invocation works only at its level. In addition, if a goal
parameterizing a find_all/3 call propagates an exception, still we have to
restore the outer level.
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Tip 1.9. They have similar parameters to those of findall/3, and both of them
collects (the) solutions of the parameterizing goal into a strictly increasing list
omitting multiple solutions. But consider the role of variable quantification in
setof/3. You may also try to use alternatively collect/3, and setof/3 instead
of findall/3 in Exercise 1.11. Be careful, because in some cases setof/3 may
fail (but it is easy to overcome this difficulty). You may also try to measure
the the effeciency of the different solutions. Unfortunately, the way of these
measurements is implementation dependendt in Prolog.

Tip 1.10. Using the trivial proper list representation, the maximal and average
computational complexity of the operations add(Q, X, QX), and rem(XQ, X, Q) are
O(n) where n is the length of the queue. (We suppose that the frequency of
these operations is the same.) For example, one may use the trivial proper
list representation where a nonempty queue has the form [X1, X2, ..., XN] and []
represents the empty one. Then the computational complexity of add is linear,
and that of rem is constant, therefore the average computational complexity of
add and rem is also linear. (If a nonempty queue had the form [XN, ..., X2, X1],
the computational complexity of add would be constant, but that of rem would be
linear.)

If we use a clever double-stack representation, the average computational
complexity of these operations become Θ(1).

In this representation d([X1, ..., XM], [YN, ..., Y1]) represents the abstract queue
< X1, ..., XM, Y1, ..., YN >; add pushes a new item into the second stack (as the new
first item of the list representing the second stack) with constant computational
complexity; rem removes the topmost item of the first stack (that is the first item
of the list representing it) also with constant computational complexity, provided
that the first stack is nonempty. But if that first stack (i.e. list) is empty, we have
to check the second one. If it is empty, the operation fails. If it is nonempty, we
can reverse this second list and move it into the first one. Then we can remove
its first item as before. The problem is that the computational complexity of the
reverse operation is linear, and therefore sometimes the computational complexity
of the rem operation is also linear. Besides this, the average computational
complexity of these operations is still Θ(1), because considering

rem( d( [], [Y|Ys] ), FirstItem, ResultQueue )

[Y|Ys] is as long as the number of add calls before the actual reverse call inside
rem (but not before any previous reverse call inside rem). Therefore, the cost of
the actual reverse call can be scattered among those add calls when we calculate
the average computational complexity of add and rem, and so it is Θ(1).

If we use a pair of partial lists where the second component is the logical
variable at the end of the first partial list, we are able to succeed in reducing
the maximal computational complexity of these operations to Θ(1). Using this
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representation an empty queue has this form: Z − Z, and a nonempty queue
has this form: [P1, P2, ..., PN|Z] − Z (var(Z) must be true in both cases). If one
checks the solution, one finds that the implementation is somewhat tricky and
considering a queue which is the input of an add operation, its second component
is better to be a var. But after the add call this property of the input queue does
not stand. Therefore, it does not clearly fit any add operations any more. A rem

operation does not change the second component of the queue. Therefore, if a rem

is performed on queue Q resulting in queue Qr, and then an add is performed
on queue Q resulting in queue Qa, then even the second component of Qr is
a nonvar, and it should not be used for subsequent queue operations. However,
for practical purposes it is usually enough that in a linear sequence of queue
operations the output queue of any operation can be used as the input queue of
the next operation.

Tip 1.11. A breadth-first-search (BFS) of a graph begins with a chosen start
node.20 Then it explores the children of the start node, then the nodes available
through at least two arcs (edges), then thoose available through at least three
arcs, and so on. BFS may have goal node(s). If yes, it stops when a goal node
is achieved. Otherwise it goes on until each node accessible from the start node
is explored. (Therefore, it terminates iff the number of nodes accessible from the
start node is finite or there is a goal node accessible from the start node.) In BFS
the parent of a node is defined as the node from which it was found first. During
the search for each node visited BFS usually records a reference to its parent, in
order to record a shortest path from the start node to the actual node through
these backward references (and the parent reference of the start node is somewhat
extremal). The key operation of BFS is expanding a node which means collecting
its children. Also we need the set of visited nodes, and a queue containing the
nodes already visited but still not expanded. The algorithm initialises the queue
with the start node. In each step it removes the first element of the queue, expands
it, and puts its unvisited children at the end of the queue. If it is relevant, the
goal property of a node is checked immediately before it is put into the queue.
Instead of booking the parent references of the visited nodes, in Prolog the queue
of BFS may contain nonempty lists: the first element of such a list is the node
to be expanded, the second element is its parent, the third one is its grandparent,
and so on, the last element of the list is always the start node. Therefore, such
a list with a given first node always contains a shortest path to this node.

Tip 1.12. The solution is straightforward. However, one may get rid of the costs
of appending the parts of the result at each level of recursion, and this is not
trivial. One may use the so called d-lists, i.e. pairs of (partial or proper) lists
where the second list is a suffix of the first one.

20 We suppose that the graph is locally finite, i.e. there is no node with infinitely many children.
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1.18 Solutions

Solution 1.1. The search tree of append (Xs,Ys,[1,2,3])

%% append_(Xs,Ys,[1,2,3]): apply the algorithm of
%% goal reduction to this query.
%% Draw the corresponding search tree.

%% (explanation of notations at Section "Clues")

?- append_(Xs,Ys,[1,2,3]). % g0
{ Xs <- [], Ys <- [1,2,3] } % a(0,1)

Xs = [], Ys = [1,2,3] % s1
{ Xs <- [1|Xs0] } % a(0,2)
append_(Xs0,Ys,[2,3]). % g1

{ Xs0 <- [], Ys <- [2,3] } % a(1,1)
Xs = [1|Xs0] = [1|[]] = [1], Ys = [2,3] % s2

{ Xs0 <- [2|Xs1] } % a(1,2)
append_(Xs1,Ys,[3]). % g2

{ Xs1 <- [], Ys <- [3] } % a(2,1)

Xs = [1|Xs0] = [1,2|Xs1] = [1,2], Ys = [3] % s3
{ Xs1 <- [3|Xs2] } % a(2,2)

append_(Xs2,Ys,[]). % g3
{ Xs2 <- [], Ys <- [] } % a(3,1)

Xs = [1,2|Xs1] = [1,2,3|Xs2] = [1,2,3], Ys = [] % s4
{ match([],[X3|Zs3]) fails } % a(3,2)

Solution 1.2. Family relationships
family(’Abraham’,’Sarah’,[’Isaac’,’Anon’]).

family(’Abraham’,’Hagar’,[’Ishmael’]).
family(’Isaac’,’Rebeka’,[’Jacob’,’Esau’]).
family(’Jacob’,’Rachel’,[’Joseph’,’Benjamin’]).

family(’Jacob’,’Leah’,[’Reuben’,’Simeon’,’Levi’,’Judah’,
’Issachar’,’Zebulun’]).

family(’Joseph’,’Asenath’,[’Manasseh’,’Ephraim’]).

brother_or_sister(X,Y) :-

family(_,_,Xs),
member(X,Xs), member(Y,Xs), X \== Y.

aunt_or_uncle(X,Y) :-
brother_or_sister(X,Z),

( family(Z,_,Cs) ; family(_,Z,Cs) ),
member(Y,Cs).

parent_in_law(X,Y) :-

( family(X,_,Cs) ; family(_,X,Cs) ),
member(C,Cs),
( family(C,Y,_) ; family(Y,C,_) ).

Solution 1.3. Basic operations on lists
%% PreCond: Xs or Ys is proper list.
%% prefix(Xs,Ys) :- Ys is a prefix of Xs.

prefix(_Xs,[]).
prefix([X|Xs],[X|Ys]) :- prefix(Xs,Ys).

%% PreCond: Xs is proper list.
%% suffix(Xs,Ys) :- Ys is a suffix of Xs.

suffix(Xs,Xs).
suffix([_X|Xs],Ys) :- suffix(Xs,Ys).
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%% PreCond: Xs is proper list.
%% sublist_x(Xs,Ys) :- Ys is a continuous sublist of Xs.

%% a: Suffix of a prefix

sublist_a(Xs,Ys) :- prefix(Xs,Ps), suffix(Ps,Ys).

%% b: Prefix of a suffix

sublist_b(Xs,Ys) :- suffix(Xs,Ss), prefix(Ss,Ys).

%% c: Recursive definition of a sublist
sublist_c(Xs,Ys) :- prefix(Xs,Ys).

sublist_c([_X|Xs],Ys) :- sublist_c(Xs,Ys).

%% PreCond: Xs is proper list.

%% subseq(Xs,Ys) :-
%% Ys is a possibly discontinuous subsequence of Xs.

subseq([],[]).
subseq([X|Xs],[X|Ys]) :- subseq(Xs,Ys).

subseq([_X|Xs],Ys) :- subseq(Xs,Ys).

%% PreCond: Xs is proper list.

%% divide(Xs,Odds,Evens) :- in their original order, the
%% first, third, fifth, etc. items of Xs are in Odds, the

%% second, fourth, sixth, etc. items of Xs are in Evens.
divide([],[],[]).
divide([X|Xs],[X|Ys],Zs) :- divide(Xs,Zs,Ys).

%% PreCond: Xs and Ys are proper lists, sorted strictly

%% increasingly according to the standard order.
%% sorted_union(Xs,Ys,Us) :-

%% Us contains the sorted union of Xs and Ys.
sorted_union([],Ys,Ys).
sorted_union([X|Xs],[],Us) :- !, Us = [X|Xs].

sorted_union([X|Xs],[Y|Ys],Us) :-
( X @< Y -> Us = [X|Zs], sorted_union(Xs,[Y|Ys],Zs)

; X @> Y -> Us = [Y|Zs], sorted_union([X|Xs],Ys,Zs)
; Us = [X|Zs], sorted_union(Xs,Ys,Zs)
).

Solution 1.4. Inorder traversals of a binary tree
%% PreCond: Tree is a binary tree represented as follows.
%% o - empty tree

%% t( LeftSubTree, Root, RightSubTree ) - nonempty tree
%% inorder(Tree,Is) :- the inorder traversal of the data
%% in Tree results proper list Is.

inorder(o,[]).
inorder(t(Lt,X,Rt),Xs) :-

inorder(Lt,Ls), inorder(Rt,Rs), append(Ls,[X|Rs],Xs).

%% The optimized version of predicate inorder/2.

%% Without appends, linear time complexity.
inorder_opt(T,Is) :- inorder_app(T,[],Is).

%% inorder_app(Tree,List,Is) :- the inorder traversal

%% of Tree appended before List results Is.
inorder_app(o,Xs,Xs).
inorder_app(t(Lt,X,Rt),Xs,Is) :-

inorder_app(Rt,Xs,Ys), inorder_app(Lt,[X|Ys],Is).

Solution 1.5. Basic operations on binary search trees
%% The usual operations of proper binary search trees

%% (creating an empty tree, inserting a given piece of data,
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%% checking for it, deleting it:
%% the search trees must not contain duplications).

%% empty_tree(T) :- T is an empty tree.
empty_tree(o).

%% PreCond: T is proper binary search tree.
%% tree_ins(T,X,TX) :- TX proper binary search tree is

%% received by the sorted insert of X into T.
tree_ins(o,X,t(o,X,o)).

tree_ins(t(Lt,Root,Rt),X,TX) :-
( X @< Root -> TX = t(LXt,Root,Rt), tree_ins(Lt,X,LXt)

; X @> Root -> TX = t(Lt,Root,RXt), tree_ins(Rt,X,RXt)
; TX = t(Lt,Root,Rt)
).

%% PreCond: T is proper binary search tree.

%% tree_has(T,X) :- T contains item X.
tree_has(t(Lt,Root,Rt),X) :-

( X @< Root -> tree_has(Lt,X)
; X @> Root -> tree_has(Rt,X)
; true

).
%% Queries like tree_has(o,X) automatically fail.

%% PreCond: TX is proper binary search tree.
%% tree_del(TX,X,T) :- T proper binary search tree is

%% received by the sorted delete of X from TX.
tree_del(t(Lt,Root,Rt),X,T) :-

( X @< Root -> T = t(Ldt,Root,Rt), tree_del(Lt,X,Ldt)
; X @> Root -> T = t(Lt,Root,Rdt), tree_del(Rt,X,Rdt)

; Rt == o -> T = Lt
; Lt == o -> T = Rt
; T = t(Lt,Min,Rmt), Rt = t(L,Y,R),

out_min(L,Y,R,Min,Rmt)
).

%% PreCond: t(L,X,R) is a proper binary search tree.
%% out_min(L,X,R,Min,Tm) :-

%% the leftmost element of the proper binary tree
%% t(L,X,R) is Min, the remaining tree is Tm.

out_min(o,Min,Rt,Min,Rt).
out_min(t(L,X,R),Y,Rt,Min,t(Lm,Y,Rt)) :-

out_min(L,X,R,Min,Lm).

Solution 1.6. Sorting lists
%% PreCond: Xs is a proper list.
%% insertsort(Xs,Ys) :- proper list Ys contains

%% the items of Xs increasingly sorted according to the
%% standard order of Prolog terms.
insertsort(Xs,Ys) :- sorted_inserts(Xs,[],Ys).

%% PreCond: Xs is a proper list.

%% sorted_inserts(Xs,As,Ys) :- sorted insert of
%% the items of proper list Xs into the sorted

%% proper list As results sorted proper list Ys.
sorted_inserts([],Ys,Ys).
sorted_inserts([X|Xs],As,Ys) :-

insert_sorted(As,X,Bs), sorted_inserts(Xs,Bs,Ys).

%% PreCond: As is an increasingly sorted proper list.
%% insert_sorted(As,X,Bs) :- sorted insert of X
%% into As results the increasingly

%% sorted proper list Ys.
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insert_sorted([],X,[X]).
insert_sorted([Y|Ys],X,Zs) :-

( X @=< Y -> Zs = [X,Y|Ys]

; Zs = [Y|Us], insert_sorted(Ys,X,Us)
).

%% PreCond: Xs is a proper list.
%% mergesort(Xs,Ys) :- proper list Ys contains

%% the items of Xs increasingly sorted
%% according to the standard order of Prolog terms.

mergesort([],[]).
mergesort([X|Xs],Ys) :- mergesort(Xs,X,Ys).

%% PreCond: Xs is a proper list.
%% mergesort(Xs,X,Ys) :- proper list Ys contains

%% the items of [X|Xs] increasingly sorted
%% according to the standard order of Prolog terms.

mergesort([],X,[X]).
mergesort([Y|Ys],X,Zs) :-

divide(Ys,As,Bs),
mergesort(As,X,Es), mergesort(Bs,Y,Fs),
sorted_merge(Es,Fs,Zs).

%% PreCond: Xs,Ys: increasingly sorted proper lists.

%% sorted_merge(Xs,Ys,Zs) :- proper list Zs is
%% the result of the sorted merge of Xs and Ys.
sorted_merge([],Ys,Ys).

sorted_merge([X|Xs],[],Ms) :- !, Ms = [X|Xs].
sorted_merge([X|Xs],[Y|Ys],Ms) :-

( X @< Y -> Ms = [X|Zs], sorted_merge(Xs,[Y|Ys],Zs)
; X @> Y -> Ms = [Y|Zs], sorted_merge([X|Xs],Ys,Zs)

; Ms = [X,Y|Zs], sorted_merge(Xs,Ys,Zs)
).

%% Note: if we use sorted_union/3 instead of sorted_merge/3,
%% we receive a strictly increasing list, duplicates removed:

unionsort([],[]).
unionsort([X|Xs],Ys) :- unionsort(Xs,X,Ys).

unionsort([],X,[X]).

unionsort([Y|Ys],X,Zs) :-
divide(Ys,As,Bs), % See Exercise 3.

unionsort(As,X,Es), unionsort(Bs,Y,Fs),
sorted_union(Es,Fs,Zs). % See Exercise 3.

Solution 1.7. Checking, whether a term is ground or not
%% ground_(Term) :- Term is a ground.

ground_(Term) :-
( atomic(Term) -> true
; compound(Term),

functor(Term,_F,N), ground_args(N,Term)
).

ground_args(N,Term) :- N>1,
arg(N,Term,A), ground_(A),

N1 is N-1, ground_args(N1,Term).
ground_args(1,Term) :-

arg(1,Term,A), ground_(A).

Solution 1.8. Implementing the predefined predicate findall/3

%% find_all(X,Goal,Xs) :- findall(X,Goal,Xs).
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:- module( findall, [ find_all/3 ] ).
:- meta_predicate find_all(?,:,?).

:- dynamic((solution/2, counter/1)).

set_counter(C) :-
retractall(counter(_)),
asserta(counter(C)).

:- set_counter(1).

find_all(X,Goal,Xs) :-

counter(I),
%% to handle embedded calls to find_all/3:
I1 is I+1, set_counter(I1),

catch(
(

%% clear things, if an old goal crashed:
retractall(solution(I,_)),

%% assert solutions at the Ith level:
Goal, assertz(solution(I,X)), fail

;

collect_solutions(I,Xs),
set_counter(I)

),
Error,
( set_counter(I),

throw(Error)
)

).

collect_solutions(I,Ys) :-
( retract(solution(I,X)) ->

Ys = [X|Xs], collect_solutions(I,Xs)

; Ys = []
).

Solution 1.9. Collecting solutions without duplications
.
%% Compare the standard Prolog predicate setof /3

%% to our predicate collect/3 .
Predicate setof /3 is less effective than collect/3 , but it is more complex

and it has more expressive power: it may produce more sets of solutions through
backtracking depending on the variable quantifications of the goal parameterizing
setof /3 . However, this extra expressive power is useless in many practical appli-
cations. Also, collect/3 never fails, and produces exactly one set of solutions,
but setof /3 fails iff the parameterizing goal has no (more) solutions.

Solution 1.10. Queue handling and Prolog modules
%% Implement the standard operations of queues in a module.

%% empty(Q): Q is empty queue (create and check).
%% add(Q,X,QX): add X to the end of Q.
%% rem(XQ,X,Q): remove the first item of queue XQ.

:- module( queue3,

[ empty0/1, add0/3, rem0/3,
empty/1, add/3, rem/3,
emptyq/1, addq/3, remq/3 ] ).
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%% proper list representation:
%% A queue has the form: [X1,X2,...,XN]

empty0([]).

%% add0/3 has linear computational complexity:

add0([],X,[X]).

add0([Y|Ys],X,[Y|Zs]) :- add0(Ys,X,Zs).

rem0([X|Xs],X,Xs).

%% double-stack representation:
%% d([X1,...,XM],[YN,...,Y1]) represents
%% the abstract queue <X1,...,XM,Y1,...,YN>

empty(d([],[])).

add(d(Xs,Ys),E,d(Xs,[E|Ys])).

rem(d(Xs,Ys),E,ResultQueue) :-
( Xs = [Z|Zs] -> E = Z, ResultQueue = d(Zs,Ys)

; % Xs == [], Ys \== [],
reverse(Ys,[E|Us]), ResultQueue = d(Us,[])

).

:- use_module( library(lists), [reverse/2] ).

%% Queue represented with a pair of partial lists

%% where the second component is the logical variable
%% at the end of the first partial list:

%% a nonempty queue has this form: [P1,P2,...,PN|Z]-Z
%% and an empty queue has this form: Z-Z
%% where var(Z) must be true.

emptyq(Q-Q) :- var(Q).

addq(Q1-[ITEM|Y],ITEM,Q1-Y).

%% A call: addq([P1,P2,...,PN|Z]-Z,ITEM,R).
%% After the call: Q1 = [P1,P2,...,PN|Z],

%% Z = [ITEM|Y], R = Q1-Y.
%% Therefore: R = [P1,P2,...,PN,ITEM|Y]-Y.

remq([H|T]-Z,H,T-Z) :-
[H|T]\==Z. % the input queue was nonempty

%% Using this last representation

%% each single operation needs a constant number of LI
%% (Logical Inferences = predicate invocations).

Solution 1.11. Shortest path
%% Graph-search with breadth-first-search strategy.

%% breadth_first_search(Start,Goal,SolPath) :-

%% SolPath is a proper list of nodes representing a path
%% of the minimal length (i.e.optimal) from Start to Goal.

breadth_first_search(Start,Goal,SolPath) :-
ground(Start), ground(Goal),

( Start == Goal -> SolPath = [Start]
; empty(InitQueue), add(InitQueue,[Start],Queue),

bfs(Queue,[Start],Goal,SolPath)

).



1.18 Solutions

•
83

:- use_module( solution10_lp, [ empty/1, add/3, rem/3 ] ).

%% Queue is a queue of lists of the form [Node|Ancestors]
%% where Node\=Goal, and to Node we have found an optimal

%% path but Node has not been expanded. Ancestors consists
%% of the ancestors of Node on this optimal path starting
%% with its parent. Visited contains the visited nodes.

bfs(Queue,Visited,Goal,SolPath) :-

rem(Queue,[Node|Ancestors],RemainderQueue),
children(Node,Children,Visited),

( has(Children,Goal) ->
reverse([Goal,Node|Ancestors],SolPath)

; process_children(Children,[Node|Ancestors],

RemainderQueue,ResultQueue),
append(Children,Visited,NewVisited),

bfs(ResultQueue,NewVisited,Goal,SolPath)
).

:- use_module( library(lists), [ reverse/2 ] ).

%% expansion: Children is the list of
%% the unvisited children of Node.

children(Node,Children,Visited) :-
findall(Child,child(Node,Child,Visited),Children).

%% Child is an unvisited child of Node.

child(Node,Child,Visited) :-

arc(Node,Child), \+ has(Visited,Child).

has([X|Xs],Y) :-

( X == Y -> true
; has(Xs,Y)

).

%% Add the children with their ancestors to RemainderQueue.

process_children( [FirstChild|Children], Ancestors,

RemainderQueue, ResultQueue ) :-
add(RemainderQueue,[FirstChild|Ancestors],TempQueue),

process_children(Children,Ancestors,TempQueue,
ResultQueue).

process_children([],_Ancestors,ResultQueue,ResultQueue).

/* Test data */

%% Acyclic component

arc(a,b). arc(a,c). arc(a,d). arc(a,e).
arc(b,f). arc(b,i).

arc(c,f). arc(c,g).
arc(d,j).

arc(e,k).
arc(f,h). arc(f,i).
arc(g,h).

arc(j,g).
arc(k,j).

%% Cyclic component
arc(x,y). arc(y,z). arc(z,x).

arc(y,u). arc(z,t).
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/*
a------>b-------->i

/|\ \ /

| | \ \ / __________
| | \ \ / / \

| V V V/ V \
| d c------>f---->h x----->y----->z
| \ \ / | |

| \ \ / | |
| \ \ / V V

| \ \ / u t
| \ \ /

V V V/
e-->k-->j-->g

*/

%% | ?- breadth_first_search(a,g,Sol).

%% Sol = [a,c,g]
%% | ?- breadth_first_search(a,i,Sol).

%% Sol = [a,b,i]
%% | ?- breadth_first_search(x,t,Sol).
%% Sol = [x,y,z,t]

Solution 1.12. Quicksort and d-lists

%% PreCond: Xs is a proper list.
%% quicksort(Xs,Ys) :- proper list Ys contains
%% the items of Xs increasingly sorted according to the

%% standard order of Prolog terms.
%% Note:

%% Our quicksort selects the first item X of a nonempty list,
%% and separates the remainder of the list into two lists.
%% The first list contains the items smaller than X.

%% The second list contains the items greater than X.
%% (The items equal to X can go into either of them.)

%% Then the two lists are sorted recursively.
%% The resulting list is generated from the two sorted lists

%% with X as a middle element: these are concatenated together.
quicksort0([],[]).
quicksort0([X|Xs],Ys) :-

separate(Xs,X,Smallers,Greaters),
quicksort0(Smallers,Littles),

quicksort0(Greaters,Bigs),
append(Littles,[X|Bigs],Ys).

separate([],_X,[],[]).

separate([Y|Ys],X,Ss,Gs) :-
( Y @< X -> Ss = [Y|Ls], separate(Ys,X,Ls,Gs)

; Gs = [Y|Bs], separate(Ys,X,Ss,Bs)
).

%% One may use d-lists to get rid of the costs of append/3:
quicksort(Xs,Ys) :- quicksort(Xs,Ys,[]).
%% quicksort(Xs,Ys,Zs) :-

%% d-list Ys-Zs represents the sorted Xs
%% where list Zs is a suffix of list Ys.

%% Note: d-list [Y1,...,Yn|Zs]-Zs represents
%% sequence <Y1,...,Yn>, and

%% d-list Zs-Zs represents sequence <>.
quicksort([],Zs,Zs).
quicksort([X|Xs],Ys,Zs) :-

separate(Xs,X,Smallers,Greaters),
quicksort(Smallers,Ys,[X|Bigs]),

quicksort(Greaters,Bigs,Zs).
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Final remark: Remember to TEST, what happens, if

you force BACKTRACKING into your Prolog program?
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