
1

Device Drivers and
Asynchronous I/O

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Department of Mathematics and
Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de
2

Synchronous I/O
the I/O function does not return until the operation
has been completed
the execution of the calling thread can be blocked
for an indefinite period

Asynchronous I/O
the I/O function can return immediately, even though
the operation has not been completed.
this enables a time-consuming I/O operation to be
executed in the background while the calling thread
is free to perform other tasks.

Asynchronous I/O = Overlapped I/O

3

Device Drivers and Asynchronous I/O

I want to show what implications asynchronous I/O
has on the driver side and what must be done in the
driver to support asynchronous I/O.

Furthermore I demonstrate how to implement
a bullet-proof cancel-safe wait queue in WDM.

1. Introduction: Asynchronous I/O, Drivers, WDM
2. Asynchronous I/O in the Application Program
3. Asynchronous I/O in the WDM Driver
4. A Cancel-Safe Wait Queue

Wikipedia about WDM:
I/O cancellation is almost impossible to get right.

4

Input / Output Operations

In Windows (similar to Unix) input/output devices
are treated very much like ordinary files.

Application programs use the same system calls to
access devices as with ordinary files:

open(), read(), write(), close()

in Windows:

#include <windows.h>

CreateFile()
ReadFile()
WriteFile()
DeviceIoControl()
CloseHandle()

2

5

a software module in kernel space
that controls a hardware device

drivers can be built separately from
the rest of the kernel and loaded at
boot time or at runtime when needed

the OS (the I/O Manager) calls the
driver on behalf of a user program
to perform operations that relate to
the hardware device

Device Driver

6

a software layer that lies between the applications
and the actual device –

hides the details, provides a standardized surface

applications use system calls –
CreateFile(), ReadFile(), WriteFile(), . . .

to every supported function there is a counterpart
(a dispatch function - DevRead(), DevWrite(),…)
in the driver –

the I/O Manager (a part of the kernel) calls the
corresponding function when serving a system call

Device Driver

7

WDM – The Windows Driver Model

Windows 98

Windows 95 Windows NT

Windows 2000
Windows Me

Windows XP

VxD

WDM

Kernel Module Driver

V i s t a WDF
8

WDM drivers:
device drivers that are source-code compatible
across all Microsoft Windows operating systems
(W98, W2000, forward-compatible to XP and Vista)

• Layered in Device Stacks
• Support Plug and Play (hot plugging)
• Support Power Management
• On Uniprocessor and Multiprocessor Machines

WDM – The Windows Driver Model

3

9

• I/O cancellation is almost impossible
to get right.

• Interactions with power management events
and Plug-and-play are difficult.
This leads to a variety of situations where
Windows machines cannot go to sleep or
wake up correctly due to bugs in driver code.

→ Introduction of WDF (Windows Driver Foundation)

WDM – The Windows Driver Model

Wikipedia, the free encyclopedia states:

10

The WDM Bible:
Walter Oney
Programming the Microsoft Windows
Driver Model
2nd edition

Redmond, Wash : Microsoft Press, 2003
ISBN: 0-7356-1803-8

846 p. + CD-ROM

Literature

11

very important : man pages and help files

Microsoft MSDN man pages:
http://msdn.microsoft.com/library

Help files of the DDK
Microsoft “white papers”

Newsgroups:
comp.os.ms-windows.programmer.nt.kernel-mode
microsoft.public.development.device.drivers

Literature

12

• CreateFile

• ReadFile (WriteFile, DeviceIoControl)

• OVERLAPPED Structure

• GetOverlappedResult, Status Codes

• WaitForXxx, Events

• Cancellation (CancelIo)

Asynchronous I/O in the Application Program

4

13

#include <windows.h>
{

HANDLE hd;
char buff[100]; DWORD err, result, nrd;

hd = CreateFile("\\\\.\\Device",
GENERIC_WRITE | GENERIC_READ,
FILE_SHARE_WRITE | FILE_SHARE_READ,
NULL, OPEN_EXISTING, 0, NULL);

if(hd == INVALID_HANDLE_VALUE){
err = GetLastError(); . . .

}
. . .

Synchronous I/O in the Application Program

14

{
HANDLE hd;
char buff[100]; DWORD err, result, nrd;

hd = CreateFile("\\\\.\\Device", ... ,0, NULL);

if(hd == INVALID_HANDLE_VALUE){ … return 1;}
. . .
result = ReadFile(hd, buff, 30, &nrd, NULL);
if (result) {

buff[nrd]= 0; . . .
} else { err = GetLastError(); . . . }

CloseHandle(hd);
}

Synchronous I/O in the Application Program

15

HANDLE hd;

hd = CreateFile("\\\\.\\Device",
GENERIC_WRITE | GENERIC_READ,
FILE_SHARE_WRITE | FILE_SHARE_READ,
NULL, OPEN_EXISTING,
FILE_FLAG_OVERLAPPED, NULL);

if(hd == INVALID_HANDLE_VALUE){
err = GetLastError(); . . .

}

FILE_FLAG_OVERLAPPED -

just a flag to allow asynchronous I/O

Asynchronous I/O: CreateFile

16

char buff[100]; DWORD err, result, nrd;
OVERLAPPED overl;

memset(&overl, 0, sizeof(OVERLAPPED));

result = ReadFile(hd, buff, 30, &nrd, &overl);

if (!result){
if (GetLastError() == ERROR_IO_PENDING) {
printf(" Read Async Pending %d \n", nrd); // =0

} else showerr("Read");
} else
{ buff[nrd]= 0;
printf(" Read Sync: %s \n", inbu);

}

Asynchronous I/O: ReadFile (WriteFile)

5

17

memset(&overl, 0, sizeof(OVERLAPPED));

result = ReadFile(hd, buff, 30, &nrd, &overl);

if (GetLastError() == ERROR_IO_PENDING) { . . . }

if the request is pending –

… how do I know, when the request is complete ?
… the actual error code ?
… the number of bytes transferred ? (nrd = 0)

→ the OVERLAPPED structure contains the information

Asynchronous I/O: ReadFile (WriteFile)

18

typedef struct _OVERLAPPED {
ULONG_PTR Internal;
ULONG_PTR InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

} OVERLAPPED,*POVERLAPPED;

Internal the (kernel mode) error code
InternalHigh the number of bytes transferred
Offset, OffsetHigh the file position
hEvent an event to wait for

Asynchronous I/O: struct OVERLAPPED

19

typedef struct _OVERLAPPED {
ULONG_PTR Internal; // error code
ULONG_PTR InternalHigh; // number of bytes
. . .

} OVERLAPPED,*POVERLAPPED;

Internal contains STATUS_PENDING, STATUS_SUCCESS
or whichever error occurred (kernel mode NTSTATUS code)

in ddk\ntstatus.h:

#define STATUS_SUCCESS ((NTSTATUS)0x00000000L)
#define STATUS_PENDING ((NTSTATUS)0x00000103L)
#define STATUS_CANCELLED ((NTSTATUS)0xC0000120L)

Asynchronous I/O: struct OVERLAPPED

20

typedef struct _OVERLAPPED {
ULONG_PTR Internal; // error code
ULONG_PTR InternalHigh; // number of bytes
. . .

} OVERLAPPED,*POVERLAPPED;

Internal and InternalHigh were originally reserved for system
use, their behavior may change – don’t use them directly →

result = GetOverlappedResult(hd,&overl,&nrd,FALSE);

if (GetLastError() == ERROR_IO_INCOMPLETE) . . .

FALSE – do not wait until the operation has been completed

Asynchronous I/O: GetOverlappedResult

6

21

Internal and InternalHigh were originally reserved for system
use, their behavior may change – don’t use them directly →

just to poll for the completion of an I/O request:

if (HasOverlappedIoCompleted(&overl)) . . .

in winbase.h:

#define HasOverlappedIoCompleted(lpOverlapped) \
((lpOverlapped)->Internal != STATUS_PENDING)

Asynchronous I/O: GetOverlappedResult

22

result = ReadFile(hd, buff, 30, &nrd, &overl);

result = GetOverlappedResult(hd,&overl,&nrd,FALSE);

err = GetLastError();
if (err == ERROR_IO_INCOMPLETE || // GetOverl

err == ERROR_IO_PENDING) . . . // ReadFile

in winerror.h:
#define ERROR_OPERATION_ABORTED 995L // 0x03E3
#define ERROR_IO_INCOMPLETE 996L // 0x03E4
#define ERROR_IO_PENDING 997L // 0x03E5
#define ERROR_SUCCESS 0L
#define NO_ERROR 0L

Asynchronous I/O: Status and Error Codes

23

We can wait for the completion of an I/O request in different ways:

• call GetOverlappedResult() with bWait = TRUE

• wait for the file handle: WaitForSingleObject(hd,INFINITE)

• initialize and wait for the hEvent field in the OVERLAPPED structure

memset(&overl, 0, sizeof(OVERLAPPED));
overl.hEvent = CreateEvent(NULL, TRUE, TRUE,

NULL); // manual-reset, signaled
ReadFile(hd, buff, 30, &nrd, &overl);
. . .
WaitForSingleObject(overl.hEvent,INFINITE)

• use Completion Ports

Asynchronous I/O: Waiting for Completion

24

initialize and wait for the hEvent field in the OVERLAPPED structure
(more specific than the file handle)

memset(&overl, 0, sizeof(OVERLAPPED));
overl.hEvent = CreateEvent(NULL, TRUE, TRUE,

NULL); // manual-reset, signaled

Functions as ReadFile() set this handle to the nonsignaled state
before they begin an I/O operation.
When the operation has completed, the handle is set to the signaled
state.

If we have multiple I/O operations pending, we can gather their event
handles in an array and use WaitForMultipleObjects(n,arr,…)

Asynchronous I/O: Waiting for Completion

7

25

An application program can cancel pending I/O requests:

CancelIo(hd);

This function cancels all pending I/O operations for this file handle.

CancelIoEx(hd, &overl);

This function cancels a specific I/O operation.
It is available only in Vista.

If we call GetOverlappedResult() on the completed
cancelled operation, we get the status code:

ERROR_OPERATION_ABORTED // 0x03E3

Asynchronous I/O: Cancellation

26

An application program can cancel pending I/O requests:

CancelIo(hd);

this function cancels all pending I/O operations for this file handle.

CancelIoEx(hd, &overl);

this function cancels a specific I/O operation,
it is available only in Vista

If we call GetOverlappedResult() on the completed
cancelled operation, we get the status code:

ERROR_OPERATION_ABORTED // 0x03E3

Asynchronous I/O: Cancellation

27

when serving a system call
the I/O manager creates an IRP (I/O Request Packet)
and sends it to the corresponding dispatch routine
of the device driver

the dispatch routine can:

• complete the IRP immediately (→ synchronous)
• queue the IRP for later processing (→ asynchronous)
• pass the IRP down to a lower driver, with or without

a Completion Routine for postprocessing

Asynchronous I/O in the WDM Driver

28

The dispatch routine can complete the IRP immediately
→ synchronous

NTSTATUS DrvRead(IN PDEVICE_OBJECT DevObj,
IN PIRP Irp)

{ NTSTATUS status = STATUS_SUCCESS;
long ReadLen;
char * UserBuffer; // buffered I/O

UserBuffer = Irp->AssociatedIrp.SystemBuffer;

< get the data >

RtlMoveMemory(UserBuffer, &data, ReadLen);
. . .

WDM Driver: Synchronous Buffered Read

8

29

NTSTATUS DrvRead(IN PDEVICE_OBJECT DevObj,
IN PIRP Irp)

{ . . .

RtlMoveMemory(UserBuffer, &data, ReadLen);
// the I/O manager copies the buffer to
// user space while completing the IRP

// IRP Completion
Irp->IoStatus.Status = status; // ???
Irp->IoStatus.Information = ReadLen;
IoCompleteRequest(Irp, IO_NO_INCREMENT); // ???
return status;

}

WDM Driver: Synchronous Buffered Read

30

The dispatch routine can queue the IRP
for later processing → asynchronous

NTSTATUS DrvRead(IN PDEVICE_OBJECT DevObj,
IN PIRP Irp)

{
IoMarkIrpPending(Irp); // ???

StartPacket(Irp); // queue the IRP

return STATUS_PENDING;
}

WDM Driver: Asynchronous Buffered Read

31

StartPacket(Irp); // queue the IRP
return STATUS_PENDING;

Problem: If the I/O manager gets STATUS_PENDING,

how does it receive the real results when the IRP is
completed ?

Answer: Later on, when data are available –
usually in a DPC Routine (Deferred Procedure Call),
requested by an Interrupt Service Routine (ISR) –

the data are copied to the buffer in the I/O manager
and the IRP is completed using IoCompleteRequest

WDM Driver: Asynchronous Buffered Read

32

when data are available – usually in a DPC routine –
the data are copied to the buffer in the I/O manager
and the IRP is completed:

void DpcForIsr(void * context)
{
< dequeue the IRP >
RtlMoveMemory(UserBuffer, &data, ReadLen);

// IRP Completion
Irp->IoStatus.Status = status; // now
Irp->IoStatus.Information = ReadLen;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

}

WDM Driver: Asynchronous Buffered Read

9

33

In a DPC routine the data are copied to the buffer
in the I/O manager and the IRP is completed.

2nd Problem:
How can the I/O manager copy data to the requesting
program’s user-space buffer?
If the IRP is completed synchronously, the caller’s
address space is current and directly accessible –
the dispatch routine runs in the context of the caller.
A DPC routine, on the other hand, certainly does not,
it runs in an arbitrary thread context.

WDM Driver: Asynchronous Buffered Read

34

Problem:
The DPC routine runs in an arbitrary thread context,
the caller’s address space is not accessible. How
can the I/O manager copy data to the caller’s buffer?

Answer:
The I/O manager queues a special kernel-mode APC
(Asynchronous Procedure Call) to the caller’s thread.
The APC executes later in the context of that thread,
so it can transfer data to the caller’s user-space buffer.

That’s why IoMarkIrpPending() is needed – an IRP
can be completed before STATUS_PENDING is returned.

WDM Driver: Asynchronous Buffered Read

35

Kernel code runs at a certain IRQL,
it can be interrupted only by an activity
that executes at a higher IRQL.

WDM Driver: Interrupt Request Level (IRQL)

3 … 26

2

1

0

DIRQL

DISPATCH_LEVEL

APC_LEVEL

PASSIVE_LEVEL

Hardware – ISRs

Scheduler, DPCs,
code protected by a spinlock

APC – Routines

user code, dispatch routines,
PnP routines

36

Kernel code runs at a certain IRQL.
(don’t confuse IRQL with thread priority)

2 - DISPATCH_LEVEL - Scheduler, DPCs,

Code executing at IRQL >= DISPATCH_LEVEL
cannot block, nor can it use pagable memory.

To use Semaphores or wait on Events,
and for many other tasks (e.g. accessing disk files)
driver code must run at IRQL == PASSIVE_LEVEL .

WDM Driver: Interrupt Request Level (IRQL)

10

37

WDM-Drivers usually are layered in Device Stacks.

WDM Driver: Layered Drivers

File System Driver

Volume Manager

Disk Driver

I/O Manager To every of these Function Drivers
there can be one or more upper or
lower Filter Driver. (e.g. for com-
pression or encryption in this case)

To support Layered Drivers, an IRP
consist of a fixed header (body) and
stack locations – one for every driver
in the stack.

38

WDM Driver: Layered Drivers

File System Driver

Volume Manager

Disk Driver

I/O Manager

To support Layered Drivers, an IRP consist of a fixed header
(body) and stack locations – one for every driver in the stack.

IRP
creates

IRP
current stack location

IRP

IRP

current stack location

current stack location

with 3 stack locations

39

WDM Driver: Layered Drivers

The IRP body contains global information, as buffer addresses,
a stack location contains a function code, function-specific
parameters and driver context information.

NTSTATUS DrvRead(IN PDEVICE_OBJECT DevObj,
IN PIRP Irp)

{ NTSTATUS status = STATUS_SUCCESS;
PIO_STACK_LOCATION pIrpStack;
long ReadLen; char * UserBuffer;

pIrpStack = IoGetCurrentIrpStackLocation(Irp);
ReadLen = pIrpStack->Parameters.Read.Length;
UserBuffer = Irp->AssociatedIrp.SystemBuffer;

. . . 40

WDM Driver: Layered Drivers

An upper filter driver usually does some preprocessing
on the given data and then it passes the IRP down to
the next lower driver with a copy of its own stack location.

NTSTATUS DrvWrite(IN PDEVICE_OBJECT DevObj,
IN PIRP Irp)

{ NTSTATUS status;

< preprocessing >
IoCopyCurrentIrpStackLocationToNext(Irp);
// or: IoSkipCurrentIrpStackLocation(Irp);

status = IoCallDriver(LowerDevice, Irp);
return status;

}

11

41

WDM Driver: Layered Drivers

But what about postprocessing ?

{ NTSTATUS status;

< preprocessing >
IoCopyCurrentIrpStackLocationToNext(Irp);
status = IoCallDriver(LowerDevice, Irp);

< postprocessing ??? >

return status;
}

Problem: Postprocessing doesn‘t work if the lower driver
is asynchronous and returns STATUS_PENDING.

42

WDM Driver: Completion Routines

Problem: Postprocessing doesn‘t work if the lower driver
is asynchronous and returns STATUS_PENDING.

Answer: We can install a completion routine,
it is called by IoCompleteRequest().

NTSTATUS DispAny(PDEVICE_OBJECT DevObj, PIRP Irp)
{

IoCopyCurrentIrpStackLocationToNext(Irp);
IoSetCompletionRoutine(Irp, CompletionRoutine,

context, TRUE,TRUE,TRUE);
return IoCallDriver(LowerDevice, Irp);

}

43

WDM Driver: Completion Routines

The address of the completion routine and the context
variable are stored in the next stack location.

NTSTATUS
CompletionRoutine(PDEVICE_OBJECT DeviceObject,

PIRP Irp, PVOID Context)
{

NTSTATUS status = Irp->IoStatus.Status;

if (Irp->PendingReturned)
{ IoMarkIrpPending(Irp); } // !!!

< postprocessing >
return STATUS_CONTINUE_COMPLETION;

} 44

WDM Driver: Propagating the Pending Bit

If the completion routine returns STATUS_CONTINUE_COMPLETION
it must propagate the Pending Bit to its stack location :

if (Irp->PendingReturned) IoMarkIrpPending(Irp);

This is one of the strange and error-prone things in WDM!

If there is no completion routine,
propagation is done automatically.

The I/O manager uses the pending bit in the topmost stack
location to decide whether an APC Routine is needed or not.

12

45

WDM Driver: Synchronous Pass Down

Since IoCompleteRequest usually is called in a DPC routine,
the completion routine usually runs at DISPATCH_LEVEL .

If post processing must be done at PASSIVE_LEVEL, the
dispatch routine can wait for completion (turning the asyn-
chronous I/O to synchronous):

NTSTATUS
CompletionRoutine(PDEVICE_OBJECT DeviceObject,

PIRP Irp, PVOID PEvent)
{
if (Irp->PendingReturned)
KeSetEvent (PEvent, IO_NO_INCREMENT, FALSE);

return STATUS_MORE_PROCESSING_REQUIRED; // !!!
}

46

WDM Driver: Synchronous Pass Down

NTSTATUS DispAny(PDEVICE_OBJECT DevObj, PIRP Irp)
{
NTSTATUS status; KEVENT event;

KeInitializeEvent(&event, NotificationEvent,FALSE);

IoCopyCurrentIrpStackLocationToNext(Irp);
IoSetCompletionRoutine(Irp, CompletionRoutine,

&event, TRUE,TRUE,TRUE);
status = IoCallDriver(LowerDevice, Irp);

if (status == STATUS_PENDING)
{ KeWaitForSingleObject(&event, ...);

status = Irp->IoStatus.Status; }

< postprocessing at PASSIVE_LEVEL >
IoCompleteRequest(Irp, IO_NO_INCREMENT); // !!!
return status;

}

47

Cancel-Safe Wait Queue

I/O devices typically are much slower then the processor.

So a drivers dispatch routine just initiates the I/O (StartIo).
When the device completed its operation
it sends an interrupt,
the drivers ISR (Interrupt Service Routine) gets called.

Usually an ISR performs only the urgent operations,
it then queues a DPC as its “Bottom Half” and exits.
The DPC routine then does data transfer and IRP
completion.

Dispatch
Routine StartIO ISR DPC

Routine
48

Cancel-Safe Wait Queue

I/O devices typically are much slower then the processor.

So a drivers dispatch routine just initiates the I/O.

If the device is busy, the dispatch routine puts
the IRP on a wait queue (StartPacket())
and returns STATUS_PENDING.

When the previous IRP is completed, the DPC routine
de-queues the next IRP (StartNextPacket()).
If there was an IRP on the queue, it is send to StartIo.

Dispatch
Routine StartIO ISR DPC

Routine

13

49

Cancel-Safe Wait Queue: Dispatch Routine

Usually the dispatch routine always returns STATUS_PENDING.

Whether to queue the IRP or to forward it to StartIo(),
is decided by StartPacket()
– this enables correct serialization.

NTSTATUS DrvAny(PDEVICE_OBJECT DevObj, PIRP Irp)
{
IoMarkIrpPending(Irp);

StartPacket(DevObj->DeviceExtension, Irp);

return STATUS_PENDING;
}

50

Cancel-Safe Wait Queue: StartPacket

A first simple approach to StartPacket (W. Oney calls
it „naive” Start Packet) looks like:

VOID StartPacket_1(PWDM_DEV_EXTENSION pdx, PIRP Irp)
{
if (pdx->DeviceBusy) {

InsertTailList(&pdx->IrpQueue,
&Irp->Tail.Overlay.ListEntry);

}
else {
pdx->DeviceBusy = TRUE;
StartIo(pdx->DeviceObj, Irp);

}
}

51

Cancel-Safe Wait Queue: StartPacket

W. Oney calls it „naive” Start Packet

if (pdx->DeviceBusy)
InsertTailList(&pdx->IrpQueue, . . .);

At least we have to protect access to the queue
and to the Busy flag against race conditions.
We use a Spinlock (can be used at IRQL=2).

Spinlocks raise IRQL to DISPATCH_LEVEL on uniprocessor machines
and thereby prevent preemption.
On multiprocessor machines they additionally spin on a busy lock
variable, which is test and set in one single atomic instruction.

Further on, we include IRP Cancellation as well as we regard
important PnP and Power state transitions.

52

Cancel-Safe Wait Queue: StartPacket

VOID StartPacket_2(PWDM_DEV_EXTENSION pdx, PIRP Irp)
{ KIRQL oldirql;
KeAcquireSpinLock(&pdx->QueueLock, &oldirql);

if (pdx->DeviceBusy) {
InsertTailList(&pdx->IrpQueue,

&Irp->Tail.Overlay.ListEntry);
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

}
else {
pdx->DeviceBusy = TRUE;
KeReleaseSpinLock(&pdx->QueueLock, DISPATCH_LEVEL);
StartIo(pdx->DeviceObj, Irp);
KeLowerIrql(oldirql); // !!!

}
}

14

53

Cancel-Safe Wait Queue: StartNextPacket

VOID StartNextPacket_1(PWDM_DEV_EXTENSION pdx)
{
PLIST_ENTRY LiEntr;
PIRP Irp;

if (IsListEmpty(&pdx->IrpQueue)) {
pdx->DeviceBusy = FALSE;

}

else {
LiEntr = RemoveHeadList(&pdx->IrpQueue);
Irp = CONTAINING_RECORD(LiEntr, IRP,

Tail.Overlay.ListEntry);
StartIo(pdx->DeviceObj, Irp);

}
}

54

Cancel-Safe Wait Queue: StartNextPacket

VOID StartNextPacket_2(PWDM_DEV_EXTENSION pdx)
{
PLIST_ENTRY LiEntr;
PIRP Irp;
KIRQL oldirql;

KeAcquireSpinLock(&pdx->QueueLock, &oldirql);

if (IsListEmpty(&pdx->IrpQueue)) {
pdx->DeviceBusy = FALSE;
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

}

else { . . . }
}

55

Cancel-Safe Wait Queue: StartNextPacket

. . .

if (IsListEmpty(&pdx->IrpQueue)) {
pdx->DeviceBusy = FALSE;
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

}

else {
LiEntr = RemoveHeadList(&pdx->IrpQueue);
KeReleaseSpinLock(&pdx->QueueLock, DISPATCH_LEVEL);
Irp = CONTAINING_RECORD(LiEntr, IRP,

Tail.Overlay.ListEntry);

StartIo(pdx->DeviceObj, Irp);
KeLowerIrql(oldirql);

}
}

56

Cancel-Safe Wait Queue: Cancellation

An application program can cancel pending I/O requests: CancelIo()

CancelIo calls the kernel function IoCancelIrp(Irp),
which in turn calls a Cancel Routine in the driver.

VOID CancelRoutine_1(PDEVICE_OBJECT DevObj, PIRP Irp)
{
RemoveEntryList(&Irp->Tail.Overlay.ListEntry);

IoReleaseCancelSpinLock(Irp->CancelIrql); // !!!

// IRP Completion
Irp->IoStatus.Status = STATUS_CANCELLED;
Irp->IoStatus.Information = 0;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

}

15

57

Cancel-Safe Wait Queue: Cancellation
IoReleaseCancelSpinLock(Irp->CancelIrql);

Unfortunately IoCancelIrp(Irp) uses a global system wide
Cancel-Spinlock, which nowadays causes serious performance
problems. We cannot provide another spinlock to IoCancelIrp.

In the next slides I show, how to work around this problem
and safely use a driver-supplied lock. It is really tricky.

With Windows XP Microsoft introduced Cancel-Safe Queues,
that do this in the background. The driver has to provide several
callback routines. These cancel-safe queues are available in
Windows 2000 too.

Anyhow: I/O cancellation is considered as
almost impossible to get right. 58

Cancel-Safe Wait Queue: Cancellation

In the next slides I show, how to use a driver-supplied lock.
First we need to know what IoCancelIrp(IRP) does.

1. Acquires the global cancel spinlock.
2. Sets the Cancel Flag in the IRP.
3. Sets the Cancel routine (if one exists) to NULL

in an atomic interlocked exchange.
4. Calls the Cancel routine if one was previously set.

Releases the spinlock otherwise.

This means the spinlock must be released in the cancel
routine. A cancel routine for an IRP is installed by

IoSetCancelRoutine(Irp, CancelRoutine);

59

Cancel-Safe Wait Queue: Cancel Routine

VOID CancelRoutine(PDEVICE_OBJECT DevObj, PIRP Irp)
{
PWDM_DEV_EXTENSION pdx = DevObj->DeviceExtension;

IoReleaseCancelSpinLock(DISPATCH_LEVEL);
KeAcquireSpinLockAtDpcLevel(&pdx->QueueLock);

RemoveEntryList(&Irp->Tail.Overlay.ListEntry);

KeReleaseSpinLock(&pdx->QueueLock, Irp->CancelIrql);

// IRP Completion
Irp->IoStatus.Status = STATUS_CANCELLED;
Irp->IoStatus.Information = 0; // redundant
IoCompleteRequest(Irp, IO_NO_INCREMENT);

}

60

Cancel-Safe Wait Queue: StartPacketC

VOID StartPacket_C(PWDM_DEV_EXTENSION pdx, PIRP Irp)
{ KIRQL oldirql;
KeAcquireSpinLock(&pdx->QueueLock, &oldirql);

if (pdx->DeviceBusy) {
IoSetCancelRoutine(Irp, CancelRoutine);

if (Irp->Cancel && IoSetCancelRoutine(Irp,NULL)){
KeReleaseSpinLock(&pdx->QueueLock, oldirql);
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

} else {
InsertTailList(&pdx->IrpQueue, …);
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

} else { … StartIo(pdx->DeviceObj, Irp); … }
}

16

61

Cancel-Safe Wait Queue: StartPacketC

if (pdx->DeviceBusy) {

The device is busy, we want to put the IRP on the queue
and install a cancel routine:

IoSetCancelRoutine(Irp, CancelRoutine);

But now the IRP can be canceled.

if (Irp->Cancel && IoSetCancelRoutine(Irp, NULL))

What is this supposed to be ??

if (Irp->Cancel) // IoCancelIrp is/was running
if (IoSetCancelRoutine(Irp, NULL)){

If the result is not NULL, IoCancelIrp didn’t perform step 3 yet.
It now cannot call the cancel routine, we must complete the IRP.

62

Cancel-Safe Wait Queue: StartPacketC

if (IoSetCancelRoutine(Irp,NULL)){

If the result is not NULL, IoCancelIrp didn’t perform step 3 yet.
It now cannot call the cancel routine, we complete the IRP.

KeReleaseSpinLock(&pdx->QueueLock, oldirql);
Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

Otherwise IoCancelIrp will call, or has already called the cancel
routine, but is waiting on our spinlock.
We insert the IRP into the queue, the cancel routine will complete it
after we released the spinlock:

} else {
InsertTailList(&pdx->IrpQueue, …);
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

}

63

Cancel-Safe Wait Queue: StartNextPacketC

The old StartNextPacket() did the following:

if (IsListEmpty(&pdx->IrpQueue)) {
pdx->DeviceBusy = FALSE;
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

}
else { … RemoveHeadList(); … StartIo(); … }

Now it is not sufficient to have a queue which is not empty,
we must find an IRP that is not cancelled yet. So we scan the queue:

Irp = NULL;
while (!IsListEmpty(&pdx->IrpQueue)) {
< if (an Irp that is not cancelled) break; >

}

if (IsListEmpty() && !Irp) pdx->DeviceBusy = FALSE;
if (Irp){ … StartIo(); … }

64

Cancel-Safe Wait Queue: StartNextPacketC
We scan the queue:

KeAcquireSpinLock(&pdx->QueueLock, &oldirql);
Irp = NULL;
while (!IsListEmpty(&pdx->IrpQueue)) {

LiEntr = RemoveHeadList(&pdx->IrpQueue);
Irp = CONTAINING_RECORD(LiEntr, IRP,

Tail.Overlay.ListEntry);

< if (Irp is not cancelled) break; >

if (IoSetCancelRoutine(Irp, NULL)) {
break;

} else { // the cancel routine is running
// but waiting on our queue spinlock

InitializeListHead(LiEntr); Irp = NULL;
}

}

17

65

Cancel-Safe Wait Queue: StartNextPacketC

We scanned the queue:

Irp = NULL;
while (!IsListEmpty(&pdx->IrpQueue)) {
< if (Irp is not cancelled) break; >

}

Now it depends on whether we found an IRP or not:

if (IsListEmpty(&pdx->IrpQueue) && !Irp)
pdx->DeviceBusy = FALSE;

if (Irp){
KeReleaseSpinLock(&pdx->QueueLock,DISPATCH_LEVEL);
StartIo(pdx->fdo, Irp);
KeLowerIrql(oldirql);

} else {
KeReleaseSpinLock(&pdx->QueueLock, oldirql);

} 66

Cancel-Safe Wait Queue: Cleanup

If we can have IRPs waiting in a queue,
we must cancel them when the device
(the handle) is closed.

The I/O manager sends IRP_MJ_CLEANUP just before
IRP_MJ_CLOSE. We can write a Cleanup-Dispatch routine.

We scan the queue under the protection of our spinlock,
look whether IPRs pertains to that handle (Stack->
FileObject) and the cancel routine is not running yet.
If we find such IRPs, we complete them after the
spinlock is released:

Irp->IoStatus.Status = STATUS_CANCELLED;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

67

Cancel-Safe Wait Queue: PnP and Power

Several PnP and Power states indicate, the device
cannot serve I/O requests. Depending on the nature
of that state, we abort or stall the queue.

Abortion means, no IRP is started, nor is it queued.
If the queue is stalled, all IRPs are queued, even if the
device is not busy.

VOID StartPacket(PWDM_DEV_EXTENSION pdx, PIRP Irp)
{ KeAcquireSpinLock(&pdx->QueueLock, &oldirql);
NTSTATUS abortstatus = pdx->abortstatus;

if (abortstatus) {
KeReleaseSpinLock(&pdx->QueueLock, oldirql);
Irp->IoStatus.Status = abortstatus;
IoCompleteRequest(Irp, IO_NO_INCREMENT);

} else … 68

Cancel-Safe Wait Queue: PnP and Power

Depending on the nature of the state, we abort or stall the queue.

VOID StartPacket(PWDM_DEV_EXTENSION pdx, PIRP Irp)

{ NTSTATUS abortstatus = pdx->abortstatus;
if (abortstatus) { … }

else if (pdx->DeviceBusy || pdx->stalled) {
IoSetCancelRoutine(Irp, cancel);
. . . // queue this irp

VOID StartNextPacket(PWDM_DEV_EXTENSION pdx, PIRP Irp)

{ NTSTATUS abortstatus = pdx->abortstatus;

while (!IsListEmpty() && !abortstatus && !pdx->stalled)
{ … } // find an IRP to start

if (IsListEmpty() && !Irp) pdx->DeviceBusy = FALSE;

