
Reasoning about Codata — Practicals

The exercises are a mixture of practical exercises (keyboard and com-

puter) and theoretical exercises (pencil and paper). There are more ex-

ercises than you can possibly work on within the 45 min time frame. So

pick the ones you find most interesting or challenging.

We will be using GHCi for the practical exercises. To run GHCi, simply

open a terminal window and type ‘ghci’. One typically uses a text editor

to write or edit a Haskell script, saves that to disk, and loads it into

GHCi. To load a script, it is helpful if you run GHCi from the directory

containing the script. You can simply give the name of the script file as

a parameter to the command ghci. Or, within GHCi, you can type ‘:l’

followed by the name of the script to load, and ‘:r’ with no parameter

to reload the file previously loaded.

The necessary definitions for the exercises on streams are contained

in the script Stream.lhs; for the ones on infinite trees load Tree.lhs.

1

1 Streams

1. Try to capture the sequences below using stream equations.

〈0,1,8,27,64,125,216,343,512,729,1000,1331, . . .〉

〈1,3,9,27,81,243,729,2187,6561,19683,59049, . . .〉

〈0,0,1,1,2,4,3,9,4,16,5,25,6,36,7,49, . . .〉

〈0,0,2,4,8,14,24,40,66,108,176,286,464,752, . . .〉

〈0,1,2,6,15,40,104,273,714,1870,4895,12816, . . .〉

Hint: For the latter two puzzles experiment a little with the Fi-

bonacci sequences fib and fib’. Hint: Sloane’s On-Line Encyclopedia

of Integer Sequences, http://www.research.att.com/˜njas/

sequences/, lists most integer sequences one can think of.

2. Turn the following verbal descriptions into streams.

(a) The sequence of natural numbers divisible by 3.

(b) The sequence of natural numbers not divisible by 3.

(c) The sequence of cubes.

(d) The sequence of all finite binary strings.

(e) The bit-reversed positive numbers: the order of all bits, ex-

cept the most significant one, in the binary expansion of n is

reversed.

3. The parametric stream from is given by

from :: Nat→ Stream Nat

from n = n ≺ from (n+ 1) .

Show that from n+ pure k = from (n+ k) in at least two different

ways.

4. Show s + 1 = 1+ s using solely the idiom laws listed below.

pure id⋄u = u (identity)

pure (·)⋄u⋄ v ⋄w = u⋄ (v ⋄w) (composition)

pure f ⋄ pure x = pure (f x) (homomorphism)

u⋄ pure x = pure (λf → f x)⋄u (interchange)

As an aside, can you make sense of the names?

2

5. Prove the idiom laws using the unique fixed point principle.

6. When are iterate f a and iterate g b equal? As a simple example,

consider iterate (["hi"]++) [] and iterate (++["hi"]) []. Can you

find sufficient and necessary conditions?

3

2 Recurrences

1. The nâıve implementation of the Fibonacci numbers is horribly

inefficient.

fib 0 = 0

fib 1 = 1

fib (n+ 2) = fib n+ fib (n+ 1)

But, can we make this more precise? For instance, how many ad-

ditions are performed in order to compute fib n, or, how many

recursive calls are made? Express your findings as stream equa-

tions. Then try to relate the two streams to examples we covered

in the lectures. Can you generalise the results?

2. Determine the number of binary strings of some given length that

do not contain adjacent zeros. Again, first try to come up with a

system of recursion equations and then try to relate the streams

to known examples. This puzzle calls for generalisation, as well.

3. Turn the Fibonacci sequence

fib = 0 ≺ fib+ (1 ≺ fib)

into an iterative form: map g (iterate f a). There are, at least, two

approaches:

• Pair fib and fib’

fib⋆ fib’ ,

where (⋆) = zip (,) turns a pair of streams into a stream of

pairs. (The quizzical ‘(,)’ is Haskell’s pairing constructor.)

• Use the fact that the tails of fib are linear combinations of fib

and fib’.

i∗ fib+ j ∗ fib’

Try to relate the two approaches.

4

4. Turn the equation

x = (a ≺map f x)+ s

into an iterative form. Hint: You may find the function tails =

iterate tail useful. As an aside, tails is the co-multiplication of the

product co-monad Stream.

5. Prove that tabulate f =map f nat.

6. Show that the sequence given by a0 = k, a2n+1 = f(an) and a2n+2 =

g(an) corresponds to the stream a = k ≺ map f a g map g a.

Hint: use nat = bin and the previous exercise.

5

3 Finite Calculus

1. The product rule ∆ (s ∗ t) = s ∗ ∆ t + ∆ s ∗ tail t is somewhat

asymmetric. Can you find a symmetric variant? Prove it correct.

2. Derive the sum rule Σ (s+t) = Σ s+Σ t from the sum rule∆ (s+t) =
∆ s +∆ t using the Fundamental Theorem.

t = ∆ s ⇐⇒ Σ t = s − repeat (head s)

3. Work out Σ nat3 using the summation laws and the correspondence

between powers and falling factorial powers.

4. Here is an alternative definition of Σ

Σ s = 0 ≺ repeat (head s)+ Σ (tail s) ,

which uses a second-order fixed point. The code implements the

nâıve way of summing: the ith element is computed using i addi-

tions not reusing any previous results. Prove that the two defini-

tions of Σ are equivalent.

5. Generalise the derivation of Σ (nat∗ 2nat) to Σ (nat∗ cnat), where

c is a constant stream.

Σ (nat∗ 2nat)

= { ∆ 2nat = 2nat }

Σ (nat∗∆ 2nat)

= { summation by parts }

nat∗ 2nat − Σ (∆ nat∗ tail 2nat)

= { ∆ nat = 1, and definition of nat }

nat∗ 2nat − 2∗ Σ 2nat

= { summation law }

nat∗ 2nat − 2∗ (2nat − 1)

= { arithmetic }

(nat− 2)∗ 2nat + 2

6. Find a closed formula for Σ fib
2
. Hint: The tail of the sequence is

called the sequence of golden rectangle numbers.

6

1/1

1/2

1/3

1/4

1/5
2/7

2/5

3/8
3/7

2/3

3/5

4/7
5/8

3/4

5/7
4/5

2/1

3/2

4/3

5/4
7/5

5/3

8/5
7/4

3/1

5/2

7/3
8/3

4/1

7/2
5/1

Figure 1: Stern-Brocot tree

4 Infinite trees

The final set of exercises is organised around a common theme: enu-

merating the positive rationals. Because of that, most of the exercises

are inter-dependent. If you get stuck, feel free to continue to work on

the previous sets of exercises.

There are many ways to enumerate the positive rationals. Probably

the oldest method was discovered in the 1850s by the German mathe-

matician Stern and independently a few years later by the French clock-

maker Brocot. It’s deceptively simple: Start with the two ‘boundary ra-

tionals’ 0/1 and 1/0, which are not included in the enumeration, and then

repeatedly insert the mediant a+b/c+d between two adjacent rationals a/c
and b/d.

Since the number of inserted rationals doubles with every step, the

process can be pictured by an infinite binary tree, the so-called Stern-

Brocot tree, see Figure 1.

1. Turn the informal description into a program.

If we represent an inserted rational a+b/c+d by the matrix
(
a b
c d

)
,

then its left and right descendant can be determined as follows.

(
a a+ b
c c +d

)
←[

(
a b
c d

)
֏

(
a+ b b
c+ d d

)

Phrase the transformations as matrix multiplications and then de-

fine the Stern-Brocot tree as an unfold, a map after an iterate.

2. Turn the iterative form into a recursive form.

7

Show that the iterative formulation is equivalent to the following

recursive definition.

stern :: Tree Rational

stern = Node 1 (1 / (1 / stern+ 1)) (stern+ 1)

The definition makes explicit that the right subtree is the ‘succes-

sor’ of the entire tree, see Figure 1.

3. Relate the Stern-Brocot tree to Dijkstra’s fusc sequence.

In EWD570, Dijkstra introduced the following function, also known

as Stern’s diatomic sequence,

S1 = 1

S2∗n = Sn

S2∗n+1 = Sn + Sn+1 ,

which is a strange variant of fib.

Tabulate the function: fusc = tabulate S. Hint: You may find it

helpful to use the function chop that serves as the counterpart of

tail.

chop :: Tree α → Tree α

chop t = Node (root (left t)) (right t) (chop (left t))

Show that stern = fusc÷ fusc’, where ÷ constructs a rational from

two integers and fusc’ = chop fusc.

4. Turn the recursive form of fusc into an iterative one.

Turn the trees

num = Node 1 num (num+ den)

den = Node 1 (num+ den) den

into an iterative form (num and den are more telling names for fusc

and fusc’).

There are, at least, two approaches:

8

• Pair num and den

num⋆ den ,

where (⋆) = zip (,) turns a pair of trees into a tree of pairs.

(The quizzical ‘(,)’ is Haskell’s pairing constructor.)

• Use the fact that the subtrees of num are linear combinations

of num and den.

i∗ num+ j ∗ den

(In EWD578, Dijkstra uses a similar approach to prove that

fusc + fusc’ = mirror (fusc + fusc’), where mirror swaps the

immediate subtrees of a node and all its descendants.)

Try to relate the two approaches.

5. Show that the rationals are in their lowest common form.

In Exercise 3 we have shown that stern = num ÷ den. This fact

does not, however, imply that map numerator stern = num and

map denominator stern = den. (Why?) In order to prove the latter

two equations, we have to show that num÷ den are in their lowest

common form, that is, the greatest common divisor of num and

den is 1:

num ▽ den = 1 ,

where ▽ denotes the greatest common divisor lifted to trees.

6. Show that the Stern-Brocot tree contains every rational at most once.

There are, at least, two approaches. One can show that stern is a

search-tree using the following fact about mediants: if a/c 6 b/d,

then

a/c 6
a+b/c+d 6

b/d .

Alternatively, one can show that lookup stern is injective by demon-

strating that it has a left-inverse. Now, rational numbers are in a

9

one-to-one correspondence to bit strings. The following instru-

mented version of the greatest common divisor

a H b = case compare a b of

LT → 0 : (a H (b− a))

EQ → []

GT → 1 : ((a− b) H b) ,

maps two positive numbers to a bit string. This defines the re-

quired left-inverse. Then

num H den = tabulate id

establishes the result. (Why?)

7. Show that the Stern-Brocot tree contains every rational at least once.

Show that lookup stern is surjective by demonstrating that it has a

right-inverse.

8. Linearise the Stern-Brocot tree.

Turn stream stern into an iterative form, where the natural trans-

formation stream

stream :: Tree α→ Stream α

stream t = root t ≺ stream (chop t)

converts an infinite tree to a stream. In other words, enumerate

the rationals!

(a) As a first step, linearise den. You have to express chop den in

terms of den and possibly num. Show that chop den = num+

den−2∗xwherex is the unique solution ofx = Node 0 num x.

(b) Show that the unique solution of x = Node 0 num x equals

num mod den.

(c) Using the results of the two previous items, linearise num and

den: sfusc = stream num and sfusc’ = stream den.

(d) Turn sfusc⋆ sfusc’ into an iterative form.

10

(e) Polishing up: Use the formula

1 / (⌊n÷ d⌋ + 1− {n÷ d}) = d÷ (n+ d− 2∗ (nmod d))

where ⌊r⌋ denotes the integral part of r and {r} its fractional

part (r = ⌊r⌋ + {r}), to turn the result of the previous item

into the following amazingly short program for enumerating

the rationals.

rationals = iterate next 1

where next r = 1 / (⌊r⌋ + 1− {r})

Ralf Hinze (May 2009)

11

