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1 Introduction

This is a simple example to demonstrate the use of eqc fsm, which can be used as
a starting point for other fsm specifications. We define a simple ”locker”, which
manages a proplist, with an API which provides read, write, lock, and unlock
operations. To keep things simple, this module contains both the implementation
and the specification of the locker.

-module(lock_eqc).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_fsm.hrl").
-compile(export_all).

2 The Locker Implementation

The locker is implemented using gen_fsm, so this section defines the call-backs
that gen_fsm expects. The locker has two states, locked and unlocked. In the
unlocked state, the initial one,

init([]) ->
{ok,unlocked,[]}.

we can asynchronously lock the locker,

unlocked(lock,S) ->
{next_state,locked,S}.

or read the value associated with a key, returning it as the reply.

unlocked({read,Key},Caller,S) ->
gen_fsm:reply(Caller,proplists:get_value(Key,S)),
{next_state,unlocked,S}.
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In the locked state, we can unlock the locker, or write a key-value pair, via an
asynchronous call,

locked({write,Key,Value},S) ->
{next_state,locked,[{Key,Value}|proplists:delete(Key,S)]};

locked(unlock,S) ->
{next_state,unlocked,S}.

or we can read a value, just as in the unlocked state.

locked({read,Key},Client,S) ->
gen_fsm:reply(Client,proplists:get_value(Key,S)),
{next_state,locked,S}.

Clients interact with the locker via the following functions, which just send
synchronous or asynchronous events to the gen_fsm, whichever is appropriate:

lock() ->
gen_fsm:send_event(locker,lock).

unlock() ->
gen_fsm:send_event(locker,unlock).

write(Key,Val) ->
gen_fsm:send_event(locker,{write,Key,Val}).

read(Key) ->
gen_fsm:sync_send_event(locker,{read,Key}).

Finally, we need to be able to start the locker

start() ->
gen_fsm:start({local,locker},?MODULE,[],[]).

and to stop it again

stop() ->
gen_fsm:sync_send_all_state_event(locker,stop).

This is achieved by sending a stop event to the locker, which can be handled
in any state.

handle_sync_event(stop,_,_,_) ->
{stop,normal,ok,[]}.

No special clean-up is required on termination.

terminate(_,_,_) ->
ok.
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3 The Locker Specification

Now we move on to the locker specification. The code in this section provides
the call-backs that eqc_fsm expects, and uses eqc_fsm to define a test property.
In this simple case, the specification duplicates much of the implementation, but
in general this is of course not the case.

3.1 Locker States

The first part of the eqc_fsm specification defines the states and transitions of
the locker. Once again, there are two states; we just list the transitions from
each state, and give generators for the calls that make each transition.

unlocked(S) ->
read_transition(S) ++
[{locked,{call,?MODULE,lock,[]}}].

locked(S) ->
read_transition(S) ++
[{unlocked,{call,?MODULE,unlock,[]}},
{locked,{call,?MODULE,write,[key(),value()]}}].

The parameter S is the state data, in this case a proplist that models the one
in the implementation. Notice that we abstract out the read transition, since it
can be made from either state.

read_transition(S) ->
[{history,{call,locker,read,[elements(proplists:get_keys(S))]}}].

We specify the target state as history here, which means the current state,
whatever it is. We also need to specify how to generate keys and values in the
test cases:

key() ->
elements([a,b,c,d]).

value() ->
int().

Just as for gen_fsm, we have to specify which state is the initial one, and the
value of the initial state data:

initial_state() ->
unlocked.

initial_state_data() ->
[].
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3.2 State Transitions

While the definitions above specify how we moved between the locked and
unlocked states, we still have to specify how each transition affects the state
data. Since both our specification and our implementation use a proplist to hold
the data, then in this case they do precisely the same thing:

next_state_data(_,_,S,_,{call,_,write,[Key,Value]}) ->
[{Key,Value}|proplists:delete(Key,S)];

next_state_data(_,_,S,_,{call,_,_,_}) ->
S.

We can see that only write affects the state.

3.3 Transition Postconditions

The only API call to return an interesting result is read, so we simply check
that the value it returns is correct.

postcondition(_,_,S,{call,_,read,[Key]},R) ->
R == proplists:get_value(Key,S);

postcondition(_,_,_,_,R) ->
R == ok.

3.4 Transition Preconditions

Although there there’s no real need, we’ll restrict read operations to keys which
have previously been written—just to illustrate what preconditions look like.

precondition(_,_,S,{call,_,read,[Key]}) ->
proplists:is_defined(Key,S);

precondition(_,_,_,_) ->
true.

3.5 The Property to Test

It just remains to define the property to be tested, which starts the locker, runs
a random sequence of commands, stops it, and then checks that the test was
ok—that is, no exceptions were raised, and all the postconditions were true.

prop_locker() ->
?FORALL(Cmds,commands(?MODULE),

begin
start(),
{H,_S,Res} = run_commands(?MODULE,Cmds),
stop(),
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aggregate(zip(state_names(H),command_names(Cmds)),
Res == ok)

end).

Note that the property looks just like an eqc_statem property—but commands
and run\_commands are imported from eqc_fsm, not eqc_statem.

We’ve instrumented the property to collect statistics on the states and tran-
sitions that were actually tested. Running the tests, which can be done by

eqc:quickcheck(lock\_eqc:prop\_locker())

reveals that read is tested less often than the other API operations—try it now.
Of course, this is because no read can be performed until at least one key has
been written. In the next section, we’ll see how to fix this.

4 Adjusting Test Case Distribution

We just saw how to measure the actual distribution of transitions followed, but
it can also be useful to analyse it. Calling

eqc_fsm:visualize(lock\_eqc).

analyses the state space of the lock\_eqc specification, and generates a dia-
gram in which transitions are annotated with their execution frequency, as a
percentage of the total number of transitions executed in tests. However, since
the analyser doesn’t actually generate test cases and test preconditions, it can’t
take into account that the precondition of read is often false—unless we tell it.
We do so by providing an estimate of the probability that a precondition will
succeed, via the following (optional) call-back:

precondition_probability(locked,_,{call,_,read,_}) ->
0.6;

precondition_probability(unlocked,_,{call,_,read,_}) ->
0.4;

precondition_probability(_,_,_) ->
1.

That is, we estimate that a read in a locked state will be possible 60% of the
time, and so on. Now when we run the visualizer, then these probabilities are
taken into account, and we see the following diagram:
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The diagram illustrates that read transitions are tested rather rarely.
The way to address this is by weighting read transitions more heavily. This

can be done either by defining a weight callback manually, or by using QuickCheck’s
automated weight assignment. To do the latter, call

eqc_fsm:automate_weights(lock\_eqc).

It will output a suitable definition of the weight callback, which you can paste
into this file to use it, and display the result of a new analysis with the new
weights. . . which tests read much more often.

It’s also possible to assign a higher priority to some of the transitions, so that
the weight assignment tries to test them more often. For example, uncomment
the following code

priority(unlocked,_,{call,_,lock,_}) ->
10;
priority(_,_,_) ->
1.

which assigns lock transitions a much higher priority, and run automate\_weights
again. You will find the weights assigned result in a very different distribution
of transitions!

We hope that working through this example has helped you familiarize your-
self with eqc_fsm. Good luck with writing specifications of your own!
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