Eo6tvos Lorand University
Faculty of Informatics

Department of Algorithms and Their Applications

Quicksort algorithm 1llustration

Supervisor: Author:
Asvanyi Tibor Aliia Bazarkulova
Associate Professor, Computer Science PhD Computer Science BSc

Budapest, 2024

EOTVOS LORAND UNIVERSITY

FACULTY OF INFORMATICS

Thesis Registration Form

Student's Data:
Student's Name: Bazarkulova Aliia
Student's Neptun code: HZ4BVS

Course Data:
Student's Major: Computer Science BSc

I have an internal supervisor

Internal Supervisor's Name: Asvanyi Tibor

Supervisor's Home Institution: Department of Algorithms and Applications
Address of Supervisor's Home Institution: 1117, Budapest, Pazmany Péter sétany 1/C.
Supervisor's Position and Degree: Associate Professor, Computer Science PhD

Thesis Title: Quicksort algorithm illustration

Topic of the Thesis:

(Upon consulting with your supervisor, give a 150-300-word-long synopsis os your planned thesis.)

The QuickSort algorithm illustration program in Java showcases different variants of the algorithm made for arrrays, one-way linked
lists, and two-way linked lists.

Upon launch, the program prompts the user to select a specific version and the input elements; however, if the input elements are
absent, the program will generate random integers in the range of 0 to 999.

Once the input is set, the program initiates an illustrative step-by-step animation of the QuickSort algorithm. Users have the
interactive control over the process, with options to pause, navigate forwards or backwards, enabling a detailed examination of the

process.

This program helps users to understand the nuances of QuickSort algorithm such as functionality and efficiency in sorting various
data structures.

Budapest, 2023. 11. 27.

Contents

1.1.
1.2.

2.1.

3.1.
3.2.
3.3.
3.4.

4.1.

4.2.

1. Chapter 1 - Introduction 5
1A (0] 7 2 10 s FO PP 5

THESIS STUCTUIE ..\ttt e et e e e eree e 6

2. Chapter 2 - Algorithm 7
QUICKSOT. .. ettt e e e 7

21,10 QUICKSOIt fOT AITAY....euttet et 9
2.1.2. Quicksort for one-way linked lists with a header node....................... 10

2.1.3. Quicksort for cyclic two-way lists..........cooiiiiiiiiiiiiiiiiiien 11

3. Chapter 3 - User Documentation 12
Flowchart of the program ..ot e, 12

SyStemM rEQUITEMENES. ...\ttt ettt et e e e e e et e e e e eaeans 14
INStallation.oeee i 14

L3 11§ a1 14

R TR 2 D\ 11 s B 0 - T 14

342, Tutorial Page......ooueiniiiei e 19

TR0 TR T A oV VS 19

344, ADOUL PAZC. ..ttt e, 21

4. Chapter 4 - Developer Documentation 22
SPECTIICALION. ..ttt e 22

7450 T SR B 0 N 101 & 1 22

4.1.2. Use case diagraml.........ouuinniiitinit ittt et et 25

4.1.3. Architecture of the program................coooiiiiiiiiiiiiiii 25

4.1.4. Classes and class diagrams...........oouveiiieiiiiiieiie i enaenns 27

Choice Of StaCK. ...t 28

421, Back End.......ooooiiiii 29

422, Front End......oooiiommm e

423, Other tools......ooueniieii i
4.3, Implementation...........oouviuiiiiiniit i
4.3.1. UserInterface.........cooooeiiiiiiiiiii
4.3.2. Application LOgIC........oviiiiiiiiii i
433, Control.....c.oiuiii

4.4. Testing

4.4.1. Testing plan........coovviiiiiiii i
4.4.2. Application logic testing with JUnit.............................

4.4.3. User interface testing with React Testing Library

444, Testing resultS.......ccoiriiiiiiiiiiii i

5. Conclusion

5.1. Conclusion and Future Work............ooouuuuuuueeieeeeeaas
References
List of Figures

Chapter 1

Introduction

Sorting algorithms play a significant role in computer science, serving as a gateway to
understanding the core algorithm principles. They introduce us to the concept of big-O notation,
mathematical notation that describes the limiting behavior of a function when the argument tends
towards a particular value or infinity. This is crucial in understanding the time and space
complexity of algorithms, which is important in determining their efficiency.

Among these algorithms, we will be discussing divide-and-conquer algorithms.
Divide-and-conquer is an algorithm design paradigm that recursively breaks down the problem
into two or more sub-problems of the same type until they become simple enough to be solved
directly. This approach is not only efficient, but also elegant, demonstrating the power of
recursion.

One of the most famous divide-and-conquer algorithms is Quicksort. It is efficient, with

its best and average case time complexity, ® (n log n), where n is the number of elements being

sorted. Even though its worst case time complexity is @ (nz), it is often faster than other sorting
algorithms such as Insertion Sort and Mergesort.

Quicksort also introduces us to the concept of in-place sorting in a broad sense. Even
though the sorting happens within the dataset, broad sense means that quicksort needs © (log n)
storage for controlling the recursion. Comparatively to other sorting algorithms, like Mergesort,

it is a good choice if the memory has a limitation factor.

1.1 Motivation

The primary motivation behind this illustration program is to enhance the learning
experience and to understand the practical usage of the Quicksort algorithm. It aims to allow
learners to interact with the algorithm, giving the inputs and observing the generated output. The
output is a detailed explanation of each step in the process. This approach makes it possible to
take a glimpse at an actual visualization of the algorithms, and becomes a visual aid in learning

alongside passive learning methods such as reading or listening to the lecture.

Furthermore, the illustration program can help users to identify their errors and
misconceptions. By providing immediate results, it allows users to verify their own solutions on
running the Quicksort algorithm for specific inputs since the implementation was carefully
designed according to the specifications taught in the Algorithms and Data Structures course at
ELTE. Hence, it can be a valuable tool for learners to detect mistakes or misinterpretations about

the Quicksort algorithm.

1.2 Thesis structure

This paper is divided into five main chapters, followed by a bibliography and a list of
figures. Chapter 1 briefly introduces the sorting algorithms, with an emphasis on Quicksort. It
outlines the main motivation behind the program and the goals it aims to achieve.

In chapter 2 we will go deeper into Quicksort. It explores the mechanics, time and space
complexities with different inputs, and its differences in usage across various data structures,
such as arrays, one-way lists and cyclic two-way lists. The main goal of this chapter is to provide
the theoretical understanding of the versatility of the algorithm.

Chapter 3 is dedicated to the user experience of the program. It delivers comprehensive
details including the system requirements, installation and program preparation. Additionally, a
user's guide will be available, ensuring that users are aware of all features and other capabilities.

The 4th chapter focuses on the developer documentation. It includes the tech stack, user
stories, architecture of the program, class diagrams, testing plan and the results of testing, and
other relevant information from the developer’s perspective. This section offers insights into the
solutions and challenges encountered during the development phase of the program.

Lastly, in chapter 5 we can see the conclusion. It reflects the impact and the limitations of
the current state of the program. This chapter also outlines the potential improvements,

suggesting how the Quicksort illustration program can be enhanced and extended.

Chapter 2
Algorithm

In this chapter we will learn and delve deeper into understanding the essence and steps of
the Quicksort algorithm for the following three data structures: arrays, one-way lists with a

header node and cyclic two-way lists.

2.1 Quicksort

As discussed earlier, Quicksort is a divide-and-conquer algorithm, it is based on the
partitioning routine. It should be used on a range of at least two elements. Partitioning creates
two divisions of sub-ranges, in a way that all elements of the first sub-range are not greater than
any element of the second sub-range.

After executing the first partition, it will recursively apply the same logic to each
sub-range and at the end of the partitions, there is one element that finds its position in the whole
range. That element is called the pivot. The pivot is an arbitrary element in the dataset, around
which the other elements will be partitioned. This process can be done in-place, requiring small
amounts of memory to perform the sorting.

Algorithm steps:

- Choose a pivot: Select an element from the dataset to act as a pivot. The choice of pivot
can be different - it can be the first, last, middle or random element. Note, that the
performance of the algorithm relies greatly on the choice of a pivot.

- Partitioning: The dataset will be rearranged in a way that the values less than the pivot
will be put into the left sub-range, while the elements greater to the pivot will be in the
right sub-range. The elements equal to the pivot go into any of the left or right sub-range.
At the end the pivot will find its final position.

- Recursion: The two steps above will be recursively applied to the left sub-range with
smaller or equal values, and then to the right sub-range with greater or equal values
separately.

- Combine: The results are combined to get the final sorted result.

Figure 2.1 Partitioning, recursion, combine (google images)

enjoyalgorithms.com

X[] 8|14 |13 |16 |7 (11|92]10] 5 pivot=5

413 |1 2 5 8 6 | 7|11 9 [Filo
1 2 4 3 8 6 7 9 10 11
{} = 4 8 6 | 7 o {})
/\
6 7i 8
X[] 1 2 3 4 5 6 7 8 9 10 11

The efficiency of the Quicksort algorithm depends on the good choice of the pivot. A bad
choice of the pivot will decrease the performance significantly. For example: if the dataset is
already in a particular order, such as reversed order, selecting the first or last element as pivot

would lead to poor performance. This is because the pivot fails to divide the range equally,

leading to the quadratic time complexity - © (nz). While the optimal choice of the pivot selection
would be the median, as it perfectly divides the range into two equal halves, finding the true
median can be time-consuming for practical purposes. A more feasible strategy would be
choosing the pivot randomly. Through randomization, the algorithm avoids the worst-case

scenarios of a fixed pivot choice and improves its average time complexity - © (n log n).

Figure 2.2 Quicksort time complexities

Best case Average case Worst case

0 (nlog n) 0 (nlogn) 0 (n)

https://cdn-images-1.medium.com/max/1080/1*-Ew3z7-bu0gjNXKL6plLzA.jpeg

2.1.1 Quicksort for arrays

The array is a fundamental data structure used to store a collection of elements of the
same type in contiguous memory blocks. Each element of the array is accessible through its
index.

Quicksort for arrays is the most popular and widely used variant of the algorithm,
however it is important to note that quicksort for arrays is not stable. Unstable sorting means that
equal elements are not guaranteed to retain their original relative order. The main reason for this
is the swap function, which interchanges the elements that have to be swapped during the
process.

Figure 2.3 Quicksort for array pseudocode

function quicksort(arr):
Qs(arr, @, arr.length - 1)

function QS(arr, p, r):
if p<or:
q = partition(arr, p, r)
Qs(ar‘r‘: P, q - 1)
QS(arr, g + 1, r)

function partition(arr, p, r):
i = random(p, r)
swap(arr, i, r)
i=p
while i is less than r and arr[i] is less than or equal to arr[r]:
i++
if i is less than r:
j=i+1
while j is less than r:
if arr[j] is less than arr[r]:
swap(arr, i, j)
i+4
J++
swap(arr, i, r)
return i

function swap(arr, i, J)
temp = arr[i]
arr[i] = arr[j]
arr[j] = temp

There is an optimization possibility to be considered. For small arrays, insertion sort
usually behaves better than quicksort, due to its lower overhead. Insertion sort is another sorting
algorithm that builds the final result one element at a time by comparisons. So in the
implementation of the quicksort, when the sub-array is smaller than predefined threshold, the

algorithm can switch to insertion sort, which will speed-up the process significantly.

2.1.2 Quicksort for one-way lists with a header node

One-way lists or singly linked lists is a linear data structure consisting of keys (elements)
where each key has a pointer to the next key in the list. The last element has the reference NULL
which represents the end of the list. In this work, we are working with one-way lists with a
header node. This header node, situated at the zero-th place, serves as a starting point that points
to the first actual element in the list. Compared to arrays, linked lists are better in terms of
efficient insertion and deletion operations due to its dynamic memory allocation.

Quicksort for singly linked lists follows the base structure of the algorithm, but with one
key difference. As mentioned earlier, quicksort for arrays is not stable, but it is a different
situation for linked lists. Quicksort can be made stable by replacing the swap with two alternative
common linked list operations: unlink and precede. By using these functions, now we have a
stable sorting algorithm. For simplicity and effectiveness, the pivot should be the first element of
the list. This choice simplifies the logic in the following way: if the next element is greater than
the pivot the algorithm moves to the next element; if the next element is less than the pivot, it is
unlinked from its current position without disrupting the rest of the elements, and then reinserted
right before the pivot element.

Figure 2.4 Quicksort for linked list with a header node pseudocode

function quicksort(H):
QS(H, null)

function QS(p, r):
t = p.next // t refers to the pivot
if t is not equal to r and t.next is not equal to r:
partition(p, t, r)
Qs(p, t)
Qs(t, r)

function partition(p, t, r):
s = t.next
ps = t
while s is not equal to r:
if s.val is greater than or equal to t.val:

ps = s
s = s.next

else
q =5
s = s.next
ps.next = s
g.next = p.next
p.next = q
P=4d

10

2.1.3 Quicksort for cyclic two-way lists

Two-way list or a doubly linked list is a more complex type of linked list. Each element
in a doubly linked list contains three main components: a key, a pointer to the next element, and
a pointer to the previous element in the sequence. In addition to these features, cyclic two-way
lists have one unique characteristic: they are circular. This means that the list does not terminate
with null. Instead, the last element’s next pointer directs back to the header, and conversely, the
first element’s previous pointer refers back to the header. This makes it possible to traverse the
list without keeping the track of the last element of the list.

Figure 2.5 Cyclic two-way list

head 1 2 3 4

Quicksort for cyclic two-way lists is very similar to the implementation of singly linked
lists. In both cases, the algorithm uses unlink and precede operations to sort the list. They ensure
the original order of the list maintaining stability.

Figure 2.6 Quicksort for cyclic two-way list pseudocode

function quicksort(H):
if H.next is not equal to H:
Qs (H, H)

function QS(p, r):
if p.next is not equal to r and p.next is not equal to r.prev:
t = partition (p, r)
Qs(p, t)
Qs(t, r)

function partition (p, r):
t = p.next // t refers to the pivot
s = t.next
while s is not equal to r:
if s.val is greater than or equal to t.val:
s = s.next
else:
q=-s
s s.next
unlink(q)
precede (g, t)
return t

11

Chapter 3

User Documentation

This chapter provides clear guidance on the necessary prerequisites, installation steps and
system requirements. By following this guide, users will be able to fully understand and utilize

all the features available.

3.1 Flowchart of the program

Upon visiting the main page, users will see input boxes where they can specify the
number of elements or insert the input elements directly. Users may also select the data structure
(array, linked list, doubly linked list) and initiate the sorting process by pressing the “Run
Quicksort” button. The sorting is animated, with “Next” and “Previous” buttons available,
allowing users to navigate through each step of the algorithm. Additionally, “View history”
button lets users review each step of the process at once.

Figure 3.1 Main page basic flowchart

l

l

insert
B
| input
elements
1

select

l

Aray Fix the input
Linked list information
Doubly linked list

P

Run Quicksort——— fail

SUCCess

] - "View history' to
._{ Vlsgzllizr?;mn H see each step
‘gli at once

‘Mext’ or "prev’ to
see those sfeps

end

The program also includes a “Tutorial” page that offers a theoretical background on
Quicksort, enhancing the users’ understanding.

Figure 3.2 Tutorial page flowchart

—

|

select

Array
Linked list
| Doubly linked list |
Learn about the
algorithm

|

end

For users who want to test their new acquired knowledge, “Test” page is available.

Figure 3.3 Test page flowchart
!

l

=1

| Problems | Quiz
choose a answer
problem questions

Quicksort (Quicksort
practical tasks knowledge quiz

[

cllck_on the submit
link:
Get redlrected Get result

o the link

L*j

Lastly, “About” page gives insights about the page’s purpose and origin.

13

3.2 System requirements

This program is compatible with most commonly used operating systems including
Windows, MacOS, and Linux. You can interact with the page using any modern web browser,

such as: Chrome, Microsoft Edge, or Safari.

3.3 Installation

To ensure the successful use of a program, follow the steps below:

1. Download the latest JDK version from Java Downloads. Creating a Java environment is

crucial for program usage. Check it by running “java --version” on any command prompt.

2. If you have Windows operating systems download the zip file in the following link -

Quicksort-Windows, if you have Linux or MacOS - Quicksort-MacOS-Linux

3. Unzip the file, then double click on the ‘run’ file and the program will automatically start
on your browser on ‘http://localhost:8080°. If the program is not running instantly, wait

for 5-10 seconds.

3.4.User guide
3.4.1 Main page
Upon launching the program, first we see the Main Page.

Figure 3.4 Main page

Main Tutorial Test About

Quicksort illustation

Enter comma-separated numbers for Quicksort:

Length (Optional) [Data (Optional) | Select Data Structure ¥| Run Quicksort

14

https://www.oracle.com/java/technologies/downloads/
https://drive.google.com/file/d/1Mi4dvK2uHFdtw4VN4riPlLNyZaKQK5aD/view?usp=sharing
https://drive.google.com/file/d/1cBlXpppzZ_-ICA3jEZmk68a8HQTQ3xnf/view?usp=sharing

If the input data is missing then an error is indicated on the page.

Figure 3.5 Incorrect inputs

Main Tutorial Test About

Quicksort illustation

Enter comma-separated numbers for Quicksort:

1 [yt | Array v[Run Quicksort]

Please enter valid numbers separated by commas.

We can either specify the number of elements or input the numbers themselves and
choose the data structure from the drop-down menu: array, linked list, doubly linked list.

Figure 3.6 Correct inputs on the Main Page

Quicksort illustation

Enter comma-separated numbers for Quicksort:

[8 JData (Optional) | Select Algorithm ~| Run Quicksort

Select Algorithm
Array

Linked List
Doubly Linked List

If the chosen data structure is an array, we see the following. The pivot, the pointers 1, j, p

, and p, as well as the buttons ‘next’, ‘previous’, and ‘view history’.

15

Figure 3.7 Array sorting demonstration

8 1338,559,991,711,99,720,16[Array ~| Run Quicksort J
\.

Pointers Information

pivot - pointer to the pivot element
Alp ..] is the actual subarray
Alp ..i- 1] contains elements less or equal to the pivot
Ali .. j - 1] contains elements greater or equal to the pivot
AJj .. (r - 1)] contains the unprocessed elements

Steps:
29 559 991 711 338 720 307 164
Comparing 559 with 720
Previous Next
View History

After the end of each partitioning, an element will find its final place and we can see it
indicated visually.

Figure 3.8 End of partition

99 164 991 711 338 720 307 559

164 found its final position

Thus, at the end, the whole array will be painted green to indicate the end of the sorting process.

16

Figure 3.9 End of quicksort

Intermediate Steps:

69 111 143 214 273 760 831 878

The list is sorted

Additionally, the “View history’ button can be clicked anytime to show each step made from the
beginning.

Figure 3.10 “View history” button

Action 4: Swapping 164 and 307

338 559 991 711 99 720 307 164

Action 5: Initializing pointer i to position with 338

338 559 991 711 99 720 307 164
Action 6: Initializing pointer j to position with 559
338 559 991 711 99 720 307 164

17

If the chosen data structure is linked list, then the following information will be shown:

Figure 3.11 Singly linked list sorting demonstration

s

6 1223,274,556,822,974,758 [Singly Linked List v~ | Run Quicksort]
\.

Pointers Information

pivot - pointer to the pivot element
s - pointer to find the elements less than the pivot
ps - pointer to the element previous to s
p - pointer to the element before the pivot
q - pointer to the element to be unlinked and inserted before pivot

Steps:

™ o

L—» \ —>223—>274—»556—»822—»974—»758—».

Comparing 274 with 223

We can see the pivot element, p, ps, and s pointers. All of the buttons are available and one of the

elements has already found its final place.

Lastly, the same is shown for doubly linked list:
Figure 3.12 Doubly linked list sorting demonstration

6 [223,274,556,822,974,758 [Doubly Linked List V[Run Quicksort]

Pointers Information

pivot - pointer to the pivot element
s - pointer to find the elements less than the pivot
q - pointer to the element to be unlinked and inserted before pivot

Steps:

m o

L ~ \ - 223 - 274 - 556 -- 822 - 974 - 758 - \ L

Comparing 274 with 223

18

3.4.2 Tutorial page

If we want to learn the theoretical background of the quicksort algorithm, this is possible
to do in the “Tutorial” page. In this image, we see the content for Quicksort for Arrays. Also, as
seen in the navbar on the left, we can switch between the data structures to learn about other ones
as well.

Figure 3.13 Tutorial page layout

Main Tutorial Test About

Quick Sort Quicksort for Arrays

Tutorials Quicksort is a divide-and-conquer algorithm. Quicksort first divides a large array into two
smaller sub-arrays: the low elements and the high elements. Quicksort can then recursively

Quicksort for sort the sub-arrays.

Arrays
The steps are:
Quicksort for

Linked Lists . Pick an element, called pivot, from the array.

e Partitioning: reorder the array so that all elements with values less than the pivot
Quicksort for come before the pivot, while all elements with values exceeding the pivot come after
Doubly Linked Lists it (equal values can go either way). After this partitioning, the pivot is in its final

position. This is called the partition operation
e Recursively apply the above steps to the sub-array of elements with smaller values
and separately to the sub-array of elements with greater values.
e The base case of the recursion is arrays of size zero or one, which are in order by
definition, so they never need to be sorted

3.4.3 Test page
On the test page, you are able to see the list of questions related to quicksort.

Figure 3.14 Test page layout

Main Tutorial Test About

Go to Problems

Test Page

Quicksort uses ...

OExchanging O Partitioning O Selection O Merging

Using quicksort for arrays is a stable way of sorting

O True O False

19

Upon submission of your answers, you can see the result immediately.

Figure 3.15 Score window

Test Result

Your score is 1/10

Close

If you click on ‘Go to Problems’, you can see the list of practical tasks related to
Quicksort. By clicking on the link, the user will be redirected to the task’s website, where the
user can solve and submit it.

Figure 3.16 Problems Page

Problems Page

Name Difficulty Success Rate Link
Quicksort - Partition Easy 96% Solve
Quicksort - Sorting Easy 91% Solve
Cricket tournament Easy 66% Solve

Eating apples Easy 85% Solve

20

3.4.4 About page

Lastly, the About page gives the details and the origins of the program’s creation

Figure 3.17 About page layout

Main Tutorial Test About

About Page

This page was created with the purpose of providing a comprehensive learning experience for the Quicksort algorithm. The
main goal is to simplify the concept and help users to understand Quicksort algorithm for different data structures effectively
through step-by-step visualizations.

Date & Location: 2024, Budapest, Hungary

Created by: Aliia Bazarkulova under the supervision of Dr.Asvanyi Tibor

21

Chapter 4

Developer Documentation

This chapter explores the program from the perspective of a developer, discussing key
aspects such as user stories, architecture and class diagrams. It will also cover the selection of

technology stack, details of the implementation process, and the testing of the program.

4.1 Specification

The specification provides a comprehensive overview of the whole software development
cycle for the program. User stories and use case diagrams illustrate the user’s perspective,
highlighting how they interact with the program. The architecture demonstrates the structure and
layers that were created to showcase the connectivity of the front and back ends. Classes and

class diagrams showcase the attributes of each class and their relationships.

4.1.1 User Stories
User story is an informal, general explanation of features available for the user, written

from their perspective.

As a User, I want to see how the quicksort algorithm works on different data structures.
1. Given I am in the main page
When the main page is loaded
Then I can choose which data structure I would like to use
2. Given I am in the main page
When the main page is loaded
Then [can input specific elements or opt for a random selection
When [opt for a random selection for the elements
Then 1 will specify the number of elements
3. Given I have given the elements and chosen the data structure

When the input is incorrect or the mandatory fields are not filled

22

Then the mistakes will be shown to demonstrate what was incorrect

4. Given I have finished the pre-selected wishes for the illustration

When [press the button ‘Run Quicksort’

Then the illustration starts

5. Given I pressed the ‘Run Quicksort’ button

When the illustration is running

Then I can click on ‘next’ or ‘prev’ buttons to see each step of the animation

6. Given the illustration is running

When I clicked on the ‘next’ button at least once

Then I can click on the ‘View history’ to see the full history of steps and actions

As a User, I want to learn the basic knowledge on quicksort

1. Given
When
Then

2. Given
When
Then

3. Given
When
Then

4. Given
When
Then

I am in the “Tutorial” page

When the page is loaded

I can choose the quicksort tutorial for different data structures
The “Tutorial” page is loaded

I choose array as the data structure

I can see the theoretical part of quicksort for arrays

The “Tutorial” page is loaded

I choose singly linked list as the data structure

I can see the theoretical part of quicksort for singly linked list with a header node
The “Tutorial” page is loaded

I choose two-way lists as the data structure

I can see the theoretical part of quicksort for cyclic two-way list

As a User, I want to test my knowledge about Quicksort

1. Given
When
Then

2. Given
When

[am in the “Test” page

When the page is loaded

I can see a quiz for quicksort knowledge
The page is loaded

I see the quiz for quicksort knowledge

23

Then I can choose the answers

Given Quiz for quicksort knowledge

When [finished choosing the answers for all questions
Then I can see submit and see the score immediately
Given I am in the “Test” page

When I see “Go to Problems” button

Then I can click in the “Go to Problems” button and be redirected to the ‘Problems’
Given [have clicked on “Go to Problems”

When I see the list of problem

Then I can choose one problem and click on its link

Given I have clicked on the link of a problem

When [will be redirected to a website that has that problem
Then I can solve and submit it there

Given [am in ‘Problems’ page

When I see the “Go to Quiz” button

Then I can clink on “Go to Quiz” and be redirected to the test again

As a User, I want to know about the creators, purpose and the origin of this page

1.

Given [am in the “About” page
When When the page is loaded
Then I can see the information about the creator of this page

And I can also see when, where and why this page was created

24

4.1.2 Use case diagram

Figure 4.1 Use case diagram

Click "Next" or
"Previos" to see the

Input the
elements and the
algorithm in Main
Page

Click "View
history: to see the
whole sorting
history

Choose the data
structure

Learn the
theoretical
background of
each

Go to Tutorial page |- - ———-————

Answer the

Actor questions

Go to Test page See the score
and close the

window

Go to Problems

See the list of
problems and click

Go to About page on the link

4.1.3 Architecture of the program

The software architecture is divided into three main parts:

User Interface: This layer contains the main page, tutorial, test and about pages of the
program. The layer interacts with the user and provides the control interfaces. It contains
components such as: the input form, buttons for choosing the options on how we want to

see the program. Moreover, it is responsible for rendering the visual representation of the

25

sorting process. It displays the unsorted initial data, partitions, swaps and sorted results.
Additionally, the users can control the whole process, using the “Next” and “Previous”
buttons, users have the chance to see all steps made with the “View history” button.
Application logic: This layer contains the main logic of the Quicksort algorithm. There
are three different classes for each data structure that will manage the smooth process.
Controller: It is responsible for the connection of the other two layers. From the User
Interface it receives the elements and the data structure. With the received data it will
perform the sorting logic, then after applying the sorting method of a corresponding class,

sends back each step of the process to achieve the result.

Figure 4.2 Architecture of the program

User Inteface

Application Logic

Receives the use

Sends the user input
for manipulation

Receives the result in

the form of commands Sends back the list of

commands

26

4.1.4 Classes and class diagrams

Introduction of each class:

Node.java: this class created the node type needed for the implementation of a
linked list. It has two main attributes, the key (value) of the node and the pointer
to the next node.

DoublyNode.java : this class is responsible for creating the doubly linked list. It
has the key, pointers to the next and previous nodes.

QuickSortArray.java : the implementation of the sorting process for arrays.
QuickSortLinkedList.java : the implementation of the sorting process for one-way
lists with a header node.

QuickSortDoublyLinkedList.java : the implementation of the sorting process for
cyclic two-way lists.

SortStrategy.java : interface with one method sort, which must be implemented by
each class that adopts this strategy.

SortingContext.java : the central class for the algorithm that receives the inputs
and using SortStrategy.java calls the corresponding sorting method.
SortingController.java : controller that manages interactions with the front end. It
utilizes the SortingContext.java to process data received and then sends the results

back as a response.

As seen in the picture (see Figure 4.3) and the description of each class, the application’s

logic uses a Strategy design pattern to allow a flexible and smooth process. “The Strategy design

pattern suggests encapsulating different implementations of a specific task into distinct classes

known strategies. The original class, called confext, must have a field for storing a reference to

one of the strategies. The context delegates the work to a linked strategy object instead of

executing it on its own.”

27

Figure 4.3 Backend logic class diagram

SortingController

+ sort(@RequestBody SortReguest r):
ResponseEntity<List<String>>

- arrayToDoublyLinkedList(int[] data):
DoublyNode

- arrayToLinkedList(int[] data): Node

SortingContext

- sortStrategy: SortStrategy

+ SortingContext()
+ executeSort(): List<String>

|
v

‘ «interface» ’

SortStrategy

+ sort(List<String> outputs): void {virtual} ’

A
QuicksortArray QuickSortLinkedlist QuickSortDoublyLinkedlist
. - head: Node - head: DoublyNode
-arr:int[]
) + QuickSortLinkedList() + QuickSortDoublyLinkedList()
: Sg’;?tf;:g{;iyg animations): void + sort(List<String> animations): void + sort(List<String> animations): void
. >tring ; . + quicksort(Node h, List<String> + quicksort(DoublyNode H, List<String>
* quicksort(int[] ar, List<String> animations): void animations): void
animations): void) . . '
) ; . .) + QS(Node p, Node r, List<String> + QS(DoublyNode p, DoublyNode r,
;n?nfa(ult:g[n]sar{/c:g p, intr, List<String> animations): void List<String> animations): void
+ anilion(i)ﬁt[] arr int . int r. List<String> + partition(Node p, Node t, Node r, + partition(DoublyNode p, DoublyNode r,
nFi]m tions): Int »Intp, ! 9 List<String> animations): void List<String> animations): DoublyNode
isw; intS : inti inti: void + printList(Node head): String + unlink(DoublyNode q): void
A randgfn(iH’ inyt 0): Iy - getindexOfElement(Node node): int + precede(DoublyNode g, DoublyNode r): void
P ’ - getListLength(): int + printList(DoublyNode head): String
. - getindexOfElement(DoublyNode node): int
I
\ i
L] ¥
Node DoublyNode
+ val: Integer + val: Integer
+ next: Node + next: DoublyNode

+ prev: DoublyNode

+ Node()

+ Node()

4.2 Choice of stack

The quicksort illustration was implemented using JAVA for the backend and React]JS for

the frontend. Java was chosen for its platform independence as it can run on any platform that

28

supports Java Virtual Machine (JVM), while React]S was selected for its component-based

architecture, which encourages a clean and organized codebase.

4.2.1 Back End

The core functionality of the program utilizes Java to implement the sorting methods,
with Spring Boot managing the connection and sending the results of the Quicksort algorithm to

the frontend.

Java

“Java is a widely used object-oriented programming language. The rules and syntax of
Java are based on C and C++ languages. Java was first released back in 1995 and it is popular for
developing applications for web, desktop and mobile devices. The principles for creating Java

were simplicity, robustness, multithreaded, high-performance, portability, etc.*

Spring Boot
“Spring Boot is an open-source Java framework used to create micro services. It
simplifies the configuration and setup processes, allowing developers to focus on writing code.

Spring Boot is widely utilized to create and run both simple and web-based applications.

4.2.2 Front End
The visual part of the program was created using React JS, its associated libraries and

CSS.

React JS

“React JS is a free and open-source front-end JavaScript library for building user
interfaces based on components. React components are the building block of React Application.
These components use reusable code blocks that encapsulates both logic and Ul elements. They
have the same purpose as JavaScript functions and return HTML. This approach simplifies the
development of complex interfaces. While React primarily handles the Ul and rendering the

elements to the DOM, it often works with other libraries for routing and other client-side

29

functionality. For instance, Axios is used for the connection with the back end in this program.
Axios works by making HTTP requests with NodeJS and lets developers make requests to their
own or third-party servers to fetch data. If the request was successful, you receive a response
with the requested data, and if not then you receive an error. Another library that was used in the
development is React-Spring. It is an animation library that uses physical properties which
results in animations that feel more natural and smooth. Its configuration accepts properties such
as tension, mass, friction and velocity. React-Spring improves the user experience and helps to

demonstrate a smooth animation of the quicksort process in this program.”

4.2.3 Other tools
Other tools used in the development: NodelS, Git, HTML, CSS

4.3 Implementation

In this section we will read about the detailed implementation process diving into the

User Interface, Visualization and Control.

4.3.1 User Interface
For User Interface React and its libraries are utilized. To facilitate the reuse of common
functions across different components, custom hooks such as useStepNavigation.js were created.
This hook is used to see next or previous steps in any data structure’s quicksort process.
Additionally, to enhance the code modularity, createAnimation.js was created as a Higher Order
Component (HOC), that can be used in each data structure’s animation, ensuring consistency and
reusability.
Other tools and technologies that were used:
- CSS: Basic CSS was used for styling of the pages, pointers and other div elements,
providing a clean and user-friendly interface.
- React-Spring: This library is used to render state changes to the DOM and make
animations smooth.
- Axios: Axios is used as a solution for connectivity with the back end, enabling the

application to fetch necessary data for animations.

30

4.3.2 Application Logic

The application logic utilizes Java for the codebase. As seen in the class diagram (see
Figure 4.3), the Strategy Design Pattern keeps the code structure clean. To simplify interactions
with the frontend, a list of actions is sent to instruct the sorting process. Each Quicksort class is
implemented with its logic and maintains an "animations" list of strings, which records each step
of the sorting process. For instance, "compare,56,1,67,2" indicates comparing the numbers 56
and 67 with indices 1 and 2, while "init,s,67,2" initializes the pointer 's' to 67 at index 2. Upon

completion, the resulting list of strings contains all recorded actions.

4.3.3 Controller

Implementing the controller was quite a challenge due to the use of two different
programming languages for the frontend and backend. Bridging this gap required establishing a
connection that could effectively control and utilize both components. For the backend, the sort()
method was created using Java Spring Framework's specialized annotations, @PostMapping
and @RestController. This method handles requests expecting input data including the algorithm
and elements, and sends back the resulting sorted data to the endpoint. On the frontend, 4Axios, a
React library, was employed. The main page component collects user input and sends it to the

backend for processing by wrapping it into a single message.

4.4 Testing
Testing is a vital part of software development, essential in identifying and fixing errors
introduced during development. It ensures that all functionalities work correctly, thus preventing

future failures and maintaining user satisfaction.

4.4.1 Testing plan

The program’s testing plan involves two main components: application logic and UI. The
application logic uses JUnit to test each class’ sorting method and their helper functions. For Ul
testing, React Testing Library is used. This will involve verifying the proper rendering and

responsiveness of components, as well as testing user interaction functionalities. By following

31

this testing plan, the reliability and accuracy of both the backend algorithms and the frontend

user interface is achieved.

4.4.2 Application logic testing with JUnit
“JUnit is a unit testing framework for the Java programming language. JUnit has been
important in the development of test-driven development, and is one of a family of unit testing

frameworks collectively known as xUnit, that originated with JUnit.”

Quicksort for array testing
Test the ‘swap’ function
- Create an array, swap any of the elements and check if the output is correct.
Test the “partition’ function
- Create an array of any size, call the partition function, and get the result of an element
that found its final place. Iterate through the array and check if the elements before that
partition result number are less than it, while the ones after are greater or equal.
Test the ‘sort’ function
- Create one element or zero element arrays. The result should be the same as the input.
- Create arrays that are already sorted, the result should be the same.
- Create arrays in descending order, the result should be sorted in ascending order.

- Create arrays of different sizes, the outputs should all be sorted in the ascending order.

Quicksort for one-way list with a header testing
Test ‘partition’ function

- Create a list of arbitrary size, invoke the ‘partition’ function, and check if the node was

correctly placed.

- Repeat the “partition’ process to verify the subsequent partitions also get correct results.
Test ‘sort’ function

- Create one element or zero element lists. The result should be the same as the input.

- Create lists that are already sorted, the result should be the same.

- Create lists in descending order, the result should be sorted in ascending order.

- Create lists of different sizes, the outputs should all be sorted in the ascending order.

32

Quicksort for cyclic two-way lists testing

Test ‘unlink’ and ‘precede’ functions

Create a two-way list and pick any element to remove. Invoke ‘unlink’ function and
check if the result does not have the element that was picked.

Invoke the ‘precede’ function with the removed node to be inserted before the first
element of the list. Check if the new node was inserted correctly.

Repeat the 'precede’ operation with a new element to be positioned before the second

element of the list and verify the accuracy of the result.

Test ‘partition’ function

Create a list of arbitrary size, invoke the ‘partition’ function, and check if the node was
correctly placed.
Repeat the ‘partition’ process until the whole list is sorted to verify each of the

subsequent partitions also yields correct results.

Test ‘sort’ function

Create one element or zero element lists. The result should be the same as the input.
Create lists that are already sorted, the result should be the same.
Create lists in descending order, the result should be sorted in ascending order.

Create lists of different sizes, the outputs should all be sorted in the ascending order.

4.4.3 User Interface testing with React Testing Library

“React Testing Library is a library for React that provides an intuitive and efficient API

for testing React components. It is built on top of the DOM Testing Library and provides a more

user-centered way of testing React components.”

Application component

Renders correctly without any crashes

Router for navigation between Main, Tutorial, Test, and About pages works correctly

Header component

Renders the navigation links

Navigates to the corrects routes when links are clicked

33

Main page component

- Renders input fields and buttons

- Displays error messages when input is invalid
Tutorial page component

- Displays the default Array tutorial

- Displays other tutorials if the corresponding topic button is clicked
Test page component

- Selects answers when clicked

- Submits answers, shows the score, and closes the score window
About page component

- Renders correctly

4.4.4 Testing results

Figure 4.4 JUnit testing results

testZeroAndOneElementList() testSortArray/()

testSwap() testReversedList()

testUnlinkAndPrecede() testSortLinkedList()
testSerDoublylinkedLizH) testPartitionDoublyLinkedList()
testSantedLisy() testSortedArray()
testZeroAndOneElementArray() testSortedDList()
estSortedDList()

testZeroAndOneElementDList() __) -

) testPartitionLinkedList()
testReversedArray()
testPartitionArray()

testReversedDList()

Figure 4.5 React Testing Library results

src/pages/Tutorial.test.jsx (3)
src/pages/Test.test.jsx (3)
src/Header.test.jsx (2)
src/App.test.jsx (5)
src/pages/AboutPage.test.jsx (1)

src/pages/MainPage.test.jsx (2)

Test Files

34

Chapter 5

Conclusion

Short chapter to reflect back on the program. The initial plans, solutions, and challenges
during the development are mentioned here. Additionally, this chapter contains some suggestions

to improve the program with further plans for future work.

5.1 Conclusion and Future work

While working on this project I was reminded of the importance of algorithms and data
structures. I realized once again that for students mastering theoretical concepts is as vital as
learning to apply these concepts in practice. The main purpose was to present an interactive
learning page with focus on the Quicksort algorithm. The development of the project was very
challenging, particularly in setting up the correct connection between front and back end, and
animating the data in a clean, user-friendly manner. Initially, I struggled to configure how to send
each step of the sorting process from the backend to the frontend. While implementing the
sorting algorithm itself was quite straightforward, capturing and animating each step of the
process in detail turned out to be challenging. After some contemplation, I decided to create a list
of animations, where each step will be represented as a string message. Another difficult part was
receiving those messages and breaking them up into animations. Despite these challenges, the
project goals were successfully achieved. The addition of Tutorial and Test pages further enrich
the learning experience, serving as resources alongside the main content.

Looking ahead, I plan to implement several features to improve the user interaction and
educational value. These include allowing the users to choose the pivot value for the algorithm,
which will require ensuring stability for both one-way and two-way lists. I also aim to modify
the animations to provide options of viewing only the main procedure, only the partitioning or
both. Additionally, I am planning to give the option to see the steps as a video-animation. The
process can keep going on its own, without the need of pressing ‘Next” or ‘Previous’ buttons.
With this, selecting the speed of animation, and pause/resume options can be added as well.

The scope of the project can be further extended to include a big variety of algorithms.

Each algorithm can be implemented and shown with different data structures. This expansion

35

would involve adding new tutorials, tests, and practical tasks for each new algorithm. By
introducing other sorting, searching, graph traversal, dynamic programming, and other advanced
algorithms, the program can offer a broader range for the learners' needs.

Eventually, I envision transforming this program into a comprehensive application where
users can track their engagement, progress, and test results, fostering a more personalized
learning journey. The application can be a great tool for learners, providing hands-on experience
in understanding the practical application of algorithms and data structures. This not only aids in

the comprehension but also fosters a deeper appreciation of concepts in computer science.

36

References

6
7.
8
9

12.
13.

14.

. Algorithms and Data Structures 1. Lecture Notes, Tibor Asvanyi, last update -

2024.02.15, AlgDs1LectureNotes-2024-02-15.pdf
Understanding the Quicksort Algorithm, 2019.05.17, Quicksort Algorithm | DeepAl

Linked List Data Structure, last update - 2024.04.10, Linked List Data Structure

Introduction to Doubly Linked List - Data Structure and Algorithm Tutorial, last update -
2024.03.18, Introduction to Doubly Linked List — Data Structure and Algorithm Tutorials
Types of Linked List in Data Structures, last update - 2023.04.10, Types of Linked List in
Data Structures

What is Java?, last update - 2024.03.13, What [s Java?

Introduction to Java, last update - 2024.05.01, Introduction to Java

. Spring Boot, published date - 2017.06.06, Spring Boot

. React (JavaScript library), published date - 2015.01.02, React (JavaScript library)
10.
I1.

React Components, last update - 2024.04.05, React Components

Making HTTP requests with Axios, last update - 2023.10.24, Making HTTP requests with
Axios

Using with React Spring, last update - 2023.08.20, React Three Fiber Documentation

Why you should use react-spring in your React application, 2021.09.14, Why vou should

use react-spring in your React application. | by John Sangalang
Strategy, Strategy

15. JUnit Tutorial, JUnit Tutorial

16.
17.

Quicksort-notes, Clifford Stein, Fall 2003, quicksort-notes.pdf
Unit Testing with the React Testing Library, 2023.03.20, Unit Testing with the React

Testing Library

37

http://aszt.inf.elte.hu/%7Easvanyi/ds/AlgDs1/AlgDs1LectureNotes-2024-02-15.pdf
https://deepai.org/machine-learning-glossary-and-terms/quicksort-algorithm
https://www.geeksforgeeks.org/data-structures/linked-list/
https://www.geeksforgeeks.org/data-structures/linked-list/doubly-linked-list/
https://www.simplilearn.com/tutorials/data-structure-tutorial/types-of-linked-list#:~:text=A%20circular%20doubly%20linked%20list%20is%20a%20mixture%20of%20a,is%20the%20bi%2Ddirectional%20list.
https://www.simplilearn.com/tutorials/data-structure-tutorial/types-of-linked-list#:~:text=A%20circular%20doubly%20linked%20list%20is%20a%20mixture%20of%20a,is%20the%20bi%2Ddirectional%20list.
https://www.ibm.com/topics/java
https://www.geeksforgeeks.org/introduction-to-java/
https://en.wikipedia.org/wiki/Spring_Boot
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://www.geeksforgeeks.org/reactjs-components/
https://circleci.com/blog/making-http-requests-with-axios/#:~:text=Axios%20is%20a%20promise%2Dbased,PUT%2FPATCH%20%2C%20and%20DELETE%20.
https://circleci.com/blog/making-http-requests-with-axios/#:~:text=Axios%20is%20a%20promise%2Dbased,PUT%2FPATCH%20%2C%20and%20DELETE%20.
https://docs.pmnd.rs/react-three-fiber/tutorials/using-with-react-spring
https://medium.com/@sangalangjl/why-you-should-use-react-spring-in-your-react-application-110e29f3a1ad
https://medium.com/@sangalangjl/why-you-should-use-react-spring-in-your-react-application-110e29f3a1ad
https://refactoring.guru/design-patterns/strategy
https://www.tutorialspoint.com/junit/index.htm
https://www.columbia.edu/~cs2035/courses/csor4231.F03/quicksort-notes.pdf
https://blog.openreplay.com/unit-testing-with-the-react-testing-library/
https://blog.openreplay.com/unit-testing-with-the-react-testing-library/

List of Figures

2.1 Partitioning, recursion, combine (Z00ZIE IMAZES).......ccveerrieeruierierrieriieerienieereeneeereesereeneens 8
2.2 Quicksort tIME COMPIEXITIES. .. uuttett ettt ettt et e e et e e e e e e aeeeneenneens 8
2.3 Quicksort for array pSeudoCOde.ouuiii i e 9
2.4 Quicksort for linked list with a header node pseudocode...............coooiiiiiiiiiiiiiiin. 10
2.5 CyClic tWO-WAY LISE. ..ttt et e 11

2.6 Quicksort for cyclic two-way list pseudocode..........oooviiiiiiiiiiii i, 11
3.1 Main page basic flowchart......... ..o 12
3.2 Tutorial page flowchart.o 13
3.3 Test page flOWChArt.oouii e e 13
34 Main Page. . ..o 14
R T T 0 ToT 0§ (o1 A0 01105 15
3.6 Correct inputs on the Main Page.............ooiiiiii i 15

3.7 Array Sorting demONStIatiON.uutitt ittt ettt et et e e et 16

3.8 End Of Partition.......ooeiiii e 16
3.9 End of QUICKSOTL.... ..o e 17
3.10 “View hiStory’ DULTON.uont e 17
3.11 Singly linked list sorting demonsStration..............o.evtiitiiniiitiit i eieenaeaeenn, 18
3.12 Doubly linked list sorting demonstration.............c.oouiviiiiiiiiiiieitieieiaeeeenannn 18
3.13 Tutorial Page JayOUL.ot e 19
3. 14 TeSt Pae JaAYOUL. .. .ottt 19
315 SCOTE WINAOW. ...ttt e 20
R LR o 00) o) (5300 S o T T PP 20
3.17 ADOUL PAZE 1aYOUL. ...\t 21
4.1 USE CaSE dIAZIAML.ttt ettt ettt et et 25
4.2 Architecture of the Program............co.oiiiiiiiiiiii e 26
4.3 Backend logic class diagram..............cooiiiiiiiiiitiiiii i 28

4.4 JUNIt teStING TESUILS. ..ottt et et 34

4.5 React Testing Library results...........ooiiiiiii e 34

