
Linux Device Dr ivers

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Department of Mathematics and

Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de

Linux Device Drivers

1. Introduction

2. Kernel Modules

3. Char Drivers

4. Advanced Char Drivers

5. Interrupts

3. Char Drivers

� File Operations

� Device Files, Major & Minor Numbers

� file_operations Structure

� register_chardev, Choice of Major Number

� mknod

� register_chardev_region – the new way

3. Char Drivers – cont.

� read(), put_user()

� open(), release(), Usage Count

� file Structure, llseek()

� write(), get_user()

� Race conditions, Atomic Variables

� Spinlocks, Semaphores

File Operations

in UNIX (Linux) input/output devices are treated very much like

ordinary files (remember –

 file descriptor 0: standard input , fd 1: standard output)

in this way easy redirection of input and output is possible

applications use the same system calls:
 open(), read(), write(), ioctl(), ... close()

both (files and devices) can be accessed as a stream of bytes

both are represented as nodes in the file system
5

File Operations

classes of devices (drivers) –

� Character (char) devices:

 can be accessed as a stream of bytes (characters)

� Block devices:

 read/write from/to the hardware – whole blocks (e.g. 2 KBytes)

 fast access to the hardware (using DMA) –

 filesystems, storage devices

 but usually the user can use the same (unblocked) system calls:

 open(), read(), write(), ... (buffered in/output)

both types are accessed through a filesystem node 6

File Operations

char devices, block devices

3rd type:

Network inter faces

 different from char or block drivers

 (data packages instead of streams,

 different system calls, no filesystem nodes)

in this tutorial we only deal with char dr ivers

(they are relatively simple, but usually sufficient,

 most drivers are char drivers)
7

File Operations

applications use the same system calls to access devices as with

ordinary files (#include <unistd.h>, <fcntl.h>):

 open() (see 'man 2 open' etc.

 read() closer descriptions are given

 write() in the following chapters)

 ioctl()

 lseek()
 ...

 close()

to every supported function there is a counterpart (a method)

in the driver (not all functions are always supported:

 lseek() not in serial input) 8

Device Files

input/output devices are treated very much like ordinary files

 both are represented as nodes in the filesystem

ordinary files, ls -l :
-rw-r--r-- 1 nwk users 130 2007-06-13 12:04 M akefile

-rw-r----- 1 nwk users 1630 2007-05-27 13:59 r wko1.c

-r--r--r-- 1 nwk users 1928 2007-05-30 13:52 r wko1.o

-rw-r----- 1 nwk users 2051 2007-05-27 14:51 r wko2.c

special files, device files, ls -l /dev/ :
brw------- 1 nwk disk 2, 0 2007-03-14 14:07 / dev/fd0

crw--w--w- 1 nwk tty 4, 0 2007-08-21 14:14 / dev/tty0

crw-rw---- 1 root tty 4, 1 2007-08-25 09:25 / dev/tty1

crw-rw---- 1 root root 13,32 2007-03-14 14:07 / dev/mouse

9

Device Files

ordinary files, ls -l :

-rw-r--r-- 1 nwk users 130 2007-06-13 12:04 M akefile

-rw-r----- 1 nwk users 1630 2007-05-27 13:59 r wko1.c

 file size

special files, device files, ls -l /dev/ :

brw------- 1 nwk disk 2, 0 2007-03-14 14:07 / dev/fd0

crw--w--w- 1 nwk tty 4, 0 2007-08-21 14:14 / dev/tty0

crw-rw---- 1 root tty 4, 1 2007-08-25 09:25 / dev/tty1

 major, minor number

 c – char device

 b – block device fd0, tty1, ... “device files“
10

Major & Minor Number

crw--w--w- 1 nwk tty 4, 0 2007-08-21 14:14 / dev/tty0
crw-rw---- 1 root tty 4, 1 2007-08-25 09:25 / dev/tty1

 major, minor number

the major number identifies the driver associated with the device,

different devices may have the same major number – they are

managed by the same driver (may be in a different way according

to the minor number) –

modern kernels allow multiple drivers to share a major number

an application identifies the device by its device file name,

the kernel uses the major number at open time to dispatch

execution to the appropriate driver 11

Major & Minor Number

crw--w--w- 1 nwk tty 4, 0 2007-08-21 14:14 / dev/tty0
crw-rw---- 1 root tty 4, 1 2007-08-25 09:25 / dev/tty1

 major, minor number

the major number identifies the driver associated with the device

the major number is a small integer (0 .. 255 in version 2.4),

currently used numbers can be found in /proc/devices

 (255 – a very limited number → 12 bit in kernel 2.6)

device files are created by the mknod command:
mknod devfilename c major minor
 (mknod /dev/mydev c 253 0)

they can be removed by # rm devfilename 12

file_operations Structure

applications use system calls to access devices:

 open(), read(), write(), ...

to every supported function there is a counterpart

(a method – like OOP, polymorphy) in the driver

(not all functions are supported in every driver)

the kernel uses the file_operations structur e (defined in

<linux/fs.h>) to access the driver's functions

for every possible function (system call) it contains a pointer

to the function in the driver that implements this operation –

or NULL for unsupported operations (maybe defaults) 13

file_operations Structure

#include <linux/fs.h>

ssize_t device_read(struct file *filp,

 char *buffer, size_t len, loff_t *offs);

int device_open (struct inode *, struct file *);

int device_release(struct inode *, struct file *);

static struct file_operations fops = {

 read: device_read,

 open: device_open,

 release: device_release,

 owner: THIS_MODULE

};
14

file_operations Structure

static struct file_operations fops = {
 read: device_read,

 open: device_open,

 release: device_release,

 owner: THIS_MODULE

};

the tagged initialization of a structure (extension in gcc),

order doesn’t matter, all the rest of the fields are set to NULL

→ portable (the definition of the structure often has changed)

 owner field: used to maintain the usage count
15

register_chardev

the old way (still available in kernel 2.6 – emulated)

static int major = 240;
static char dev_name[]="my_dev";

 // appears in /proc/devices

int rwko_init(void)

{

 int res;

 res = register_chrdev(major, dev_name, &fops);

 if (res<0) { print_x(...); return res; }

 return 0;

} 16

register_chardev

res = register_chrdev(major, dev_name, &fops);
if (res<0) { print_x(...); return res; }

#include <linux/fs.h>
int register_chrdev(

 unsigned int major,

 const char *name,

 struct file_operations *fops

);

return value: negative on failure

if major=0 – dynamic allocation of a major number (-> res)

17

register_chardev

removing the driver, releasing the major number:

 void rwko_exit(void)
 {
 int k = unregister_chrdev(major, dev_name);
 if (k < 0) {
 sprintf(me,“exit error %d \r\n“, k);
 print_x(me);
 }
 }

major and dev_name must match, later release of the

major number (after failing here) will be difficult,

exit() has no return value – issue a warning ! 18

Choice of Major Number

the major number identifies the driver associated with the device

the major number is a small integer (0 .. 255 in version 2.4),

list of most common devices in Documentation/devices.txt

 → 240-254 local/experimental use

currently used numbers in /proc/devices

if we call register_chrdev(major, dev_name, &fops);

with major=0 –

 we get a dynamically allocated major number

19

Choice of Major Number

if we call register_chrdev(major, dev_name, &fops)

with major=0 – we get a dynamically allocated major number

int rwko_init(void)

{

 major = register_chrdev(0, dev_name, &fops);
 if (major<0) { print_x(); return major; }

 sprintf(me,“ Major: %d \r\n“, major);

 print_x(me); return 0;

}

drawback: we cannot run mknod in advance
20

mknod

dynamically allocated major number –

we cannot run mknod in advance

in rwko1.c :

 major = register_chrdev(0, "rw1dev ", &fops);
 sprintf(me,“ Major: %d \r\n“, major);

 print_x(me); ...

insmod rwko1.ko ==> Major: 253

> less /proc/devices
Character devices:
...
253 rw1dev <===
254 pcmcia 21

mknod

insmod rwko1.o ==> Major: 253

> less /proc/devices
Character devices:
...
253 rw1dev
254 pcmcia

mknod /dev/mydev c 253 0

>ls -l /dev/my*
crw-r--r-- 1 root root 253, 0 2007-08-21 15:10 /dev/mydev

chmod 666 /dev/mydev (if necessary)

rm /dev/mydev 22

mknod

dynamically allocated major number –

we cannot run mknod in advance

 1. run insmod file.ko

 2. retrieve major (/proc/devices)

 3. run mknod /dev/name c major 0

 4. run chmod (if necessary)

 5. check ls -l /dev/

this can be done with the help of a shell script using awk

23

mknod

this can be done with the help of a shell script (owner root)

using awk:

#!/bin/sh
module="rwko1"
devnam="rw1dev"
device="mydev"

insmod ./$module.ko $* || exit 1

major=`awk "\\$2==\"$devnam\" {print \\$1}" \
/proc/devices`

echo major = $major

mknod /dev/$device c $major 0
24

New way: register_chardev_region

old way (still available in kernel 2.6 – emulated)

 res = register_chrdev(major, dev_name, &fops);

new way (in kernel 2.6)

 int res = register_chrdev_region(

 dev_t first, uint count, char *dev_name);

or – for dynamicly allocated device numbers

 int res = alloc_chrdev_region(dev_t *dev,

 uint firstminor, uint count, char *dev_name);
25

New way: register_chardev_region

 int res = register_chrdev_region(

 dev_t first, uint count, char *dev_name);

internal representation of device numbers: type dev_t

type dev_t (kernel 2.6: 32 bit, 2.4: type kdev_t 16 bit ?)

holds both – major and minor number (12 / 20 bit)

don’t rely on the bits, use macros (defined in <linux/kdev_t.h>

 major = MAJOR(dev_t dev);

 minor = MINOR(dev_t dev);

 dev = MKDEV(int major, int minor);
26

New way: register_chardev_region

modern kernels allow multiple drivers to share a major number

 int res = register_chrdev_region(

 dev_t first, uint count, char *dev_name);

 dev_t first first device number (major / minor)

 of the region

 uint count total number of contiguous device numbers

 (can cross major-number boundary)

 char *dev_name device name (appears in /proc/devices)

 There is no parameter &fops for the connection with our

 file-operations structure – we will need another way.
27

New way: register_chardev_region

 int register_chrdev_region(

 dev_t first, uint count, char *dev_name);

 for dynamically allocated device numbers

 int alloc_chrdev_region(dev_t *dev,

 uint firstminor, uint count, char *dev_name);

 dev_t dev;

 res = alloc_chrdev_region(&dev, 0, 1, dev_name);

 if (res<0) return res;

 major = MAJOR(dev);
28

New way: register_chardev_region

 int register_chrdev_region(

 dev_t first, uint count, char *dev_name);

 or

 int alloc_chrdev_region(dev_t *dev,

 uint firstminor, uint count, char *dev_name);

 free the region (in the cleanup function)

 void unregister_chrdev_region(

 dev_t first, uint count);

29

New way: register_chardev_region

 int register_chrdev_region(

 dev_t first, uint count, char *dev_name);

 There is no parameter &fops for the connection with our

 file-operations structure – we will need another way.

 Structure cdev (<linux/cdev.h>) to represent devices.

 struct cdev *my_cdev = cdev_alloc();

 my_cdev->ops = &my_fops;

 or (if defined in a structure) struct cdev my_cdev;

 cdev_init(&my_cdev, &my_fops); 30

New way: register_chardev_region

 Structure cdev (<linux/cdev.h>) to represent devices.

 struct cdev *my_cdev = cdev_alloc();

 my_cdev->ops = &my_fops;

 (or cdev_init(&my_cdev, &my_fops);

 my_cdev->owner = THIS_MODULE; // ???

Final step:

int cdev_add(struct cdev *,dev_t num, uint count);

Remove (in cleanup): void cdev_del(struct cdev *);
31

read()

we can implement a read() method in our driver

without having an open() method implemented:

an open() call in an application program is a system call,

it calls the open() function in the kernel

this kernel function first initializes necessary data fields

(e.g. the file structure) and then in turn calls the

open() method of the driver

the open() method is supposed to initialize the device,

if no initialization is required, no open() method is needed
32

read()

the read field in the file_operations structure has the

following prototype (different from the read() system call):

ssize_t (* read) (struct file *filp,
 char *buffer, size_t len, loff_t *offs);

the following parameters are provided by the caller (kernel) :

 struct file *filp – a pointer to the file structure

 char *buffer – a pointer to a buffer in user space

 size_t len – the number of bytes to be read

 loff_t *offs – a pointer to the f_pos field in the

 file structure (see below)
33

read()

ssize_t (* read) (struct file *filp, ...);

is supposed to yield following retur n values (signed size type):

� a non-negative return value represents the number of bytes

 successfully read (may be less than len – this is no error)

� return value zero – end of file (it’s no error)

 (if there will be data later, the driver should block)

� negative return value – error (v. <asm/errno.h>)

our method device_read must match this prototype:
static ssize_t device_read (struct file *filp,

 char *buffer, size_t len, loff_t *offs);
34

read(), put_user()

static ssize_t device_read (struct file *filp,
 char *buffer, size_t len, loff_t *offs);

in a first example driver we don’t access a real hardware device

– we just read from a buffer inside the driver

in order to demonstrate the properties of read() we only

transfer 10 bytes per read() call

we have to transfer data from kernel space to user space:
 #include <asm/uaccess.h>
 put_user (char kernel_item, char *user_buff);

35

read(), put_user()

we have to transfer data from kernel space to user space:
 put_user (char kernel_item, char *user_buff);

data transfer from kernel space to user space (and vice versa)

cannot be carried out through pointers or memcpy();

one reason: memory in user space may be swapped out

(another reason: security holes)

we use macros and functions that can deal with page faults –

macro: put_user(kernel_item, usr_ptr);

 fast, the size of the data transfer is recognized from usr_ptr

function:
ulong copy_to_user(void *to, void *from, ulong byte s);

read(), put_user()

memory in user space may be swapped out , we use macros and

functions that can deal with page faults –

the page-fault handler can put the process to sleep

→ our method must be r e-entr ant

it must be capable of running in more than one context at the

same time – don’t keep status information in global variables

there are macros / functions that don’t do the check and are faster:

 _ _put_user(item, ptr);

 ulong _ _copy_to_user(void *to, void *from, ulong bytes);

 (test once using access_ok()) 37

read(), example driver

static char mess[]="The goal of this tutorial ";
static char *mp; // mp=mess; in init() or open()

static ssize_t device_read(struct file *filp,

 char *buffer, size_t len, loff_t *offs)

{

 unsigned int i;

 for(i=0; i<10; i++){

 if(i== len) break;

 if(*mp==0) break;

 put_user(*mp++, buffer++);

 }

 if (debug>2) print_x(...); return i;

} 38

read(), example driver

we write an application (app1) containing:

 int fd, k=1 ;

 char inbu[100];

 fd = open("/dev/mydef", O_RDONLY);

 ...

 while(k>0){

 k = read(fd,inbu,14);

 if (k<0){ perror(" read "); break;}

 inbu[k]=0;

 printf(" read %2d : %s \n", k, inbu);

 }
39

read(), example driver

call app1 (with the example driver loaded) :

 read 10 : The goal o
 read 10 : f this tut
 read 6 : orial
 read 0 :

call app1 again:

 read 0 :

unless the driver was unloaded and reloaded again,

since pointer *mp was set to &mess in init()

 → do it in open()
40

read(), example driver

call app1 (with the example driver loaded) :

 read 10 : The goal o
 read 10 : f this tut
 read 6 : orial
 read 0 :

but reading the device file with cat :

> cat /dev/mydev

The goal of this tutorial >

all bytes seem to be read in one go – cat reissues

read() until it gets return value zero (EOF) ,

in the same way work fread() and fgets() (in libc) 41

open()

call app1 again: read 0

unless the driver was unloaded and reloaded again,

since pointer *mp was set to &mess in init()

 → do it in open()

static int device_open(struct inode *inode,

 struct file *filp)

{

 mp = mess;

 return 0;

}

42

open()

open() does any initialization in preparation for later

operations:

� increment the usage count (not necessary in Linux 2.4, 2.6)
� check for device-specific errors (device not ready)
� initialize the device, if it is being opened for the first time
� identify the minor number
� allocate and fill data structures (filp->private_data)

the reverse method is release()

static int device_release(struct inode *inode,

 struct file *filp);
43

Usage Count

in modern kernels the system automatically keeps a usage

count (if the field owner: THIS_MODULE is included in

the file_operations structure) in order to determine

whether the module can be safely removed

we inspect /proc/modules several times while running

and ending our application app1 from several consoles:

rwko1 688 0
rwko1 688 1
rwko1 688 2
rwko1 688 0

only if the usage count is 0, the module can be unloaded
44

file Structure

our driver doesn’t behave like reading an ordinary file:

 > app1 > app2

 read 10 : The goal o
 read 10 : f this tut
 read 6 : orial
 read 0 :
 read 0 :

the driver is opened two times, both use the same pointer *mp,

it is a global var iable (initialized in open() , used in read())

45

file Structure

the driver is opened two times, both use the same pointer *mp,

it is a global variable (initialized in open() , used in read())

How can we change this without having additional parameters

in open() and read() ? – We need a Handle Context.

we have one useful parameter: struct file *filp

the file structure (defined in <linux/fs.h>) describes

an open file or device in kernel space,

it is not to be confused with FILE in user space

46

file Structure

the file structure (defined in <linux/fs.h>) describes

an open file or device in kernel space,

it is created by the kernel on the open system call

and is passed to any function that operates on the file

there are only few fields in file that are important for us:

struct file_operations *f_op;

 a pointer to our fops struct, may be changed,

 for example to deal with different minor numbers

47

file Structure

there are only few fields that are important for us:

loff_t f_pos;

 the current reading or writing position (64 bit integer)

 do not change it directly – the last parameter of

 read() and write(): loff_t *offs points to it

void *private_data;

 for private use – either directly or as a pointer to allocated

 memory (don’t forget to free the memory in release())

– we can use both of them for our problem

 the latter is more flexible, we will use *offs for llseek()
48

file Structure

void *private_data;

 for private use – exactly what we need for a context:

static int device_open(struct inode *inode,

 struct file *filp)

{

 // mp = mess;

 filp->private_data = mess;
 return 0;

}

49

file Structure

static ssize_t device_read(struct file *filp,
 char *buffer, size_t len, loff_t *offs)

{

 unsigned int i; char *mp;

 mp = filp->private_data;

 for(i=0; i<10; i++){

 if(i== len) break;

 if(*mp==0) break;

 put_user(*mp++, buffer++);

 }

 filp->private_data = mp;

 return i;

} 50

file Structure

now the driver behaves like reading an ordinary file:

 > app1 > app2

 read 10 : The goal o
 read 10 : The goal o
 read 10 : f this tut
 read 10 : f this tut
 read 6 : orial
 read 6 : orial
 read 0 :
 read 0 :

both applications are independent of each other,

filp->private_data is specific to every instance of an

open file/driver 51

file Structure

there are few more fields in the file structure that can be

important for us:

struct dentry f_dentry;

 *inode isn’t an argument to read() and write() anymore

 (it’s hardly ever used in drivers), but we can access it by:
 filp->f_dentry->d_inode

mode_t f_mode;

 FMODE_READ, FMODE_WRITE, the read/write file permissions

 you don’t need to check them for read() or write()

 (the kernel checks it) but maybe for ioctl()

unsigned int f_flags;

 file flags, such as O_NONBLOCK, FASYNC (v. blocking I/O)
52

llseek()

the file_operations structure contains a field:

loff_t (* llseek) (struct file *filp,
 loff_t offs, int whence);

it is the counterpart of lseek() , it is used to change the cur-

rent read/write position in a file and returns that new position

although this function makes no sense in most char hardware

devices, there is a default behavior when the method is

not provided by the driver, using the f_pos field of the

file structure – we can seek from the beginning or from

the current position, but not from the end
53

llseek()

llseek() uses the f_pos field of the file structure,

we are not to change it directly – the last parameter of

read() and write(): loff_t *offs points to it

we have to do only few changes in our read() method:

 // mp = filp->private_data;
 if (*offs > strlen(mess)) return -EFAULT; //Bad addr
 mp = mess + *offs;

 for(i=0; i<10; i++){ ... put_user(*mp++, buffer++); }

 //filp->private_data = mp;

 *offs += i;
54

llseek()

we write an application program using

 k = lseek(fd, n, SEEK_SET);
 k = lseek(fd, n, SEEK_CUR);

in order to test the new driver

since there is a default method, but llseek() makes no sense

in most hardware devices (data flow rather than a data area),

sometimes it is advisable to write an own dummy method,

simply returning -ESPIPE (it translates to "Illegal seek")

55

write()

similar to read() there is a write() function:

ssize_t device_write(struct file *filp,

 const char *buffer, size_t len, loff_t *offs);

with the same parameters and return values,

 except for the const attribute of *buffer

the user must have write access to the device file:

 # chmod a+w /dev/mydev

56

write()

similar to read() there is a write() function –

data transfer from user space to kernel space is performed

with a macro:

 get_user(local, ptr);

or a function:
ulong copy_from_user(void *to,void *from,ulong byte s);

again there are faster macros and functions that don’t do a check:

 _ _get_user(item, ptr);

 ulong _ _copy_from_user(void *to, void *from,
 ulong bytes);

57

write()

in order to demonstrate read() and write() together

we write a char device driver that handles a circular buffer

two different versions:

 - buffer and pointers to head and tail as global variables,

 two applications may write to and read from the same

 buffer – they can communicate through this "pipe",

 we will need this version to demonstrate blocking read()

 - buffer and pointers to head and tail in allocated memory

 (using kmalloc() and kfree()) pointed to by

 filp->private_data; two applications may

 independently write to and read from their own buffer
58

write()

 a char device driver that handles a circular buffer

 - buffer and pointers to head and tail as global variables,

 two applications may write to and read from the same

 buffer – they can communicate through this "pipe",

59

ir iw

N

ir = iw - buffer empty

iw = ir -1 (mod N) - buffer full

write()

 (ir = iw - buffer empty, iw = ir -1 (mod N) - buffer full)

static int use_count, ir, iw;

static int device_open(

 struct inode *inode, struct file *filp)

{

 if(use_count == 0) { ir=iw=0; }

 use_count++;

 return 0;

}
60

Race Conditions

 if(use_count == 0)
 {

 ir = iw = 0; // Initialization

 }

 use_count++;

 C an something go wrong, when the driver is preemptive?

 It seems not (in this case of simple Initialization) –

 but use_count++ may be not atomic

 – depending on the processor and the compiler

61

Race Conditions

 use_count++ may be not atomic:

 reg := use_count

 inc reg

 use_count := reg

 (depending on the processor and the compiler)

62

Race Conditions

 use_count++ may be not atomic:

 use_count reg

 reg := use_count 5 5

 <-- use_count++

 in another process 6 5

 inc reg 6 6

 use_count := reg 6 6

 now use_count is 6, should be 7 – Race Condition

63

Race Conditions

 use_count++ may be not atomic

 write–access to shared var iables should be atomic

 (otherwise a read can get an inconsistent view and a

 write can be overwritten or damage the consistent state)

 – single variables → atomic var iables or atomic bit oper ations

 – complicated variables (structures, linked lists)

 → set up a critical section

 short code, that doesn’t block: Spinlocks (prevent preemption)

 otherwise: Semaphores (waiting threads sleep)
64

Race Conditions

 #define BU 0x3F8 // serial Port, Buffer
 #define LCR BU+3 // Line Control Register

 if(use_count == 0) // Initial. serial I/O
 {

 outb(0x80, LCR); // Baudrate follows

 outb(12, BU); // 12 – 9600 Baud

 outb(0, BU+1); // 0 – high part

 outb(0x13, LCR); // 13 – no parity, 8 bit

 outb(0, BU+1); // no interrupts

 }

 use_count++;
65

Race Conditions

 static spinlock_t lock = SPIN_LOCK_UNLOCKED;

 ...
 spin_lock(&lock);
 if(use_count == 0) {
 outb(0x80, LCR); // Baudrate follows

 outb(12, BU); // 12 – 9600 Baud

 outb(0, BU+1); // 0 – high part

 outb(0x13, LCR); // 13 – no parity, 8 bit

 outb(0, BU+1); // no interrupts

 }

 use_count++;

 spin_unlock(&lock);
66

Race Conditions

67

 in read() we use put_user(), in write() we use

 get_user() – they may block

 → we cannot use spinlocks

 we use semaphores (waiting threads sleep)

static struct semaphore sema;

sema_init(&sema,1); // in init()

 if (down_interruptible(&sema))
 return -ERESTARTSYS;
 // critical section
 up(&sema);

Race Conditions

68

 use of semaphores:

ssize_t device_read(*filp, *buffer, len, ...)
{
 int i=0;
 if (down_interruptible(&sema))
 return -ERESTARTSYS;
 while(i<len){
 if(ir==iw) break;
 put_user(rbuf[ir++], buffer++);
 i++; if(ir==N) ir=0;
 }
 up(&sema);
 return i;
}

