Linux Device Drivers

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Department of Mathematics and
Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de

Linux Device Drivers

Introduction

Kernel Modules

Char Drivers
Advanced Char Drivers

Al e

Interrupts

5. Interrupts

* Blocking I/0

* poll()

* Asynchronous Notification
* Hardware Management

* Interrupts

* The Bottom Half

Blocking I/0

problem with read() :
there are no data yet but we’re not at end-of-file
(the hardware will deliver data soon)
— similar problems with write() or open()

answer:
go to sleep, waiting for data
(another solution: asynchronous I/0)

* put a process (application + driver routine) to sleep

» wake it up later on

* application: ask whether an I/O operation will block
* notify the application asynchronously

Blocking 1/0

* put a process to sleep
(we cannot sleep while holding a spinlock
or in interrupt context)

basic data type: wait queue (wait_queue_head_t)

declaration and initialization:
wait_queue_head_t queue ;
init_waitqueue_head (&queue);

or if declared as global (statically)
DECLARE_WAIT_QUEUE_HEAD (queue);
(one step, at compile time)

Blocking I/0

* put a process to sleep
old, strongly deprecated method :

sleep_on(wait_queue_head_t *);
interruptible_sleep_on(wait_queue_head_t *);

the latter is interruptible by signals and almost always used:
while (! condition){
/I gap
interruptible_sleep_on(&waq);

}

chance of race condition: if a wakeup arrives in the gap,
it is missed and the process may sleep forever

Blocking 1/0

* put a process to sleep
modern way (avoids race conditions)

void wait_event(wq, condition);
int wait_event_interruptible(wq, condition);
long wait_event_timeout(wqg, condition,
n_jiffies);
use of wait_event_interruptible()
— it returns -ERESTARTSYJS it was interrupted by a signal:

if (wait_event_interruptible(wq, condition))
return -ERESTARTSYS;

then upper layers of the kernel will handle the event

Blocking I/0

» wake up a process (i.e. all processes waiting on the queue):

wake_up (wait_queue_head_t *);
wake_up_interruptible(wait_queue_head_t *);

the latter wakes up only processes that are in interruptible
sleeps

you may use wake_up() in both cases, but using
wake_up_interruptible() preserves consistency

the wake up often is done in an interrupt handler,
once new data has arrived

Blocking 1/0

* put a process to sleep

wait_event_interruptible() etc. includes:
— sets the state of the process to TASK_INTERRUPTIBLE
(it is in an interruptible sleep)
— the task is added to the wait queue
—schedule is called, it relinquishes the processor
(context switch)
 wake up a process:

schedule returns only when somebody else calls wake_up()
etc. — it sets the state of the process to TASK_RUNNINGand
removes the entry from the wait queue

[N}

Blocking I/0

we demonstrate blocking I/0O (blocking read()) with the circular
buffer (the version with one shared buffer on several opens)

we add global:

#include <linux/sched.h>
DECLARE_WAIT_QUEUE_HEAD (wq);

we add at the beginning of read()
if (wait_event_interruptible(wq, (ir'=iwy)))
return -ERESTARTSYS;

we add at the end of write()
if (i>0) wake_up_interruptible(&wq);

Nonblocking Operations

there is a flag: O_NONBLOCKvhich an application can set
when opening a file/device:

fd=open(DEV_NAME, O RDWR | O_NONBLOCK);
the driver can access the flags in filp->f_flags
if (ir ==iw) /I buffer empty
&& (filp->f_flags & O NONBLOCK))
return - EAGAI N,

if (wait_event_interruptible(wq, (ir'=iw)))
return -ERESTARTSYS;

Blocking I/0

blocking may be useful with other functions too, as
write() or open()

wake_up() etc. awakens every process in the wait queue —
if we use blocking on both read() and write() , we have
to use two different wait queues to wake up the right method

functions that can block (and functions calling functions
which may block) must be re-entrant

the nonblocking flag only has an effect with read() ,
write() and open()

poll()

using blocking I/O an application may want to know in

advance whether an I/O operation will block (to avoid it)

— two very similar functions: poll) and select()
(poll) — System V, select) —BSD Unix)

poll) can simultaneously poll several data streams
(and wait for the first occurrence of new data)
user space:

#include <sys/poll.h>
int poll(struct pollfd *, uint n, int timeout);

poll()

user space:

#include <sys/poll.h>
int poll(struct pollfd *, uint n, int timeout);

poll() takes an array of n structures (for n streams) of type:

struct pollfd{
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

poll()

struct pollfd{
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

}
the following bits in the event masks are defined in <sys/poll.h>

#define POLLIN 0x0001 /*there is data to read */

#define POLLPRI 0x0002 /* there is urgent data t o]
read */

#define POLLOUT 0x0004 /* writing now will not

block */
#define POLLERR 0x0008 /* Error condition */
#define POLLHUP 0x0010 /* Hung up — EOF */ 15

}
and a timeout in milliseconds in case of waiting
(0 —no wait, negative — infinite timeout) 14
poll()

we use poll() in the following way:

#include <sys/poll.h>

struct polifd pfd;

pfd.fd=fd; pfd.events=0x05; // POLLIN | POLLOUT
int k = poll (&fd, 1, 0);
if(k<0) perror(" poll() ");

printf(* poll %2d, revents: %02x \n",
k,pfd.revents);

poll()

kernel space prototype:

#include <linux/poll.h>
unsigned int poll(struct file *, poll_table *);

it serves both the poll() and the select() system call,
the argument poll_table is used for poll_wait()

return value: bit mask describing operations that won’t block

static struct file_operations fops = {
read: device_read,

poll: device_poll,
owner: THIS_MODULE 17
I%

poll()

we include a device_poll() in our blocking driver:

static unsigned int
device_poll(struct file *filp, poll_table *wait)
{

unsigned int mask=0;

int ih;

if(ir = iw) mask |= POLLIN; // buffer not empty
/I read won't block
ih=ir-1; if(ih<0) ih+=N;
if(iw !=ih) mask |= POLLOUT; // buffer not full
/I write won't bloc k
return mask;

poll()

if the poll) system call is to wait for a blocking operation
(possibly with timeout), we call poll_wait() on that wait queue
(poll doesn’t wait if the effective return value is not zero)

static unsigned int
device_poll(struct file *filp, poll_table *wait)

{

unsigned int mask=0;
poll _wait(filp, &wq , wait);
if(ir '= iw) mask |= POLLIN; // buffer not empty

return mask;
} 19

Asynchronous Notification

with poll) we can ask whether there are new data, but there
also is the possibility of asynchr. notification from a file/device

user space, gets a signal:
#include <signal.h>
signal(SIGIO, sighandler);

we have to specify the process as the "owner" of the file/device:
F_SETOWNcommand using fentl() , the process ID is saved in
filp->f_owner (so the kernel knows who to notify)

and we must set the FASYNCflag in the device by means of the
F_SETFL fcntl() command

Asynchronous Notification

#include <signal.h>
void sigc(int sig)
printf(" new data available \n");
/Isignal(SIGIO,sigc);
}
int main(){ ...
signal(SIGIO, sigc);
fentl(fd, F_SETOWN, getpid());

int oflags = fentl(fd, F_GETFL);
fentl(fd, F_SETFL, oflags | FASYNC);

Asynchronous Notification

kernel space:

* when F_SETFL is executed to turn on (or off) FASYNG
the drivers fasync() method is called to notify the driver

» when data arrives, all the registered processes must be sent
a SIGIO signal

there is one data structure (fasync_struct) and two functions:

int fasync_helper(fd, filp, int mode,
fasync_struct **fa);

void kill_fasync(fasync_struct **fa,
int sig, int band /* POLL_IN */);

Asynchronous Notification

when F_SETFL is executed to turn on (or off) FASYNG
the drivers fasync() method is called to notify the driver
(we include fasync in the file_operations structure)

#include <linux/fs.h>
static struct fasync_struct *async;

static int device_fasync(
int fd, struct file *filp, int mode)
{
return fasync_helper(fd, filp, mode, &async);

}

fasync adds files to or removes files from the list of
interested processes (empty list: async=NULL)

Asynchronous Notification

when data arrives, all the registered processes must be sent
a SIGIO signal

at the end of write():

if (i>0) {

if (async) kill_fasync(&async, SIGIO, POLL_IN);
}

we have to invoke our fasync method when the file is closed,
to remove the file from the list:

device_fasync(-1, filp, 0);

Hardware Management

device driver — abstraction layer between software concepts
and hardware circuitry, needs to talk with both sides

every peripheral device is controlled by writing and reading
its hardware registers, they are either in

* memory address space (memory-mapped I/O) or in
* I/O address space (ports, 1/O ports)

I/O address space — a separate address space, separated by
additional lines on the control bus, special CPU instructions
(memory: Load, Store, Move — IO space: In, Out)

Hardware Management

* memory address space (memory mapped I/O)
* I/O address space (I/0O ports)

not all CPUs have I/O address space, but Intel processors
(x86, Pentium, ...) do

memory-mapped /O is often preferred — CPU cores access
memory much more efficiently

for processors without separate I/O space there are the same
macros in <asm/io.h>: inb(), inw(), outb(), outw()
— they fake port I/O by remapping port addresses to memory

addresses 2%

Hardware Management

access to hardware registers and RAM memory is very similar
— but there is one important difference:

1/0 operations have side effects
(the desired reaction of the device)

since memory access speed is critical to CPU performance,
the no-side-effect case has been optimised in several ways:

* values are cached (in registers or cache memory)
* instructions are reordered (by hardware or the compiler)

these optimisations can be fatal to correct I/O operations

27

Hardware Management

these optimisations can be fatal to correct I/O operations
(at least in the case of memory-mapped /O) -

hardware caching is disabled by Linux when accessing
I/O regions (registers — you may use volatile)

reordering: memory barriers
void barrier(void) <linux/kernel.h>
code will store to memory all values that are modified
void rmb(void) <asm/system.h>
void wmb(void)
void mb(void)
read / write / both memory barrier — any I/O accesses
appearing before the barrier are completed 23

Hardware Management

exclusive access — 1/0O ports must be allocated before being
used by the driver:

#include <linux/ioport.h>

int check_region(ulong start, ulong len);

struct resource *request_region(
ulong start, ulong len, char *name);

void release_region(ulong start, ulong len);

check_region() is deprecated (chance of race conditions)

check the result of request_region() against NULL,
name appears in /proc/ioports

Hardware Management

I/0 ports must be allocated before being used by the driver
#define PORT 0x378 // 0x378 —0x37a
/I parallel port
in open():
if (! request_region(PORT, 3, "my_parallel"))
return -EBUSY;
outb(0x31, PORT);

in release():

outb(0x39, PORT); /1 first
release_region(PORT, 3); // thereafter

Hardware Management

1 > less /proclioports
0376-0376 : idel
03c0-03df : vesafb
03e8-03ef : serial(auto)

2>app
File /dev/imydev open: 3 - OK

1 > less /proclioports
0376-0376 : idel
0378-037a : ny_parall el
03c0-03df : vesafb
03e8-03ef : serial(auto)

3>app
File /dev/imydev open: -1
open /dev/imydev: Device or resource busy

Hardware Management

I/0 Ports: macros in <asm/io.h>

unsigned i nb(unsigned port) — 8 bit

inw(),inl() — 16 bit, 32 bit
alignment, performance penalty (Intel)

void out b(unsigned char byte, unsigned port)
outw(),outl() — 8 bit, 16 bit, 32 bit

inb_p() etc. — pause, small delay for slow bus or hardware

string operations:
void i nsh(unsigned port, void *addr, ulong count)

Hardware Management

I/O Memory - similar to I/O ports
<linux/ioport.h> <asm/io.h>
(int check_mem_region())
void request_mem_region()
void release_mem_region()
/proc/iomem

Directly mapped I/O memory:

uint i or ead8(address); ioread16(), ioread32()
void iowite8(u8 value, address); etc.
memcpy_fromio(dest,src,num), memcpy_toio()
Software-mapped I/O memory (vitual memory)

void *ioremap(ulong phys_addr, ulong size);
void iounmap(void *adr); 33

Interrupts

Interrupt :

— synchronization of slow hardware devices with the processor

—a signal that the hardware can send when it wants the
processor’s attention

the CPU stops whatever it’s doing (if it accepts the interrupt
and if no one with a higher priority is currently served),
saves certain parameters, and calls a service routine (handler)

interrupt handlers are limited in the actions they can perform
— an interrupt has to be dealt with when convenient for the
hardware, not the CPU — devices have a very small amount of

RAM, if you don’t read the information when available, it is lost
34

Interrupts

Control of Interrupts

avoid disabling of interrupts — but anyhow:

void disable_irq(int irg);

void enable_irg(int irq);

disabling all interrupts

void local_irq_save(ulong flags); //disables
void local_irq_restore(ulong flags);

Interrupts

interrupt lines are a limited resource:

> less /proc/interrupts
CPUO
0: 582484 XT-PIC timer
1: 8317 XT-PIC keyboard
2: 0 XT-PIC cascade
5: 2059 XT-PIC Allegro, Texas Instr ..
8: 2 XT-PIC rtc
9: 55093 XT-PIC acpi, usb-uhci
10: 0 XT-PIC Texas Instruments PCl44 50
11: 7 XT-PIC eth0, ohcil394
14: 10793 XT-PIC ide0
15: 3 XT-PIC idel
NMI: 0
LOC: 0

Interrupts

Installing an Interrupt Handler

<linux/interrupt.h>

int request_irq(
unsigned intirg, // the requested IRQ
irgreturn_t
(*handler)(int, void *, struct pt_regs),
/I ptr to the handler
unsigned long flags, //
const char *dev_name, // -> /proc/interrupts
void *dev_id); /I ptr to private data

void free_irq(
unsigned int irg,
void *dev_id);

Interrupts

Flags:

SA_INTERRUPT
"fast interrupt", executed with other interrupts disabled
(the interrupt being serviced is in all cases disabled in
the interrupt controller)

SA_SHIRQ
the interrupt can be shared between devices

SA_SAMPLE_RANDOM
the interrupt can contribute to the entropy pool
(for truly random numbers)

Interrupts

Parallel Port and Interrupt

the parallel port has 3 registers (addr. 0x378 - 0x37a) :

DAT (0x378) R/W — Data Latch, pinl ... pin9

LIN (0x379) R - Printer Status
Bit 6 (pin 10) - ACK - ready for next char
may generate an interrupt whenever this signal
changes from low to high (I can connect pin9 and pin10)

PST (0x37a) R/W - Printer Controls
Bit4 (0x10) —IRQ enable, ACK generates
interrupts (PC — IRQ 7)

Interrupts

a first example driver:

static int intrz;

static irgreturn_t intr_serv(
intirq,
void *dev_id,
struct pt_regs *regs)

char val = inb(PORT);
if ((val & 0x80) == 0) return IRQ_NONE;

intrz++;

return IRQ_HANDLED;
} 40

Interrupts

in open():
intrz=0;

int k=request_irq(7, intr_serv, SA_INTERRUPT,
"IntrParallel", NULL);
if (k<0) return k;

/loutb(0x10, PORT+2); // Interrupt enable
sb = inb(PORT+2);
outb(sb | 0x10, PORT+2);

we do it in open() , notininit) -

limited number of intr. lines

Interrupts

in release()

outb(sd & OxEF, PORT+2); // Intr disable
free_irq(7, NULL); /I thereafter

requested handler:

k=request_irq(7, intr_serv, SA_INTERRUPT,
"IntrParallel", NULL);

— fast handler (SA_INTERRUPY, does not support interrupt
sharing (SA_SHIRQis missing)

every time now someone writes a char with the highest bit set
(to be precise: changing the highest bit from 0 to 1) to the
parallel port, an interrupt occurs and our handler is called 4,

Interrupts

our interrupt handler installed:

> less /proc/interrupts
CPUO

0: 582484 XT-PIC timer

1 8317 XT-PIC keyboard

2: 0 XT-PIC cascade
5 2059 XT-PIC Allegro, Texas Instr ..

7: 25 XT-PIC IntrParallel
8: 2 XT-PIC rtc

> less /proc/stat

intr 2441221 2262015 23089 0 3 3 4895 2620 25
212920707 3019372300 ..

Interrupts

interrupt handlers are limited in the actions they
can perform

interrupt mode, interrupt time — the handler
doesn’t execute in the context of a process:

— no access to user space data

— the current pointer is not valid

— no sleeping or scheduling may be performed
(e.g. kmalloc(..., GPF_KERNEL))

Interrupts

fast / slow handlers

(much discussions in older versions)

fast — all interrupts are disabled
slow — interrupts are enabled, except the own one (being serviced)

on modern systems SA_INTERRUPT is only intended
for a few specific situations (such as timer interrupts)

all interrupt handlers should be as short/fast as possible
— bottom half processing (at a safer time)

Interrupts

the role of an interrupt handler:

* give feedback to the device
(clear the "interrupt-pending-bit")

¢ read or write data from/to the device,
safe incoming data in a buffer (if you don’t
read the information when available, it is lost)

» wake up processes sleeping on the device
if the interrupt signals the arrival of new data

Interrupts

using arguments

static irgreturn_t intr_serv(int irg,
void *dev_id,
struct pt_regs *regs);

intirq the interrupt number
(may be useful for log messages)

void *dev_id ptr to client data (passed to request_irq)
(mandatory for shared interrupt lines)

struct pt_regs *regs
(for monitoring and debugging)

Interrupts

Interrupt Sharing

interrupt request lines are a scarce resource

differences in the installation (request irq(irg,...)):

the SA_SHIRQ bit must be set

the dev_id argument must be unique
it is used in free_irq(irg,dev_id)
to select the correct handler to release

all handlers for that interrupt must agree in interrupt sharing
48

Interrupts

interrupt sharing — all handlers for that interrupt
must agree in interrupt sharing

on an interrupt request the kernel invokes every handler
registered for that interrupt, passing each its own dev_id

— each handler must be able to recognize the interrupt
source it is responsible for

irgreturn_t intr_serv(int irq, void *dev_id,
struct pt_regs *regs)
{

int value = inb(PORT);
if (!(value & 0x80)) return IRQ_NONE;

} 49

The Bottom Half

all interrupt handlers should be as short/fast as possible
in order not to keep interrupts blocked for long

conflict: work — speed
— we split the interrupt handler

top half — registered with request_irq(),
actually responds to the interrupt,
saves device data to a buffer and
schedules its bottom half — very fast
bottom half — scheduled by the top half to be executed later,
at a safer time, can perform longish tasks

The Bottom Half

bottom half —

scheduled by the top half to be executed later, at a safer time:
all interrupts are enabled during execution of the bottom half

this setup permits the top half to service a new interrupt
while the bottom half is still working

otherwise same restrictions as for interrupt handlers,
bottom half doesn’t execute in the context of a process —
no access to user space data, no sleeping or scheduling

The Bottom Half

bottom half — two different mechanisms:
¢ Tasklets
* Workqueues
Tasklets (<linux/interrupt.h>)

macro: DECLARE_TASKLET(Name, Function, Data)

the interrupt handler schedules its bottom half:
tasklet_schedule(&Name);

our bottom half function:
void Function(unsigned long Data);

The Bottom Half

an example driver:

static int intrz, intra;
static struct timeval tv;

static void do_tasklet(unsigned long);
DECLARE_TASKLET(bh_tasklet, do_tasklet, &tv);

the interrupt handler (top half):

static void intr_serv(int irg, void *dev_id,
struct pt_regs *regs)
{
intrz++; do_gettimeofday(&tv);
t askl et _schedul e(&h_t askl et);

return IRQ_HANDLED;
} 33

The Bottom Half

an example driver:

static int intrz, intra;

in open() :

intrz=intra=0;

int k=request_irq(7, intr_serv, 0,
"IntrParallel", NULL);

if (k<0) return k;

sb = inb(PORT+2);
outb(sb | 0x10, PORT+2); // Interrupt enable

argument O — the flag SA_INTERRUPT is not set

The Bottom Half

the bottom half tasklet function:

static void do_tasklet(unsigned long data)

{

int del, sec,min,hr;
del=intrz-intra; intra=intrz;
time_t tt=((struct timeval *)data)->tv_sec;

sec=tt%60; tt/=60;
min=tt%60; tt/=60; hr =tt%24 +2;

sprintf(mess,"Interrupt 7 (n=%d, del=%d) \
at %2d:9%602d.%02d ",intrz,del,hr,min,sec);
}

The Bottom Half

the bottom half tasklet function:

static void do_tasklet(unsigned long data)

{

time_t tt=((struct timeval *)data)->tv_sec;

}
unsigned long is kind of a dummy data type,
we use a (typecasted) pointer instead

DECLARE_TASKLET(bh_tasklet, do_tasklet,
(unsigned long) &tv);

The Bottom Half

static int intrz, intra;

static void do_tasklet(unsigned long data)

{
int del=intrz-intra; intra=intrz;

}...

the bottom half should know how many interrupts have arrived
since it was last called — but the method above is insecure (why?)
— better implementation:

del = intrz-intra; intra += del;

The Bottom Half

Race Conditions
int del=intrz-intra; intra=intrz;
better implementation:

del = intrz-intra; intra += del;

similar problems can arise with buffer management

— using a circular buffer (and so avoiding shared variables)
is an effective way of handling concurrent-access
problems

The Bottom Half

Race Conditions
handling of concurrent-access problems:

« using a circular buffer
* using spinlocks to enforce mutual exclusion
* using lock variables that are accessed atomically

semaphores may not be used in interrupt handlers —
they can put a process to sleep

The Bottom Half

* using spinlocks to enforce mutual exclusion

a spinlock works through a shared variable:

a function may acquire the lock by setting the variable,
any other function needing the lock will query it and
"spin" in a busy-wait loop until it is reset to "available"

<asm/spinlock.h>
spinlock_t my lock = SPIN_LOCK_UNLOCKED;
spin_lock(my_lock);

... /I short critical section
spin_unlock(my_lock); 60

The Bottom Half

* using spinlocks to enforce mutual exclusion

spin_lock(my_lock); ... spin_unlock(my_lock);

to protect against interrupt handlers, use
spin_lock_irgsave(my_lock, flags);
spin_unlock_irgrestore(my_lock, flags);
they disable/enable interrupts —

otherwise you may end up in a deadlock

these are all macros, do not write: ..., &flags);

note: in non-SMP machines the spinlock functions expand
to nothing but possibly disabling/enabling interrupts

The Bottom Half

* using lock variables that are accessed atomically

atomic (noninterruptible) access to variables
for simple locking schemes

bit operations <asm/bitops.h>
void set_bit(nr, void *addr);
void clear_bit(nr, void *addr);
int test_and_set_bit(nr, void *addr); ...

while(test_and_set_bit(1,&lock) != 0) wait();
... Il protected section
clear_bit(1,&lock);

The Bottom Half

* using lock variables that are accessed atomically
atomic integer operations <asm/atomic.h>

new data type: atomic_t (holds an int, on some
machines not more than 24 bits available)

void atomic_set(atomic_t *v, int i);
int atomic_read(atomic_t *v);
(... add, sub, inc, dec)
int atomic_inc_and_test(atomic_t *v);
int atomic_add_and_test(int i, atomic_t *v);
(they return the previous value)

The End

Not covered in this tutorial:

* DMA and Bus Mastering

¢ USB Drivers

¢ Block Drivers

* Plug & Play

* Layered Drivers, kmod
Intermodule Communication

Version Support
* Network Drivers

