
Linux Device Dr iver s

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Department of Mathematics and

Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de

Linux Device Drivers

1. Introduction

2. Kernel Modules

3. Char Drivers

4. Advanced Char Drivers

5. Interrupts

5. Interrupts

� Blocking I/O

� poll()

� Asynchronous Notification

� Hardware Management

� Interrupts

� The Bottom Half

Blocking I/O

 problem with read() :

 there are no data yet but we’re not at end-of-file

 (the hardware will deliver data soon)

 – similar problems with write() or open()

answer:

 go to sleep, waiting for data

 (another solution: asynchronous I/O)

� put a process (application + driver routine) to sleep
� wake it up later on
� application: ask whether an I/O operation will block
� notify the application asynchronously 4

Blocking I/O

� put a process to sleep

 (we cannot sleep while holding a spinlock

 or in interrupt context)

basic data type: wait queue (wait_queue_head_t)

declaration and initialization:
 wait_queue_head_t queue ;
 init_waitqueue_head (&queue);

or if declared as global (statically)

 DECLARE_WAIT_QUEUE_HEAD (queue);

 (one step, at compile time)
5

Blocking I/O

� put a process to sleep

 old, strongly deprecated method :

 sleep_on(wait_queue_head_t *);
 interruptible_sleep_on(wait_queue_head_t *);

the latter is interruptible by signals and almost always used:

 while (! condition){
 ... // gap
 interruptible_sleep_on(&wq);
 }

 chance of race condition: if a wakeup arrives in the gap,

 it is missed and the process may sleep forever
6

Blocking I/O

� put a process to sleep

 modern way (avoids race conditions)

 void wait_event(wq, condition);
 int wait_event_interruptible(wq, condition);
 long wait_event_timeout(wq, condition,
 n_jiffies);

 use of wait_event_interruptible()

 – it returns -ERESTARTSYS if it was interrupted by a signal:

 if (wait_event_interruptible(wq, condition))
 return -ERESTARTSYS;

 then upper layers of the kernel will handle the event
7

Blocking I/O

� wake up a process (i.e. all processes waiting on the queue):

 wake_up (wait_queue_head_t *);
 wake_up_interruptible(wait_queue_head_t *);

the latter wakes up only processes that are in interruptible

sleeps

you may use wake_up() in both cases, but using

wake_up_interruptible() preserves consistency

 the wake up often is done in an interrupt handler,

 once new data has arrived

8

Blocking I/O

� put a process to sleep

wait_event_interruptible() etc. includes:

 – sets the state of the process to TASK_INTERRUPTIBLE

 (it is in an interruptible sleep)

 – the task is added to the wait queue

 – schedule is called, it relinquishes the processor

 (context switch)
� wake up a process:

schedule returns only when somebody else calls wake_up()

etc. – it sets the state of the process to TASK_RUNNING and

removes the entry from the wait queue
9

Blocking I/O

we demonstrate blocking I/O (blocking read()) with the circular

buffer (the version with one shared buffer on several opens)

we add global:

 #include <linux/sched.h>
 DECLARE_WAIT_QUEUE_HEAD (wq);

we add at the beginning of read() :

 if (wait_event_interruptible(wq, (ir!=iw)))
 return -ERESTARTSYS;

we add at the end of write() :
 if (i>0) wake_up_interruptible(&wq);

10

Nonblocking Operations

there is a flag: O_NONBLOCK, which an application can set

when opening a file/device:

 fd=open(DEV_NAME, O_RDWR | O_NONBLOCK);

 the driver can access the flags in filp->f_flags :

 if ((ir == iw) // buffer empty
 && (filp->f_flags & O_NONBLOCK))
 return -EAGAIN;

 if (wait_event_interruptible(wq, (ir!=iw)))
 return -ERESTARTSYS;
 11

Blocking I/O

blocking may be useful with other functions too, as

write() or open()

wake_up() etc. awakens every process in the wait queue –

if we use blocking on both read() and write() , we have

to use two different wait queues to wake up the right method

functions that can block (and functions calling functions

which may block) must be re-entrant

the nonblocking flag only has an effect with read() ,

write() and open()
12

poll()

using blocking I/O an application may want to know in

advance whether an I/O operation will block (to avoid it)

– two very similar functions: poll() and select()

 (poll() – System V, select() – BSD Unix)

poll() can simultaneously poll several data streams

(and wait for the first occurrence of new data)

user space:

#include <sys/poll.h>
int poll(struct pollfd *, uint n, int timeout);

13

poll()

user space:

#include <sys/poll.h>
int poll(struct pollfd *, uint n, int timeout);

poll() takes an array of n structures (for n streams) of type:

struct pollfd{
 int fd; /* file descriptor */
 short events; /* requested events */
 short revents; /* returned events */
}

and a timeout in milliseconds in case of waiting

 (0 – no wait, negative – infinite timeout) 14

poll()

struct pollfd{
 int fd; /* file descriptor */
 short events; /* requested events */
 short revents; /* returned events */
}

the following bits in the event masks are defined in <sys/poll.h>

#define POLLIN 0x0001 /* there is data to read */
#define POLLPRI 0x0002 /* there is urgent data t o
 read */

#define POLLOUT 0x0004 /* writing now will not

 block */

#define POLLERR 0x0008 /* Error condition */
#define POLLHUP 0x0010 /* Hung up – EOF */ 15

poll()

we use poll() in the following way:

#include <sys/poll.h>
struct pollfd pfd;
...

 pfd.fd=fd; pfd.events=0x05; // POLLIN | POLLOUT

 int k = poll(&pfd, 1, 0);

 if(k<0) perror(" poll() ");
 printf(" poll %2d, revents: %02x \n",
 k,pfd.revents);

16

poll()

kernel space prototype:

#include <linux/poll.h>
unsigned int poll(struct file *, poll_table *);

it serves both the poll() and the select() system call,

the argument poll_table is used for poll_wait()

return value: bit mask describing operations that won’t block

 static struct file_operations fops = {
 read: device_read,
 ...
 poll: device_poll,
 owner: THIS_MODULE
 };

17

poll()

we include a device_poll() in our blocking driver:

static unsigned int
device_poll(struct file *filp, poll_table *wait)
{
 unsigned int mask=0;
 int ih;

 if(ir != iw) mask |= POLLIN; // buffer not empty
 // read won't block
 ih=ir-1; if(ih<0) ih+=N;
 if(iw != ih) mask |= POLLOUT; // buffer not full
 // write won't bloc k
 return mask;
}

18

poll()

if the poll() system call is to wait for a blocking operation

(possibly with timeout), we call poll_wait() on that wait queue

(poll doesn’t wait if the effective return value is not zero)

static unsigned int
device_poll(struct file *filp, poll_table *wait)
{
 unsigned int mask=0;

 poll_wait(filp, &wq , wait);

 if(ir != iw) mask |= POLLIN; // buffer not empty
 return mask;
} 19

Asynchronous Notification

with poll() we can ask whether there are new data, but there

also is the possibility of asynchr. notification from a file/device

user space, gets a signal:
 #include <signal.h>
 signal(SIGIO, sighandler);

we have to specify the process as the "owner" of the file/device:

F_SETOWN command using fcntl() , the process ID is saved in

filp->f_owner (so the kernel knows who to notify)

and we must set the FASYNC flag in the device by means of the

F_SETFL fcntl() command
20

Asynchronous Notification

#include <signal.h>

void sigc(int sig)
{
 printf(" new data available \n");
 //signal(SIGIO,sigc);
}

int main(){ ...

 signal(SIGIO, sigc);

 fcntl(fd, F_SETOWN, getpid());
 int oflags = fcntl(fd, F_GETFL);
 fcntl(fd, F_SETFL, oflags | FASYNC);

21

Asynchronous Notification

kernel space:

� when F_SETFL is executed to turn on (or off) FASYNC,

 the drivers fasync() method is called to notify the driver

� when data arrives, all the registered processes must be sent

 a SIGIO signal

there is one data structure (fasync_struct) and two functions:

int fasync_helper(fd, filp, int mode,
 fasync_struct **fa);

void kill_fasync(fasync_struct **fa,
 int sig, int band /* POLL_IN */);

22

Asynchronous Notification

when F_SETFL is executed to turn on (or off) FASYNC,

the drivers fasync() method is called to notify the driver

(we include fasync in the file_operations structure)

 #include <linux/fs.h>
 static struct fasync_struct *async;

 static int device_fasync(
 int fd, struct file *filp, int mode)
 {
 return fasync_helper(fd, filp, mode, &async);
 }

fasync adds files to or removes files from the list of

interested processes (empty list: async = NULL) 23

Asynchronous Notification

when data arrives, all the registered processes must be sent

a SIGIO signal

at the end of write():

 if (i>0) {
 if (async) kill_fasync(&async, SIGIO, POLL_IN);
 }

we have to invoke our fasync method when the file is closed,

to remove the file from the list:

 device_fasync(-1, filp, 0);
24

Hardware Management

device driver – abstraction layer between software concepts

and hardware circuitry, needs to talk with both sides

every peripheral device is controlled by writing and reading

its hardwar e register s, they are either in

� memory address space (memory-mapped I/O) or in
� I/O address space (ports, I/O ports)

I/O address space – a separate address space, separated by

additional lines on the control bus, special CPU instructions

(memory: Load, Store, Move – IO space: In, Out)

25

Hardware Management

� memory address space (memory mapped I/O)
� I/O address space (I/O ports)

not all CPUs have I/O address space, but Intel processors

(x86, Pentium, ...) do

memory-mapped I/O is often preferred – CPU cores access

memory much more efficiently

for processors without separate I/O space there are the same

macros in <asm/io.h>: inb(), inw(), outb(), outw()

– they fake port I/O by remapping port addresses to memory

 addresses
26

Hardware Management

access to hardware registers and RAM memory is very similar

 – but there is one important difference:

I/O operations have side effects

 (the desired reaction of the device)

since memory access speed is critical to CPU performance,

the no-side-effect case has been optimised in several ways:

� values are cached (in registers or cache memory)
� instructions are reordered (by hardware or the compiler)

these optimisations can be fatal to correct I/O operations
27

Hardware Management

these optimisations can be fatal to correct I/O operations

(at least in the case of memory-mapped I/O) →

hardware caching is disabled by Linux when accessing

I/O regions (registers – you may use volatile)

reordering: memory barriers
 void barrier(void) <linux/kernel.h>

 code will store to memory all values that are modified

 void rmb(void) <asm/system.h>
 void wmb(void)
 void mb(void)

read / write / both memory barrier – any I/O accesses

 appearing before the barrier are completed 28

Hardware Management

exclusive access – I/O ports must be allocated before being

used by the driver:

 #include <linux/ioport.h>

 int check_region(ulong start, ulong len);

 struct resource *request_region(
 ulong start, ulong len, char *name);

 void release_region(ulong start, ulong len);

check_region() is deprecated (chance of race conditions)

check the result of request_region() against NULL,

 name appears in /proc/ioports
29

Hardware Management

I/O ports must be allocated before being used by the driver

#define PORT 0x378 // 0x378 – 0x37a
 // parallel port

in open():

 if (! request_region(PORT, 3, "my_parallel"))
 return -EBUSY;
 outb(0x31, PORT);

in release():

 outb(0x39, PORT); // first
 release_region(PORT, 3); // thereafter

30

Hardware Management

1 > less /proc/ioports
 0376-0376 : ide1
 03c0-03df : vesafb
 03e8-03ef : serial(auto)

2 > app
 File /dev/mydev open: 3 - OK
 ...

1 > less /proc/ioports
 0376-0376 : ide1
 0378-037a : my_parallel
 03c0-03df : vesafb
 03e8-03ef : serial(auto)

3 > app
 File /dev/mydev open: -1
 open /dev/mydev: Device or resource busy

31

Hardware Management

I/O Ports: macros in <asm/io.h>

unsigned inb(unsigned port) – 8 bit

inw(),inl() – 16 bit, 32 bit

 alignment, performance penalty (Intel)

void outb(unsigned char byte, unsigned port)

outw(),outl() – 8 bit, 16 bit, 32 bit

inb_p() etc. – pause, small delay for slow bus or hardware

string operations:
void insb(unsigned port, void *addr, ulong count)

32

Hardware Management

I/O Memory – similar to I/O ports

 <linux/ioport.h> <asm/io.h>

(int check_mem_region())
 void request_mem_region()
 void release_mem_region()
 /proc/iomem

Directly mapped I/O memory:

 uint ioread8(address); ioread16(), ioread32()
 void iowrite8(u8 value, address); etc.
 memcpy_fromio(dest,src,num), memcpy_toio()

Software-mapped I/O memory (vitual memory)

 void *ioremap(ulong phys_addr, ulong size);
 void iounmap(void *adr); 33

Interrupts

Interrupt :

 – synchronization of slow hardware devices with the processor

 – a signal that the hardware can send when it wants the

 processor’s attention

the CPU stops whatever it’s doing (if it accepts the interrupt

and if no one with a higher priority is currently served),

saves certain parameters, and calls a service routine (handler)

interrupt handlers are limited in the actions they can perform

– an interrupt has to be dealt with when convenient for the

hardware, not the CPU – devices have a very small amount of

RAM, if you don’t read the information when available, it is lost
34

Interrupts

Control of Interrupts

 avoid disabling of interrupts – but anyhow:

 void disable_irq(int irq);

 void enable_irq(int irq);

disabling all interrupts

 void local_irq_save(ulong flags); //disables
 void local_irq_restore(ulong flags);

35

Interrupts

interrupt lines are a limited resource:

> less /proc/interrupts
 CPU0
 0: 582484 XT-PIC timer
 1: 8317 XT-PIC keyboard
 2: 0 XT-PIC cascade
 5: 2059 XT-PIC Allegro, Texas Instr .. .
 8: 2 XT-PIC rtc
 9: 55093 XT-PIC acpi, usb-uhci
 10: 0 XT-PIC Texas Instruments PCI44 50
 11: 7 XT-PIC eth0, ohci1394
 14: 10793 XT-PIC ide0
 15: 3 XT-PIC ide1
NMI: 0
LOC: 0

36

Interrupts

Installing an Interrupt Handler

<linux/interrupt.h>

int request_irq(
 unsigned int irq, // the requested IRQ
 irqreturn_t
 (*handler)(int, void *, struct pt_regs),
 // ptr to the handler
 unsigned long flags, //
 const char *dev_name, // -> /proc/interrupts
 void *dev_id); // ptr to private data

void free_irq(
 unsigned int irq,
 void *dev_id);

37

Interrupts

Flags:

SA_INTERRUPT

 "fast interrupt", executed with other interrupts disabled

 (the interrupt being serviced is in all cases disabled in

 the interrupt controller)

SA_SHIRQ

 the interrupt can be shared between devices

SA_SAMPLE_RANDOM

 the interrupt can contribute to the entropy pool

 (for truly random numbers)

38

Interrupts

Parallel Port and Interrupt

the parallel port has 3 registers (addr. 0x378 - 0x37a) :

 DAT (0x378) R/W – Data Latch, pin1 ... pin9

 LIN (0x379) R – Printer Status

 Bit 6 (pin 10) - ACK - ready for next char

 may generate an interrupt whenever this signal

 changes from low to high (I can connect pin9 and pin10)

 PST (0x37a) R/W – Printer Controls

 Bit 4 (0x10) – IRQ enable, ACK generates

 interrupts (PC – IRQ 7)

39

Interrupts

a first example driver:

static int intrz;

static irqreturn_t intr_serv(
 int irq,
 void *dev_id,
 struct pt_regs *regs)
{
 char val = inb(PORT);
 if ((val & 0x80) == 0) return IRQ_NONE;

 intrz++;

 return IRQ_HANDLED;
} 40

Interrupts

in open():

 intrz=0;

 int k=request_irq(7, intr_serv, SA_INTERRUPT,
 "IntrParallel", NULL);
 if (k<0) return k;

 //outb(0x10, PORT+2); // Interrupt enable
 sb = inb(PORT+2);
 outb(sb | 0x10, PORT+2);

we do it in open() , not in init() –

 limited number of intr. lines

41

Interrupts

in release() :

 outb(sd & 0xEF, PORT+2); // Intr disable
 free_irq(7, NULL); // thereafter

requested handler:

 k=request_irq(7, intr_serv, SA_INTERRUPT,
 "IntrParallel", NULL);

– fast handler (SA_INTERRUPT), does not support interrupt

 sharing (SA_SHIRQ is missing)

every time now someone writes a char with the highest bit set

(to be precise: changing the highest bit from 0 to 1) to the

parallel port, an interrupt occurs and our handler is called 42

Interrupts

our interrupt handler installed:

> less /proc/interrupts
 CPU0
 0: 582484 XT-PIC timer
 1: 8317 XT-PIC keyboard
 2: 0 XT-PIC cascade
 5: 2059 XT-PIC Allegro, Texas Instr .. .
 7: 25 XT-PIC IntrParallel
 8: 2 XT-PIC rtc

> less /proc/stat
...
intr 2441221 2262015 23089 0 3 3 4895 2620 25
 2 129207 0 7 3 0 19372 3 0 0 ...

43

Interrupts

interrupt handlers are limited in the actions they

can perform

interrupt mode, interrupt time – the handler

doesn’t execute in the context of a process:

 – no access to user space data

 – the current pointer is not valid

 – no sleeping or scheduling may be performed

 (e.g. kmalloc(..., GPF_KERNEL))

44

Interrupts

 fast / slow handlers

 (much discussions in older versions)

 fast – all interrupts are disabled

 slow – interrupts are enabled, except the own one (being serviced)

 on modern systems SA_INTERRUPT is only intended

 for a few specific situations (such as timer interrupts)

 all interrupt handlers should be as short/fast as possible

 → bottom half processing (at a safer time)
45

Interrupts

 the role of an interrupt handler:

� give feedback to the device

 (clear the "interrupt-pending-bit")

� read or write data from/to the device,

 safe incoming data in a buffer (if you don’t

 read the information when available, it is lost)

� wake up processes sleeping on the device

 if the interrupt signals the arrival of new data

46

Interrupts

using arguments

static irqreturn_t intr_serv(int irq,
 void *dev_id,
 struct pt_regs *regs);

int irq the interrupt number

 (may be useful for log messages)

void *dev_id ptr to client data (passed to request_irq)

 (mandatory for shared interrupt lines)

struct pt_regs *regs

 (for monitoring and debugging)

47

Interrupts

 Interrupt Sharing

 interrupt request lines are a scarce resource

differences in the installation (request_irq(irq,...)):

 the SA_SHIRQ bit must be set

 the dev_id argument must be unique

 it is used in free_irq(irq,dev_id)

 to select the correct handler to release

 all handlers for that interrupt must agree in interrupt sharing

48

Interrupts

 interrupt sharing – all handlers for that interrupt

 must agree in interrupt sharing

 on an interrupt request the kernel invokes every handler

 registered for that interrupt, passing each its own dev_id

 – each handler must be able to recognize the interrupt

 source it is responsible for

 irqreturn_t intr_serv(int irq, void *dev_id,
 struct pt_regs *regs)
 {
 int value = inb(PORT);
 if (!(value & 0x80)) return IRQ_NONE;
 ...
 } 49

The Bottom Half

all interrupt handlers should be as short/fast as possible

in order not to keep interrupts blocked for long

 conflict: work – speed

 → we split the interrupt handler

top half – registered with request_irq(),

 actually responds to the interrupt,

 saves device data to a buffer and

 schedules its bottom half – very fast

bottom half – scheduled by the top half to be executed later,

 at a safer time, can perform longish tasks
50

The Bottom Half

bottom half –

scheduled by the top half to be executed later, at a safer time:

all interrupts are enabled during execution of the bottom half

this setup permits the top half to service a new interrupt

while the bottom half is still working

otherwise same restrictions as for interrupt handlers,

bottom half doesn’t execute in the context of a process –

no access to user space data, no sleeping or scheduling

51

The Bottom Half

bottom half – two different mechanisms:

� Tasklets

� Workqueues

 Tasklets (<linux/interrupt.h>)

macro: DECLARE_TASKLET(Name, Function, Data)

the interrupt handler schedules its bottom half:
 tasklet_schedule(&Name);

our bottom half function:
 void Function(unsigned long Data);

52

The Bottom Half

an example driver:

static int intrz, intra;
static struct timeval tv;

static void do_tasklet(unsigned long);
DECLARE_TASKLET(bh_tasklet, do_tasklet, &tv);

the interrupt handler (top half):

static void intr_serv(int irq, void *dev_id,
 struct pt_regs *regs)
{
 intrz++; do_gettimeofday(&tv);
 tasklet_schedule(&bh_tasklet);
 return IRQ_HANDLED;
} 53

The Bottom Half

an example driver:

static int intrz, intra;

in open() :

 intrz=intra=0;
 int k=request_irq(7, intr_serv, 0,
 "IntrParallel", NULL);
 if (k<0) return k;

 sb = inb(PORT+2);
 outb(sb | 0x10, PORT+2); // Interrupt enable

argument 0 – the flag SA_INTERRUPT is not set
54

The Bottom Half

the bottom half tasklet function:

static void do_tasklet(unsigned long data)
{
 int del, sec,min,hr;

 del=intrz-intra; intra=intrz;

 time_t tt=((struct timeval *)data)->tv_sec;

 sec=tt%60; tt/=60;
 min=tt%60; tt/=60; hr =tt%24 +2;

 sprintf(mess,"Interrupt 7 (n=%d, del=%d) \
 at %2d:%02d.%02d ",intrz,del,hr,min,sec);
}

55

The Bottom Half

the bottom half tasklet function:

static void do_tasklet(unsigned long data)
{
 ...

 time_t tt=((struct timeval *)data)->tv_sec;
 ...
}

unsigned long is kind of a dummy data type,

we use a (typecasted) pointer instead

 DECLARE_TASKLET(bh_tasklet, do_tasklet,
 (unsigned long) &tv);

56

The Bottom Half

static int intrz, intra;

static void do_tasklet(unsigned long data)
{
 ...

 int del=intrz-intra; intra=intrz;
 ...
}

the bottom half should know how many interrupts have arrived

since it was last called – but the method above is insecure (why?)

 → better implementation:

 del = intrz-intra; intra += del;
57

The Bottom Half

Race Conditions

 int del=intrz-intra; intra=intrz;

 better implementation:

 del = intrz-intra; intra += del;

similar problems can arise with buffer management

→ using a circular buffer (and so avoiding shared variables)

 is an effective way of handling concurrent-access

 problems
58

The Bottom Half

Race Conditions

handling of concurrent-access problems:

� using a circular buffer
� using spinlocks to enforce mutual exclusion
� using lock variables that are accessed atomically

semaphores may not be used in interrupt handlers –

they can put a process to sleep

59

The Bottom Half

� using spinlocks to enforce mutual exclusion

a spinlock works through a shared variable:

a function may acquire the lock by setting the variable,

any other function needing the lock will query it and

"spin" in a busy-wait loop until it is reset to "available"

<asm/spinlock.h>

spinlock_t my_lock = SPIN_LOCK_UNLOCKED;

spin_lock(my_lock);
 ... // short critical section
spin_unlock(my_lock); 60

The Bottom Half

� using spinlocks to enforce mutual exclusion

 spin_lock(my_lock); ... spin_unlock(my_lock);

to protect against interrupt handlers, use
 spin_lock_irqsave(my_lock, flags);
 spin_unlock_irqrestore(my_lock, flags);

they disable/enable interrupts –

 otherwise you may end up in a deadlock

these are all macros, do not write: ..., &flags);

note: in non-SMP machines the spinlock functions expand

to nothing but possibly disabling/enabling interrupts
61

The Bottom Half

� using lock variables that are accessed atomically

 atomic (noninterruptible) access to variables

 for simple locking schemes

bit operations <asm/bitops.h>
 void set_bit(nr, void *addr);
 void clear_bit(nr, void *addr);
 int test_and_set_bit(nr, void *addr); ...

while(test_and_set_bit(1,&lock) != 0) wait();
 ... // protected section
clear_bit(1,&lock);

62

The Bottom Half

� using lock variables that are accessed atomically

atomic integer operations <asm/atomic.h>

new data type: atomic_t (holds an int, on some

 machines not more than 24 bits available)

 void atomic_set(atomic_t *v, int i);
 int atomic_read(atomic_t *v);
 (... add, sub, inc, dec)

 int atomic_inc_and_test(atomic_t *v);
 int atomic_add_and_test(int i, atomic_t *v);

 ... (they return the previous value)
63

The End

Not covered in this tutorial:

� DMA and Bus Mastering
� USB Drivers
� Block Drivers
� Plug & Play
� Layered Drivers, kmod
� Intermodule Communication
� Version Support
� Network Drivers

64

