
O’Reilly Media, Inc. 5/21/2009

 1

5

Process Design Patterns

Processes in Erlang systems can act as gateways to databases, handle protocol stacks, or

manage the logging of trace messages. Although these processes may handle different

requests, there will be similarities in how these requests are handled. We call these

similarities design patterns. In this chapter, we are going to cover the most common

patterns you will come across when working with Erlang processes.

The client/server model is commonly used for processes responsible for a resource such

as a list of rooms, and services which can be applied on these resources such as booking a
room or viewing its availability. Requests to this server will allow clients (usually

implemented as Erlang processes) to access these resources and services.

Another very common pattern deals with finite state machines, also referred to as FSMs.

Imagine a process handling events in an instant messaging (IM) session. This process, or

finite state machine as we should call it, will be in one of three states. It could be in an

offline state, where the session with the remote IM server is being established. It

could be in an online state, enabling the user to send and receive messages and status

updates. And finally, if the user wants to remain online but not receive any messages or

status updates, it could be in a busy state. State changes are triggered through process

messages we call events. An IM server informing the FSM that the user is logged on

successfully would cause a state transition from the offline state to the online state.

Events received by the FSM do not necessarily have to trigger state transitions. Receiving

an instant message or a status update would keep the FSM in an online state while a

logout event would cause it to go from an online or busy state to the offline state.

The last pattern we will cover is the event handler. Event handler processes will receive

messages of a specific type. These could be trace messages generated in your program or

stock quotes coming from an external feed. Upon receiving these events, you might want
to perform a set of actions such as triggering an SMS (Short Message Service message)

or sending an email if certain conditions are met, or simply logging the time, the quote,

and the price in a file.

Many Erlang processes will fall into one of these three categories. In this chapter, we will

look at examples of process design patterns, explaining how they can be used to program

O’Reilly Media, Inc. 5/21/2009

 2

client/servers, finite state machines, and event handlers. An experienced Erlang

programmer will recognize these patterns in the design phase of the project and use

libraries and templates which are part of the OTP framework. For the time being, we will

use Erlang without the OTP framework. We will introduce OTP behaviors in Chapter 12.

Client/Server Models

Erlang processes can be used to implement client/server solutions, where both clients and

servers are represented as Erlang processes. A server could be a FIFO queue to a printer,
a window manager, or a file server. The resources it handles could be a database, a

calendar, or a finite list of items such as rooms, books, or radio frequencies. Clients use

these resources by sending the servers requests to print a file, update a window, book a

room, or use a frequency. The server receives the request, handles it, and responds with

an acknowledgment and a return value if the request was successful, or with an error if

the request did not succeed (see Figure 5-1).

Figure 5-1. The client/server model

When implementing client/server behavior, clients and servers are represented as Erlang
processes. Interaction between them takes place through the sending and receiving of

messages. Message passing is often hidden in functional interfaces, so instead of calling

printerserver ! {print, File}

a client would call

printerserver:print(File)

This is a form of information hiding, where we do not make the client aware that the

server is a process, that it could be registered, and that it might reside on a remote

computer. Nor do we expose the message protocol being used between the client and the
server, keeping the interface between them safe and simple. All the client needs to do is

call a function and expect a return value.

Hiding this information behind a functional interface has to be done with care. The

message response times will differ if the process is busy or running on a remote machine.

Although this should in most cases not cause any issues, the client needs to be aware of it

Clients

Server

request

reply

O’Reilly Media, Inc. 5/21/2009

 3

and be able to cope with a delay in response time. You also need to factor in that things

can go wrong behind this function call. There might be a network glitch, the server

process might crash, or there might be so many requests that the server response times

become unacceptable.

Figure 5-2. Synchronous client/server requests

If a client using the service or resource handled by the server expects a reply to the

request, the call to the server has to be synchronous, as in figure 5-2. If the client does not

need a reply, the call to the server can be asynchronous. When you encapsulate
synchronous and asynchronous calls in a function call, asynchronous calls commonly

return the atom ok, indicating that the request was sent to the server. Synchronous calls

will return the value expected by the client. These return values usually follow the format

ok, {ok, Result}, or {error, Reason}.

A Client/Server Example

Enough with the theory! So that you understand what we are talking about, let’s walk

through a client/server example and test it in the shell. This server is responsible for

managing radio frequencies on behalf of its clients, the mobile phones connected to the

network. The phone requests a frequency whenever a call needs to be connected, and

releases it once the call has terminated (see Figure 5-3).

Figure 5-3. A frequency server

When a cell phone has to set up a connection to another subscriber, it calls the

frequency:allocate() client function. This call has the effect of generating a

synchronous message which is sent to the server. The server handles it and responds with

either a message containing an available frequency or an error if all frequencies are being

{request, Request}

{reply, Reply}

Client Server

Clients Server
Client Interface

{deallocate, Frequency}

ok

allocate

{ok, Frequency}

O’Reilly Media, Inc. 5/21/2009

 4

used. The result of the allocate/0 call will therefore be either {ok, Frequency}

or {error, no_frequencies}.

Through a functional interface, we hide the message-passing mechanism, the format of

these messages, and the fact that the frequency server is implemented as a registered

Erlang process. If we were to move the server to a remote host, we could do so without
having to change the client interface.

Figure 5-4. Frequency server message sequence diagram

When the client has completed its phone call and releases the connection, it needs to
deallocate the frequency so that other clients can reuse it. It does so by calling the client

function frequency:deallocate(Frequency). The call results in a message

being sent to the server. The server can then make the frequency available to other clients

and responds with the atom ok. The atom is sent back to the client and becomes the

return value of the deallocate/1 call. The message sequence diagram of this

example is shown in figure 5-4.

The code for the server is in the frequency module. Here is the first part:

-module(frequency).

-export([start/0, stop/0, allocate/0, deallocate/1]).

-export([init/0]).

%% These are the start functions used to create and

%% initialize the server.

start() ->

 register(frequency, spawn(frequency, init, [])).

init() ->

 Frequencies = {get_frequencies(), []},

 loop(Frequencies).

% Hard Coded

get_frequencies() -> [10,11,12,13,14,15].

The start function spawns a new process which starts executing the init function in

the frequency module. The spawn returns a pid which is passed as the second

argument to the register BIF. The first argument is the atom frequency, which is

the alias with which the process is registered. This follows the convention of registering a

process with the same name as the module in which it is defined.

Remember that when spawning a process, you have to export the

init/0 function as it is used by the spawn/3 BIF. We have put this

function in a separate export clause to distinguish it from the client

functions, which are supposed to be called from other modules. Calling

O’Reilly Media, Inc. 5/21/2009

 5

frequency:init() from anywhere in your code would be

considered very bad practice, and should not be done.

The newly spawned process starts executing in the init function. It creates a tuple

consisting of the available frequencies, retrieved through the get_frequencies/0

call, and a list of the allocated frequencies, initially given by the empty list as the server

has just been started. The tuple, which forms what we call the state or loop data, is bound

to the Frequencies variable and passed as an argument to the receive-evaluate

function, which in this example we’ve called loop/1.

In the init/0 function, we use the variable Frequencies for readability reasons, but

nothing is stopping us from creating the tuple directly in the loop/1 call, as in the call

loop({get_frequencies(), []}).

Here is how the client functions are implemented:

%% The client Functions

stop() -> call(stop).

allocate() -> call(allocate).

deallocate(Freq) -> call({deallocate, Freq}).

%% We hide all message passing and the message

%% protocol in a functional interface.

call(Message) ->

 frequency ! {request, self(), Message},

 receive

 {reply, Reply} -> Reply

 end.

Client and supervisor1 processes can interact with the frequency server using what we

refer to as client functions. These exported functions include start, stop, allocate,

and deallocate. They call the call/1 function, passing the message to be sent to

the server as an argument. This function will encapsulate the message protocol between

the server and its clients, sending a message of the format {request, Pid,

Message}. The atom request is a tag in the tuple, Pid is the process identifier of the

calling process (returned by calling the self() BIF in the calling process), and

Message is the argument originally passed to the call/1 function.

When the message has been sent to the process, the client is suspended in the receive

clause waiting for a response of the format {reply, Reply}, where the atom reply

is a tag and the variable Reply is the actual response. The server response is pattern-

matched and the contents of the variable Reply become the return value of the client

functions.

Pay special attention to how message passing and the message protocol have been

abstracted to a format independent of the action relating to the message itself; this is what

we referred to earlier as information hiding, allowing the details of the protocol and the

message structure to be modified without affecting any of the client code.

1 We will cover supervisors in the next chapter.

O’Reilly Media, Inc. 5/21/2009

 6

Now that we have covered the code to start and interact with the frequency server, let’s

take a look at its receive-evaluate loop:

%% The Main Loop

loop(Frequencies) ->

 receive

 {request, Pid, allocate} ->

 {NewFrequencies, Reply} = allocate(Frequencies, Pid),

 reply(Pid, Reply),

 loop(NewFrequencies);

 {request, Pid , {deallocate, Freq}} ->

 NewFrequencies = deallocate(Frequencies, Freq),

 reply(Pid, ok),

 loop(NewFrequencies);

 {request, Pid, stop} ->

 reply(Pid, ok)

 end.

reply(Pid, Reply) ->

 Pid ! {reply, Reply}.

The receive clause will accept three kinds of requests originating from the client

functions, namely allocate, deallocate, and stop. These requests follow the

same format defined in the call/1 function, that is, {request, Pid, Message}.

The Message is pattern-matched in the expression and used to determine which clause

is executed. This, in turn, determines the internal functions which are called. These

internal functions will return the new loop data, which in our example consists of the new

lists of available and allocated frequencies, and where needed, a reply to send back to the

client. The client pid, sent as part of the request, is used to identify the calling process and

is used in the reply/2 call.

Assume a client wants to initiate a call. To do so, it would request a frequency by calling

the frequency:allocate() function. This function sends a message of the format

{request, Pid, allocate} to the frequency server, pattern matching in the first

clause of the receive statement. This message will result in the server function

allocate(Frequencies, Pid) being called, where Frequencies is the loop

data containing a tuple of allocated and available frequencies. The allocate function

(defined shortly) will check whether there are any available frequencies:

• If so, it will return the updated loop data, where the newly allocated frequency has
been moved from the available list and stored together with the pid in the list of

allocated ones. The reply sent to the client is of the format {ok, Frequency}.

• If no frequencies are available, the loop data is returned unchanged and the

{error, no_frequency} message is returned as a reply.

The Reply is sent to the reply(Pid, Message) call, which formats it to the internal

client/server message format and sends it back to the client. The function then calls

loop/1 recursively, passing the new loop data as an argument.

Deallocation works in a similar way. The client function results in the message

{request, Pid, deallocate} being sent and matched in the second clause of the

receive statement. This makes a call to deallocate(Frequencies,

Frequency) and the deallocate function moves the Frequency from the

O’Reilly Media, Inc. 5/21/2009

 7

allocated list to the deallocated one, returning the updated loop data. The atom ok is sent

back to the client, and the loop/1 function is called recursively with the updated loop

data.

If the stop request is received, ok is returned to the calling process and the server

terminates, as there is no more code to execute. In the previous two clauses, loop/1 was

called in the final expression of the case clause, but not in this case.

We complete this system by implementing the allocation and deallocation functions:

%% The Internal Help Functions used to allocate and

%% deallocate frequencies.

allocate({[], Allocated}, _Pid) ->

 {{[], Allocated}, {error, no_frequency}};

allocate({[Freq|Free], Allocated}, Pid) ->

 {{Free, [{Freq, Pid}|Allocated]}, {ok, Freq}}.

deallocate({Free, Allocated}, Freq) ->

 NewAllocated=lists:keydelete(Freq, 1, Allocated),

 {[Freq|Free], NewAllocated}.

The allocate/2 and deallocate/2 functions are local to the frequency

module, and are what we refer to as internal help functions:

• If there are no available frequencies, allocate/2 will pattern-match in the first

clause, as the first element of the tuple containing the list of available frequencies is

empty. This clause returns the {error, no_frequency} tuple alongside the

unchanged loop data.

• If there is at least one available frequency, the second clause will match successfully.
The frequency is removed from the list of available ones, paired up with the client

pid, and moved to the list of allocated frequencies.

The updated frequency data is returned by the allocate function. Finally,

deallocate will remove the newly freed frequency from the list of allocated ones

using the lists:keydelete/3 library function and concatenate it to the list of

available frequencies.

This frequency allocator example has used all of the key sequential and concurrent

programming concepts we have covered so far. They include pattern matching, recursion,

library functions, process spawning, and message passing. Spend some time making sure

you understand them. You should test the example using the debugger and the process

manager, following the message passing protocols between the client and server and the

sequential aspects of the loop function. You can see an example of the frequency

allocator in action now:

1> c(frequency).

{ok,frequency}

2> frequency:start().

true

3> frequency:allocate().

{ok,10}

4> frequency:allocate().

{ok,11}

5> frequency:allocate().

{ok,12}

O’Reilly Media, Inc. 5/21/2009

 8

6> frequency:allocate().

{ok,13}

7> frequency:allocate().

{ok,14}

8> frequency:allocate().

{ok,15}

9> frequency:allocate().

{error,no_frequency}

10> frequency:deallocate(11).

ok

11> frequency:allocate().

{ok,11}

12> frequency:stop().

ok

A Process Pattern Example

Now let’s look at similarities between the client/server example we just described and the

process skeleton we introduced in Chapter 4. Picture an application, either a web browser

or a word processor, which handles many simultaneously open windows centrally

controlled by a window manager. As we aim to have a process for each truly concurrent
activity, spawning a process for every window is the way to go. These processes would

probably not be registered, as many windows of the same type could be running

concurrently.

After being spawned, each process would call the initialize function which draws

and displays the window and its contents. The return value of the initialize function

contains references to the widgets displayed in the window. These references are stored

in the state variable and are used whenever the window needs updating. The state

variable is passed as an argument to a tail-recursive function that implements the receive-

evaluate loop.

In this loop function, the process waits for events originating in or relating to the window

it is managing. It could be a user typing in a form or choosing a menu entry, or an

external process pushing data which needs to be displayed. Every event relating to this
window is translated to an Erlang message and sent to the process. The process, upon

receiving the message, calls the handle function, passing the message and state as

arguments. If the event were the result of a few keystrokes typed in a form, the handle

function might want to display them. If the user picked an entry in one of the menus, the

handle function would take appropriate actions in executing that menu choice. Or if the

event was caused by an external process pushing data, possibly an image from a webcam

or an alert message, the appropriate widget would be updated. The receipt of these events

in Erlang would be seen as a generic pattern in all processes. What would be considered

specific and change from process to process is how these events are handled.

Finally, what if the process receives a stop message? This message might have

originated from a user picking the Exit menu entry or clicking the Destroy button, or

from the window manager broadcasting a notification that the application is being shut

down. Regardless of the reason, a stop message is sent to the process. Upon receiving

it, the process calls a terminate function which destroys all of the widgets, ensuring

that they are no longer displayed. After the window has been shut down, the process

terminates because there is no more code to execute.

O’Reilly Media, Inc. 5/21/2009

 9

Look at the following process skeleton. Could you not fit all of the specific code into the

initialize/1, handle_msg/2, and terminate/1 functions?

-module(server).

-export([start/2, stop/1, call/2]).

-export([init/1]).

start(Name, Data) ->

 Pid = spawn(generic_handler, init,[Data])

 register(Name, Pid), ok.

stop(Name) ->

 Name ! {stop, self()},

 receive {reply, Reply} -> Reply end.

call(Name, Msg) ->

 Name ! {request, self(), Msg},

 receive {reply, Reply} -> Reply end.

reply(To, Msg) ->

 To ! {reply, Msg}.

init(Data) ->

 loop(initialize(Data)).

loop(State) ->

 receive

 {request, From, Msg} ->

 {Reply,NewState} = handle_msg(Msg, State),

 reply(From, Reply),

 loop(NewState);

 {stop, From} ->

 reply(From, terminate(State))

 end.

initialize(…) -> …

handle_msg(…,…) -> …

terminate(…) -> …

Using the generic code in the preceding skeleton, let’s go through the GUI example one

last time:

• The initialize function draws the window and displays it, returning a reference

to the widget which gets bound to the state variable.

• Every time an event arrives in the form of an Erlang message, the event is taken care

of in the handle_msg function. The call takes the message and the state as

arguments and returns an updated State variable. This variable is passed to the

recursive loop call, ensuring that the process is kept alive. Any reply is also sent

back to the process where the request originated.

• If the stop message is received, terminate is called, destroying the window and

all the widgets associated with it. The loop function is not called, allowing the

process to terminate normally.

O’Reilly Media, Inc. 5/21/2009

 10

Finite State Machines

Erlang processes can be used to implement finite state machines. A finite state machine,
or FSM for short, is a model which consists of a finite number of states and events. You

can think of an FSM as a model of the world which will contain abstractions from the

details of the real system. At any one time, the FSM is in a specific state. Depending on

the incoming event and the current state of the FSM, a set of actions and a transition to a

new state will occur (see Figure 5-5).

Figure 5-5. A finite state machine

In Erlang, each state is represented as a tail-recursive function and each event is

represented as an incoming message. When a message is received and matched in a

receive clause, a set of actions are executed. These actions are followed by a state

transition achieved by calling the function corresponding to the new state.

An FSM Example

As an example, think of modeling a fixed-line phone as a finite state machine (see Figure

5-6). The phone can be in the idle state, when it is plugged in and waiting either for an

incoming phone call or for a user to take it off the hook. If you receive an incoming call

from your aunt,2 the phone will start ringing. Once it has started ringing, the state will

change from idle to ringing and will wait for one of two events. You can pretend to

be asleep, hopefully resulting in your aunt giving up on you and putting the phone on her

end back on the hook. This will result in the FSM going back to the idle state (and you

going back to sleep).

If instead of ignoring it, you take your phone off the hook, it would stop ringing and the

FSM would move to the connected state, leaving you to talk to your heart’s content.

When you are done with the call and hang up, the state reverts to idle.

2 Or any other relative of your choice who tends to call you very early on a Saturday morning.

Event 2

State 1
State 2

Event 1

Event 3

O’Reilly Media, Inc. 5/21/2009

 11

Idle

Ringing Dial

Connected

on_hook

incoming

off_hook

off_hook

on_hook

other_on_hook

Other

States

Figure 5-6. Fixed-line phone finite state machine

If the phone is in the idle state and you take it off the hook, a dial tone is started. Once

the dial tone has started, the FSM changes to the dial state and you enter your aunt’s

phone number. Either you can hang up and your FSM goes back to the idle state, or

your aunt picks up and you go to the connected state.

State machines are very common in all sorts of processing applications. In telecom

systems, they are used not only to handle the state of equipment, as in the preceding

example, but also in complex protocol stacks. The fact that Erlang handles them

graciously is not a surprise. When prototyping with the early versions of Erlang between

1987 and 1991, it was the Plain Old Telephony System (POTS) finite state machines

described in this section that the development team used to test their ideas of what Erlang
should look like.

With a tail-recursive function for every state, actions implemented as function calls, and

events represented as messages, this is what the code for the idle state would look like:

idle() ->

 receive

 {Number, incoming} ->

 start_ringing(),

 ringing(Number);

 off_hook ->

 start_tone(),

 dial()

 end.

ringing(Number) ->

 receive

 {Number, other_on_hook} ->

 stop_ringing(),

O’Reilly Media, Inc. 5/21/2009

 12

 idle();

 {Number, off_hook} ->

 stop_ringing(),

 connected(Number)

 end.

start_ringing() -> …

start_tone() -> …

stop_ringing() -> …

We leave the coding of the functions for the other states as an exercise.

A Mutex Semaphone

Let’s look at another example of a finite state machine, this time implementing a mutex
semaphore. A semaphore is a process which serializes access to a particular resource,

guaranteeing mutual exclusion. Mutex semaphores might not be the first thing that comes

to mind when working with Erlang, as they are commonly used in languages with shared

memory. However, they can be used as a general mechanism for managing resources, not

just memory.

Assume that only one process at a time is allowed to use the file server, thus guaranteeing

that no two processes are simultaneously reading or writing to the same file. Before

making any calls to the file server, the process wanting to access the file calls the

mutex:wait() function, putting a lock on the server. When the process has finished

handling the files, it calls the function mutex:signal(), removing the lock (see

Figure 5-7).

Figure 5-7. The mutex semaphore state diagram

If a process called PidB tries to call mutex:wait() when the semaphore is busy with

PidA, PidB is suspended in its receive clause until PidA calls signal/0. The

semaphore becomes available, and the process whose wait message is first in the message

queue, PidB in our case, will be allowed to access the file server. The message sequence

diagram in Figure 5-8 demonstrates this.

Free
Busy

wait

signal

O’Reilly Media, Inc. 5/21/2009

 13

Figure 5-8. The mutex message sequence diagram

Look at the following code to get a feel for how to use tail-recursive functions to denote

the states, and messages to denote events. And before reading on, try to figure out what

the terminate function should do to clean up when the mutex is terminated.

-module(mutex).

-export([start/0, stop/0]).

-export([wait/0, signal/0]).

-export([init/0]).

start() ->

 register(mutex, spawn(?MODULE, init, [])).

stop() ->

 mutex ! stop.

wait() ->

 mutex ! {wait, self()},

 receive ok -> ok end.

signal() ->

 mutex ! {signal, self()}, ok.

init() ->

 free().

free() ->

 receive

 {wait, Pid} ->

 Pid ! ok,

 busy(Pid);

 stop ->

 terminate()

 end.

busy(Pid) ->

O’Reilly Media, Inc. 5/21/2009

 14

 receive

 {signal, Pid} ->

 free()

 end.

terminate() ->

 receive

 {wait, Pid} ->

 exit(Pid, kill),

 terminate()

 after

 0 -> ok

 end.

The stop/0 function sends a stop message which is handled only in the free state.

Prior to terminating the mutex process, all processes that are waiting for or holding the

semaphore are allowed to complete their tasks. However, any process that attempts to

wait for the semaphore after stop/0 is called will be killed unconditionally in the

terminate/0 function.

Event Managers and Handlers

Try to picture a process which receives trace events generated in your system. You might

want to do many things with these trace events, but you might not necessarily want to do

all of them at the same time. You probably want to log all the trace events to file. If you
are in front of the console, you might want to print them to standard I/O. You might be

interested in statistics to determine how often certain errors occur, or if the event requires

some action to be taken, you might want to send an SMS or SNMP3 trap.

At any one time, you will want to execute some, if not all of these actions, and toggle

between them. But if you walk away from your desk, you might want to turn the logging

to the console off while maintaining the gathering of statistics and logging to file.

An event manager does what we just described. It is a process which receives a specific

type of event and executes a set of actions determined by the type of event. These actions
can be added and removed dynamically throughout the lifetime of the process, and are

not necessarily defined or known when the code implementing the process is first written.

They are collected in a module we call the event handler.

Large systems usually have an event handler for every type of event. Event types

commonly include alarms, equipment state changes, errors, and trace events, just to

mention a few. When they are received, one or more actions are applied to each event.

The most common form of event manager found in almost all industrial-grade systems

handles alarms (see Figure 5-9). Alarms are raised when a problem occurs and are
cleared when it goes away. They might require automated or manual intervention, but

this is not always the case. An alarm would be raised if the data link between two devices

3 SNMP stands for Simple Network Management Protocol. It is a standard used for controlling and

monitoring systems over IP-based networks.

O’Reilly Media, Inc. 5/21/2009

 15

is lost and cleared if it recovers. Other examples include a cabinet door being opened, a

fan breaking, or a TCP/IP connection being lost.

The alarm handler will often log these alarms, collect statistics, and filter and forward

them to agents. Agents might receive the events and try to resolve the issues themselves.

If a communication link is down, for example, an agent would automatically try to
reconfigure the system to use the standby link, requesting human intervention only if the

standby link goes down as well.

Figure 5-9. An alarm manager implemented as an event handler

A Generic Event Manager Example

Here is an example of an event manager which allows you to add and remove handlers
during runtime. The code is completely generic and independent of the individual

handlers. Handlers can be implemented in separate modules and have to export a number

of functions, referred to as callback functions. These functions can be called by the event

manager. We will cover them in a minute. Let’s first look at how we’ve implemented the

event manager, starting with its client functions:

start(Name, HandlerList)

Will start a generic event manager, registering it with the alias Name.

HandlerList is a list of tuples of the form {Handler, Data}, where

Handler is the name of the handler callback module and Data is the argument

passed to the handler’s init callback function. HandlerList can be empty at

startup, as handlers can be subsequently added using the add_handler/2 call.

stop(Name)

Will terminate all the handlers and stop the event manager process. It will return a

list of items of the form {Handler, Data}, where Data is the return value of the

terminate callback function of the individual handlers.

add_handler(Name, Handler, Data)

Will add the handler defined in the callback module Handler, passing Data as an

argument to the handler’s init callback function.

Log

Agent

SNMP

Statistics

Alarm
System

Alarm Manager

O’Reilly Media, Inc. 5/21/2009

 16

delete_handler(Name, Handler)

Will remove the handler defined in the callback module Handler. The handler’s

terminate callback function will be called, and its return value will be the return

value of this call. This call returns the tuple {error, instance} if Handler

does not exist.

get_data(Name, Handler)

Will return the contents of the state variable of the Handler. This call returns the

tuple {error, instance} if Handler does not exist.

send_event(Name, Event)

Will forward the contents of Event to all the handlers.

Here is the code for the generic event manager module:

-module(event_manager).

-export([start/2, stop/1]).

-export([add_handler/3, delete_handler/2, get_data/2, send_event/2]).

-export([init/1]).

start(Name, HandlerList) ->

 register(Name, spawn(generic_handler, init, [HandlerList])), ok.

init(HandlerList) ->

 loop(initialize(HandlerList)).

initialize([]) -> [];

initialize([{Handler, InitData}|Rest]) ->

 [{Handler, Handler:init(InitData)}|initialize(Rest)].

Here is an explanation of what the code is doing:

• The start(Name, HandlerList) function spawns the event manager process

and registers it with the alias Name.

• The newly spawned process starts executing in the init/1 function with a

HandlerList tuple list of the format {Handler, Data} as an argument.

• We traverse the list in the initialize/1 function calling

Handler:init(Data) for every entry.

• The result of this call is stored in a list of the format {Handler, State}, where

State is the return value of the init function.

• This list is passed as an argument to the event manager’s loop/1 function.

When stopping the event manager process, we send a stop message it receives in the

loop/1 function. If you are looking for loop/1, you will find it with the generic code

at the end of this module. Receiving the stop message results in terminate/1

traversing the list of handlers and calling Handler:terminate(Data) for every

entry. The return value of these calls, a list of the format {Handler, Value}, is sent

back to the process which originally called stop/1 and becomes the return value of this

function.

stop(Name) ->

 Name ! {stop, self()},

O’Reilly Media, Inc. 5/21/2009

 17

 receive {reply, Reply} -> Reply end.

terminate([]) -> [];

terminate([{Handler, Data}|Rest]) ->

 [{Handler, Handler:terminate(Data)}|terminate(Rest)].

Now we’ll look at the client functions used to add, remove, and inspect the event

handlers, as well as forwarding them the events. Through the call/2 function, they

send the request to the event manager process which handles them in handle_msg/2.

Pay particular attention to the send_event/2 call, which traverses the list of handlers,

calling the callback function Handler:handle_event(Event, Data). The return

value of this call replaces the old Data and is used by the handler the next time one of its

callbacks is invoked.

add_handler(Name, Handler, InitData) ->

 call(Name, {add_handler, Handler, InitData}).

delete_handler(Name, Hander) ->

 call(Name, {delete_handler, Hander}).

get_data(Name, Hander) ->

 call(Name, {get_data, Hander}).

send_event(Name, Event) ->

 call(Name, {send_event, Event}).

handle_msg({add_handler, Hander, InitData}, LoopData) ->

 {ok, [{Hander, Hander:init(InitData)}|LoopData]};

handle_msg({delete_handler, Hander}, LoopData) ->

 case lists:keysearch(Hander, 1, LoopData) of

 false ->

 {{error, instance}, LoopData};

 {value, {Hander, Data}} ->

 Reply = {data, Hander:terminate(Data)},

 NewLoopData = lists:keydelete(Hander, 1, LoopData),

 {Reply, NewLoopData}

 end;

handle_msg({get_data, Hander}, LoopData) ->

 case lists:keysearch(Hander, 1, LoopData) of

 false -> {{error, instance}, LoopData};

 {value, {Hander, Data}} -> {{data, Data}, LoopData}

 end;

handle_msg({send_event, Event}, LoopData) ->

 {ok, event(Event, LoopData)}.

event(_Event, []) -> [];

event(Event, [{Hander, Data}|Rest]) ->

 [{Hander, Hander:handle_event(Event, Data)}|event(Event, Rest)].

The following code, together with the start and stop functions we already covered, is

a direct rip off from the process pattern example. By now, you should have spotted the

reoccurring theme: processes that handle very different tasks do so in similar ways,

following a pattern.

O’Reilly Media, Inc. 5/21/2009

 18

call(Name, Msg) ->

 Name ! {request, self(), Msg},

 receive {reply, Reply} -> Reply end.

reply(To, Msg) ->

 To ! {reply, Msg}.

loop(State) ->

 receive

 {request, From, Msg} ->

 {Reply, NewState} = handle_msg(Msg, State),

 reply(From, Reply),

 loop(NewState);

 {stop, From} ->

 reply(From, terminate(State))

 end.

Event Handlers

In our event manager implementation, our event handlers have to export the following

three callback functions:

init(InitData)

Initializes the handler and returns a value which is used the next time a callback

function belonging to the handler is invoked.

terminate(Data)

Allows the handler to clean up. If we have opened files or sockets in the init/1

callback, they would be closed here. The return value of terminate/1 is passed

back to the functions which originally instigated the removal of the handler. In our

event manager example, they are the delete_handler/2 and stop/1 calls.

handle_event(Event, Data)

Is called when an event is forwarded to the event manager through the

send_event/2 call. Its return value will be used the next time a callback function

for this handler is invoked.

Using these callback functions, let’s write two handlers—one which pretty-prints the
events to the shell, and one which logs the events to file.

The io_handler event handler filters out events of the format {raise_alarm, Id,

Type} and {clear_alarm, Id, Type}. All other events are ignored. In the

init/1 function, we set a counter which is incremented every time an event is handled.

The handle_event/2 callback uses this counter every time an alarm event is

received, displaying it together with information on the alarm.

-module(io_handler).

-export([init/1, terminate/1, handle_event/2]).

init(Count) -> Count.

terminate(Count) -> {count, Count}.

handle_event({raise_alarm, Id, Alarm}, Count) ->

O’Reilly Media, Inc. 5/21/2009

 19

 print(alarm, Id, Alarm, Count),

 Count+1;

handle_event({clear_alarm, Id, Alarm}, Count) ->

 print(clear, Id, Alarm, Count),

 Count + 1;

handle_event(Event, Count) ->

 Count.

print(Type, Id, Alarm, Count) ->

 Date = fmt(date()), Time = fmt(time()),

 io:format("#~w,~s,~s,~w,~w,~p~n",

 [Count, Date, Time, Type, Id, Alarm]).

fmt({AInt,BInt,CInt}) ->

 AStr = pad(integer_to_list(AInt)),

 BStr = pad(integer_to_list(BInt)),

 CStr = pad(integer_to_list(CInt)),

 [AStr,$:,BStr,$:,CStr].

pad([M1]) -> [$0,M1];

pad(Other) -> Other.

The second handler that we implement logs all the events of the format {EventType,

Id, Description} in a comma-separated file, ignoring everything else which is not a

tuple of size 3.

We open the file in the init/1 function, write to it in handle_event/2, and close it

in the terminate function. As this file will probably be read and manipulated by other

programs, we will provide more detail in the information we write to it and spend less

effort with its formatting. Instead of time() and date(), we use the now() BIF

which gives us a timestamp with a much higher level of accuracy. It returns a tuple

containing the mega seconds, seconds, and microseconds that have elapsed since January

1, 1970. When the log_handler is deleted from the event manager, the

terminate/2 call will close the file.

-module(log_handler).

-export([init/1, terminate/1, handle_event/2]).

init(File) ->

 {ok, Fd} = file:open(File, write),

 Fd.

terminate(Fd) -> file:close(Fd).

handle_event({Action, Id, Event}, Fd) ->

 {MegaSec, Sec, MicroSec} = now(),

 Args = io:format(Fd, "~w,~w,~w,~w,~w,~p~n",

 [MegaSec, Sec, MicroSec, Action, Id, Event]),

 Fd;

handle_event(_, Fd) ->

 Fd.

Try out the event manager and the two handlers we’ve implemented in the shell. We start

the event manager with the log_handler, after which we add and delete the

O’Reilly Media, Inc. 5/21/2009

 20

io_handler. In between, we generate a few alarms and test the other client functions

we’ve implemented in the event manager work.

1> event_manager:start(alarm, [{log_handler, "AlarmLog"}]).

ok

2> event_manager:send_event(alarm, {raise_alarm, 10, cabinet_open}).

ok

3> event_manager:add_handler(alarm, io_handler, 1).

ok

4> event_manager:send_event(alarm, {clear_alarm, 10, cabinet_open}).

#1,2009:03:16,08:33:14,clear,10,cabinet_open

ok

5> event_manager:send_event(alarm, {event, 156, link_up}).

ok

6> event_manager:get_data(alarm, io_handler).

{data,2}

7> event_manager:delete_handler(alarm, stats_handler).

{error,instance}

8> event_manager:stop(alarm).

[{io_handler,{count,2}},{log_handler,ok}]

Exercises

Exercise 5-1: A Database Server

Write a database server that stores a database in its loop data. You should register the

server and access its services through a functional interface. Exported functions in the

my_db.erl module should include:

my_db:start() ⇒ ok.

my_db:stop() ⇒ ok.

my_db:write(Key, Element) ⇒ ok.

my_db:delete(Key) ⇒ ok.

my_db:read(Key) ⇒ {ok, Element} | {error, instance}.

my_db:match(Element) ⇒ [Key1, ..., KeyN].

Hint: Use the db.erl module as a backend and use the server skeleton from the echo

server in Exercise 4-1.

Example:

1> my_db:start().

ok

2> my_db:write(foo, bar).

ok

3> my_db:read(baz).

{error, instance}

4> my_db:read(foo).

{ok, bar}

5> my_db:match(bar).

[foo]

O’Reilly Media, Inc. 5/21/2009

 21

Exercise 5-2: Changing the Frequency Server

Using the frequency server example in this chapter, change the code to ensure that only

the client who allocated a frequency is allowed to deallocate it. Make sure that

deallocating a frequency which has not been allocated does not make the server crash.

Hint: Use the self() BIF in the allocate and deallocate functions called by the

client.

Extend the frequency server so that it can be stopped only if no frequencies are allocated.

Finally, test your changes to see whether they still allow individual clients to allocate

more than one frequency at a time. This was previously possible by calling

allocate_frequency/0 more than once. Limit the number of frequencies a client

can allocate to three.

Exercise 5-3: Swapping Handlers

What happens if you want to close and open a new file in the log_handler? You

would have to call event_manager:delete_handler/2 immediately followed by

event_manager:add_handler/2. The risk with this is that in between these two

calls, you might miss an event. Therefore, implement the following function,

event_manager:swap_handlers(Name, OldHandler, NewHandler)

which swaps the handlers atomically, ensuring that no events are lost. To ensure that the

state of the handlers is maintained, pass the return value of

OldHandler:terminate/1 to the NewHandler:init/1 call.

Exercise 5-4: Event Statistics

Write a stats_handler module which takes the first and second elements of the

event tuple {Type, Id, Description} in our example and keep a count of how

many times the combination of {Type, Description} occurs. Users should be able

to retrieve these statistics by using the client function

event_manager:get_data/2.

Exercise 5-5: Phone FSM

Complete the coding of the phone FSM example, and then instrument it with logging

using an event handler process. This should record enough information to enable billing

for the use of the phone.

O’Reilly Media, Inc. 5/21/2009

 1

12

OTP Behaviors

In previous chapters, we introduced patterns that recur when you program using the

Erlang concurrency model. We discussed functionality common to concurrent systems,

and you saw that processes will handle very different tasks in a similar way. We also

emphasized special cases and potential problems that have to be handled when dealing

with concurrency.

For example, picture a project with 50 developers spread across several geographic

locations. If the project is not properly coordinated, how many different client/server
implementations might the project end up with? Even more dangerous, how many of

these implementations will handle special borderline cases and concurrency-related errors

correctly, if at all? Without a code review, can you be sure there is a uniform way across

the system to handle server crashes that occur after clients have sent a request to the

server? Or guarantee that the response from a request is indeed the response, and not just

any message that conforms to the internal message protocol?

OTP behaviors address all of these issues by providing library modules that implement

the most common concurrent design patterns. Behind the scenes, without the programmer
having to be aware of it, the library modules ensure that errors and special cases are

handled in a consistent way. As a result, OTP behaviors provide a set of standardized

building blocks used in designing and building industrial-grade systems. The subject of

OTP behaviors and their related middleware is vast. In this chapter, we provide the

overview you need to get started.

Introduction to OTP Behaviors

OTP behaviors are a formalization of process design patterns. They are implemented in

library modules that are provided with the standard Erlang distribution. These library

modules do all of the generic process work and error handling. The specific code, written

by the programmer, is placed in a separate module and called through a set of predefined

callback functions.

O’Reilly Media, Inc. 5/21/2009

 2

OTP behaviors include worker processes, which do the actual processing, and

supervisors, whose task is to monitor workers and other supervisors. Worker behaviors,

often denoted in diagrams as circles, include servers, event handlers, and finite state

machines. Supervisors, denoted in illustrations as squares, monitor their children, both

workers and other supervisors, creating what is called a supervision tree .(see Figure 12-
1)

Supervision trees are packaged into a behavior called an application. OTP applications

not only are the building blocks of Erlang systems, but also are a way to package reusable

components. Industrial-grade systems consist of a set of loosely coupled, possibly

distributed, applications. These applications either are part of the standard Erlang

distribution, or are specific applications developed by you, the programmer.

Do not confuse OTP applications with the more general concept of an application, which
usually refers to a more complete system that solves a high-level task. Examples of OTP

applications include the Mnesia database, which we cover in Chapter 13; an SNMP

agent; or the mobile subscriber database introduced in Chapter 10, which we will convert

to an application using behaviors later in this chapter. An OTP application as a reusable

component that packages library modules together with supervisor and worker processes.

From now on, when we refer to an application, we will mean an OTP application.

Figure 12-1. Supervision tree in an application

The behavior module contains all of the generic code. Although it is possible to
implement your own behavior module, doing so is rare because the behavior modules that

come as part of the Erlang/OTP distribution will cater for most of the design patterns you

would use in your code. The generic functionality provided in a behavior module

includes operations such as the following:

• Spawning and possibly registering the process

• Sending and receiving client messages as synchronous or asynchronous calls,

including defining the internal message protocol

• Storing the loop data and managing the process loop

• Stopping the process

Although the behavior module is provided, the programmer has to develop the callback
module (see Figure 12-2). We covered the concept of callback modules in Chapter 5. A

callback module contains all of the specific code required to deliver the desired

Supervisor

Workers

Workers

Application

O’Reilly Media, Inc. 5/21/2009

 3

functionality. The specific code is invoked through a callback interface that is

standardized for each behavior.

The loop data is a variable that will contain the data the behavior needs to store in

between calls. After the call, an updated variant of the loop data is returned. This updated

loop data, often referred to as the new loop data, is passed as an argument in the next call.
Loop data is also commonly referred to as behavior state.

The functionality to be included in the callback module to deliver the specific behavior

required includes the following:

• Initializing the process loop data and, if the process is registered, the process name

• Handling the specific client requests and, if synchronous, the replies sent back to the
client

• Handling and updating the process loop data in between the process requests

• Cleaning up the process loop data upon termination

Figure 12-2. Splitting the code into generic and specific modules

There are many advantages to splitting the code into generic behavior libraries and
specific callback modules:

• Because many of the special cases and errors that might occur are already handled in

the solid, well-tested library, you can expect fewer bugs in your product.

• For this reason, and also because so much of the code is already written for you, you

can expect to have a shorter time to market.

• It forces the programmer to write code in a way that avoids errors typically found in

concurrent applications.

• Finally, your whole team will come to share a common programming style. When

reading someone else’s code while armed with a basic comprehension of the existing
behaviors, no effort is required to understand the client/server protocol, looking for

where and how processes are started or terminated or how the loop data is handled.

All of it is managed by the generic behavior library. Instead of having to focus on

how everything is done, you can focus on what is being done specifically in this case,

as coded in the callback module.

In the sections that follow, we will look at some of the most important behaviors—
including generic servers and supervisors—and how to package them together into

applications.

 Callback

Module

Generic Behavior

Module

Process

O’Reilly Media, Inc. 5/21/2009

 4

Generic Servers

Generic servers that implement client/server behaviors are defined in the gen_server

behavior that comes as part of the standard library application. In this chapter, you will

use the mobile customer database example from Chapter 10 to understand how the

callback principle works. If you do not remember the example, take a quick look at it

before proceeding.

You will rewrite the usr.erl module, migrating it from an Erlang process to a

gen_server behavior. In doing so, you will not touch the usr_db module, keeping

the backend database as it is. When working your way through the example, if you are

interested in the details, have the manual pages for the gen_server module at hand.

Starting Your Server

With the gen_server behavior, instead of using the spawn and spawn_link BIFs,

you will use the gen_server:start/4 and gen_server:start_link/4

functions.

The main difference between spawn and start is the synchronous nature of the call.

Using start instead of spawn makes starting the worker process more deterministic

and prevents unforeseen race conditions, as the call will not return the pid of the worker

until it has been initialized. You call the functions as follows (we show two variants for

each of the two functions):

gen_server:start_link(ServerName, CallBackModule, Arguments, Options)

gen_server:start(ServerName, CallBackModule, Arguments, Options)

gen_server:start_link(CallBackModule, Arguments, Options)

gen_server:start(CallBackModule, Arguments, Options)

In the preceding calls:

ServerName

Is a tuple of the format {local, Name} or {global, Name}, denoting a local or

global Name for the process if it is to be registered. If you do not want to register the

process and instead reference it using its pid, you omit the argument and use the

start_link/3 or start/3 call instead.

CallbackModule

Is the name of the module in which the specific callback functions are placed.

Arguments

Is a valid Erlang term that is passed to the init/1 callback function. You can

choose what type of term to pass: if you have many arguments to pass, use a list or a

tuple; if you have none, pass an atom or an empty list, ignoring it in the callback

function.

Options

Is a list that allows you to set the memory management flags fullsweep_after

and heapsize, as well as tracing and debugging flags. Most behavior

implementations just pass the empty list.

O’Reilly Media, Inc. 5/21/2009

 5

The start functions will spawn a new process that calls the init(Arguments)

callback function in the CallbackModule, with the Arguments supplied. The init

function must initialize the LoopData of the server and has to return a tuple of the

format {ok, LoopData}. LoopData contains the first instance of the loop data that

will be passed between the callback functions. If you want to store some of the arguments

you passed to the init function, you would do so in the LoopData variable.

The obvious difference between the start_link and start functions is that

start_link links to its parent and start doesn’t. This needs a special mention,

however, as it is an OTP behavior’s responsibility to link itself to the supervisor. The

start functions are often used when testing behaviors from the shell, as a typing error

causing the shell process to crash would not affect the behavior. All of the start and

start_link variants return {ok, Pid}.

Before going ahead with the example, let’s quickly review what we have discussed so far.

You start a gen_server behavior using the gen_server:start_link call. This

results in a new process that calls the init/1 callback function. This function initializes

the LoopData and returns the tuple {ok, LoopData}.

In our example, we call start_link/4, registering the process with the same name as

the callback module, calling the MODULE macro. We pass one argument, the filename of

the Dets table. The options list is kept empty.

start_link(FileName) ->

 gen_server:start_link({local, ?MODULE}, ?MODULE, FileName, []).

init(FileName) ->

 usr_db:create_tables(FileName),

 usr_db:restore_backup(),

 {ok, null}.

Although the supervisor process might call the start_link/4 function, the init/1

callback is called by a different process: the one that was just spawned. We don’t really

need the LoopData variable in our server, as the ETS and Dets tables are named.

Nonetheless, a value still has to be included when returning the {ok, LoopData}

structure, so we’ll get around it by returning the atom null. Had the ETS and Dets

tables not been named_tables, we would have passed their references here.

Do only what is necessary and minimize the operations in your init function, as the call

to init is a synchronous call which prevents all of the other serialized processes from

starting until it terminates.

Passing Messages

If you want to send a message to your server, you use the following calls:

gen_server:cast(Name, Message)

gen_server:call(Name, Message)

In the preceding calls:

Name

Is either the local registered name of the server or the tuple {global, Name}. It

could also be the process identifier of the server.

O’Reilly Media, Inc. 5/21/2009

 6

Message

Is a valid Erlang term containing a message passed on to the server.

For asynchronous message requests, you use cast/2. If you’re using a pid, the call will

immediately return the atom ok, regardless of whether the gen_server to which you

are sending the message is alive. These semantics are no different from the standard

Name ! Message construct, where if the registered process Name does not exist, the

calling process terminates.

Upon receiving the message, gen_server will call the callback function

handle_cast(Message, LoopData) in the callback module. Message is the

argument passed to the cast/2 function, and LoopData is the argument originally

returned by the init/1 callback function. The handle_cast/1 callback function

handles the specifics of the message, and upon finishing, it has to return the tuple

{noreply, NewLoopData}. In future calls to the server, the NewLoopData value

most recently returned will be passed as an argument when a message is sent to the

server.

If you want to send a synchronous message to the server, you use the call/2 function.

Upon receiving this message, the process uses the handle_call(Message, From,

LoopData) function in the callback module. It contains specific code for the particular

server, and having completed, it returns the tuple {reply, Reply, NewLoopData}.

Only now does the call/3 function synchronously return the value Reply. If the

process you are sending a message to does not exist, regardless of whether it is registered,

the process invoking the call function terminates.

Let’s start by taking two functions from our service API; we will provide the whole

program later. They are called by the client process and result in a synchronous message

being sent to the server process registered with the same name as the callback module.

Note how we are validating the data on the client side. If the client sends incorrect

information, it terminates.

set_status(CustId, Status) when Status==enabled; Status==disabled->

 gen_server:call(?MODULE, {set_status, CustId, Status}).

delete_disabled() ->

 gen_server:call(?MODULE, delete_disabled).

Upon receiving the messages, the gen_server process calls the handle_call/3

callback function dealing with the messages in the same order in which they were sent.

handle_call({set_status, CustId, Status}, _From, LoopData) ->

 Reply = case usr_db:lookup_id(CustId) of

 {ok, Usr} ->

 usr_db:update_usr(Usr#usr{status=Status});

 {error, instance} ->

 {error, instance}

 end,

 {reply, Reply, LoopData};

handle_call(delete_disabled, _From, LoopData) ->

 {reply, usr_db:delete_disabled(), LoopData}.

Note the return value of the callback function. The tuple contains the control atom

reply, telling the gen_server generic code that the second element of the tuple is the

O’Reilly Media, Inc. 5/21/2009

 7

Reply to be sent back to the client. The third element of the tuple is the new

LoopData, which, in a new iteration of the server, is passed as the third argument to the

handle_call/3 function; in both cases here it is unchanged. The argument _From is

a tuple containing a unique message reference and the client process identifier. The tuple

as a whole is used in library functions that we will not be discussing in this chapter. In the

majority of cases, you will not need it.

The gen_server library module has a number of mechanisms and safeguards built in

that function behind the scenes. If your client sends a synchronous message to your

server and you do not get a response within five seconds, the process executing the

call/2 function is terminated. You can override this by using the following code,

gen_server:call(Name, Message, Timeout)

where Timeout is a value in milliseconds or the atom infinity. The timeout

mechanism was originally put in place for deadlock prevention purposes, ensuring that

servers that accidentally call each other are terminated after the default timeout. The

crash report would be logged, and hopefully would result in a patch. Most applications

will function appropriately with a timeout of five seconds, but under very heavy loads

you might have to fine-tune the value and possibly even use infinity; this choice is

very application-dependent. All of the critical code in Erlang/OTP uses infinity.

Other safeguards when using the gen_server:call/2 function include the case of

sending a message to a non-existing server or a server that crashes before sending its

reply. In both cases, the calling process will terminate. In raw Erlang, sending a message

that is never pattern-matched in a receive clause is a bug which can cause a memory

leak.

What do you think happens if you do a call or a cast to your server, but do not handle the

message in the handle_call/3 and handle_cast/2 calls, respectively? In OTP,

when a call or a cast is called, the message will always be extracted from the process

mailbox and the respective callback functions are invoked. If none of the callback

functions pattern-match the message passed as the first argument, the process will crash

with a function clause error. As a result, such issues will be caught in the early stages of

the testing phase and dealt with accordingly.

Stopping the Server

How do you stop the server? In your handle_call/3 and handle_cast/2

callback functions, instead of returning {reply, Reply, NewLoopData} or

{noreply, NewLoopData}, you can return {stop, Reason, Reply,

NewLoopData} or {stop, Reason, NewLoopData}, respectively. Something has

to trigger this return value, often a stop message sent to the server. Upon receiving the

stop tuple containing the Reason and LoopData, the generic code executes the

terminate(Reason, LoopData) callback.

The terminate function is the natural place to insert the code needed to clean up the

LoopData of the server and any other persistent data used by the system. In this

example, it would mean closing the ETS and Dets tables. The stop call does not have to

occur within a synchronous call, so let’s use cast when implementing it:

stop() ->

 gen_server:cast(?MODULE, stop).

O’Reilly Media, Inc. 5/21/2009

 8

handle_cast(stop, LoopData) ->

 {stop, normal, LoopData}.

terminate(_Reason, _LoopData) ->

 usr_db:close_tables().

Remember that stop/0 will be called by the client process, while the

handle_cast/2 and handle_call/2 are called by the behaviour process. In the

handle_cast/2 callback, we return the reason normal in the stop construct. Any

reason other than normal will result in an error report being generated.

With thousands of generic servers potentially being spawned and terminated every

second, generating error reports for every one of them is not the way to go. You should

return a non-normal value only if something that should not have happened occurs and

you have no way to recover. A socket being closed or a corrupt message from an external

port is not a reason to generate a non-normal termination. On the other hand, corrupt

internal data or a missing configuration file is.

If your server crashes because of a runtime error, terminate/2 will be called. But if

your behavior receives an EXIT signal from its parent, terminate will be called only

if you are trapping exits. Watch out for this special case, as we’ve been caught by it many

times, especially when starting the behavior from the shell using start_link.

Use of the behavior callbacks as library functions and invoking them
from other parts of your program is an extremely bad practice. For

example, you should never call usr_db:init(FileName) from

another module to create and populate your database. Calls to behavior
callback functions should originate only from the behavior library

modules as a result of an event occurring in the system, and never

directly by the user.

The Example in Full

Here is the usr.erl module from Chapter 10, rewritten as a gen_server behavior:

%%% File : usr.erl

%%% Description : API and gen_server code for cellphone user db

-export([start_link/0, start_link/1, stop/0]).

-export([init/1, terminate/2, handle_call/3, handle_cast/2]).

-export([add_usr/3, delete_usr/1, set_service/3, set_status/2,

 delete_disabled/0, lookup_id/1]).

-export([lookup_msisdn/1, service_flag/2]).

-behavior(gen_server).

-include("usr.hrl").

%% Exported Client Functions

%% Operation & Maintenance API

start_link() ->

 start_link("usrDb").

start_link(FileName) ->

O’Reilly Media, Inc. 5/21/2009

 9

 gen_server:start_link({local, ?MODULE}, ?MODULE, FileName, []).

stop() ->

 gen_server:cast(?MODULE, stop).

%% Customer Services API

add_usr(PhoneNum, CustId, Plan) when Plan==prepay; Plan==postpay ->

 gen_server:call(?MODULE, {add_usr, PhoneNum, CustId, Plan}).

delete_usr(CustId) ->

 gen_server:call(?MODULE, {delete_usr, CustId}).

set_service(CustId, Service, Flag) when Flag==true; Flag==false ->

 gen_server:call(?MODULE, {set_service, CustId, Service, Flag}).

set_status(CustId, Status) when Status==enabled; Status==disabled->

 gen_server:call(?MODULE, {set_status, CustId, Status}).

delete_disabled() ->

 gen_server:call(?MODULE, delete_disabled).

lookup_id(CustId) ->

 usr_db:lookup_id(CustId).

%% Service API

lookup_msisdn(PhoneNo) ->

 usr_db:lookup_msisdn(PhoneNo).

service_flag(PhoneNo, Service) ->

 case usr_db:lookup_msisdn(PhoneNo) of

 {ok,#usr{services=Services, status=enabled}} ->

 lists:member(Service, Services);

 {ok, #usr{status=disabled}} ->

 {error, disabled};

 {error, Reason} ->

 {error, Reason}

 end.

%% Callback Functions

init(FileName) ->

 usr_db:create_tables(FileName),

 usr_db:restore_backup(),

 {ok, null}.

terminate(_Reason, _LoopData) ->

 usr_db:close_tables().

handle_cast(stop, LoopData) ->

 {stop, normal, LoopData}.

handle_call({add_usr, PhoneNo, CustId, Plan}, _From, LoopData) ->

 Reply = usr_db:add_usr(#usr{msisdn=PhoneNo,

 id=CustId,

 plan=Plan}),

O’Reilly Media, Inc. 5/21/2009

 10

 {reply, Reply, LoopData};

handle_call({delete_usr, CustId}, _From, LoopData) ->

 Reply = usr_db:delete_usr(CustId),

 {reply, Reply, LoopData};

handle_call({set_service, CustId, Service, Flag}, _From, LoopData) ->

 Reply = case usr_db:lookup_id(CustId) of

 {ok, Usr} ->

 Services = lists:delete(Service, Usr#usr.services),

 NewServices = case Flag of

 true -> [Service|Services];

 false -> Services

 end,

 usr_db:update_usr(Usr#usr{services=NewServices});

 {error, instance} ->

 {error, instance}

 end,

 {reply, Reply, LoopData};

handle_call({set_status, CustId, Status}, _From, LoopData) ->

 Reply = case usr_db:lookup_id(CustId) of

 {ok, Usr} ->

 usr_db:update_usr(Usr#usr{status=Status});

 {error, instance} ->

 {error, instance}

 end,

 {reply, Reply, LoopData};

handle_call(delete_disabled, _From, LoopData) ->

 {reply, usr_db:delete_disabled(), LoopData}.

Running gen_server

When testing the gen_server instance in the shell, you get exactly the same behavior

as when you used the server process that you coded yourself. However, the code is more

solid, as deadlocks, server crashes, timeouts, and other errors related to concurrent
programming are handled behind the scenes.

1> c(usr).

/Users/Francesco/otp/usr.erl:11: Warning: undefined callback function code_change/3

(behaviour 'gen_server')

/Users/Francesco/otp/usr.erl:11: Warning: undefined callback function handle_info/2

(behaviour 'gen_server')

{ok,usr_db}

2> c(usr_db).

{ok,usr_db}

3> rr("usr.hrl").

[usr]

4> usr:start_link().

{ok,<0.86.0>}

5> usr:add_usr(700000000, 0, prepay).

ok

6> usr:set_service(0, data, true).

ok

7> usr:lookup_id(0).

{ok,#usr{msisdn = 700000000,id = 0,status = enabled,

O’Reilly Media, Inc. 5/21/2009

 11

 plan = prepay,

 services = [data]}}

8> usr:set_status(0, disabled).

ok

9> usr:service_flag(700000000,lbs).

{error,disabled}

10> usr:stop().

ok

Did you notice the –behavior(gen_server) directive in the module? This tells the

compiler that your module is a gen_server callback module, and as a result, it has to

expect a number of callback functions. If all callback functions are not implemented, you

will get the warnings you noticed as a result of the compile operation in the first

command line. Don’t write your code to avoid these warnings. If your server has no

asynchronous calls, you will obviously not need a handle_cast/2. Ignore the

warnings.

British or Canadian readers: don’t despair or shake your heads! You are

welcome to use the English (U.K.) spelling in your directive: -

behaviour(gen_server). The compiler is bilingual and can

handle both U.S. and U.K. English.

What happens if you send a message to the server using raw Erlang message passing of

the form Pid!Msg? It should be possible, as the gen_server is an Erlang process

capable of sending and receiving messages like any other process. Don’t be shy; try it:

11> {ok, Pid} = usr:start_link().

{ok,<0.119.0>}

12> Pid ! hello.

hello

=ERROR REPORT==== 24-Jan-2009::18:08:07 ===

** Generic server usr terminating

** Last message in was hello

** When Server LoopData == null

** Reason for termination ==

** {'function not exported',[{usr,handle_info,[hello,null]},

 {gen_server,handle_msg,5},

 {proc_lib,init_p,5}]}

** exception exit: undef
 in function usr:handle_info/2

 called as usr:handle_info(hello,null)

 in call from gen_server:handle_msg/5

 in call from proc_lib:init_p/5

Oops! Something did not go according to plan. Look at the error and try to figure out

what happened. Use of Pid!Msg does not comply with the internal OTP message

protocol. Upon receiving a message that is not compliant, the gen_server process tries

to call the function usr:handle_info(hello, null), where hello is the

message and null is the loop data.

O’Reilly Media, Inc. 5/21/2009

 12

The callback function handle_info/21 is called whenever the process receives a

message it doesn’t recognize. These could include “node down” messages from nodes

you are monitoring, exit signals from processes you are linked to, or simply messages

sent using the …!… construct. If you are expecting such messages but are not interested in

them, add the following definition to your callback module, and don’t forget to export it:

handle_info(_Msg, LoopData) ->

 {noreply, LoopData}.

If, on the other hand, you do want to do something with the messages, you should

pattern-match them in the first argument of the call. If your server is not expecting non-

OTP-compliant messages, don’t add the handle_info/2 call, which ignores incoming

messages, “just in case.” Doing so is considered defensive programming, which will

probably make any fault you are hiding hard to detect.

One of the downsides of OTP is the layering that the various behavior

modules require. This will affect performance. In the attempt to save a

few microseconds from their calls, developers have been known to use

the Pid ! Msg construct instead of a gen_server cast, handling

their messages in the handle_info/2 callback.

Don’t do this! You will make your code impossible to support and

maintain, as well as losing many of the advantages of using OTP in the

first place. If you are obsessed with saving microseconds, try to hold on

and optimize only when you know your program is not fast enough.

We discuss optimizations in Chapter 20 and will cover there what

really affects the performance of your code.

Before we look at the next behavior, here is a summary of the exported gen_server

API, the resulting callback functions, and their expected return values:

Setup

The following calls,

start(Name, Mod, Arguments, Opts)

start_link(Name, Mod, Arguments, Opts),

where Name is an optional argument, spawn a new process. The process will result

in the callback function init(Arguments) being called, which should return one

of the values {ok, LoopData} or {stop, Reason}. If init/1 returns

{stop, Reason} the terminate/2 “cleanup” function will not be called.

Synchronous communication

Use call(Name, Msg) to send a synchronous message to your server. It will

result in the callback function handle_call(Msg, From, LoopData) being

called by the server process. The expected return values include the following:

{reply, Reply, NewLoopData}

{stop, Reason, Reply, NewLoopData}.

1 Did you notice it in the compiler warning in the example?

O’Reilly Media, Inc. 5/21/2009

 13

Asynchronous communication

If you want to send an asynchronous message, use cast(Name, Msg). It will be

handled in the handle_cast(Msg, LoopData) callback function, returning

either {noreply, NewLoopData} or {stop, Reason, NewLoopData}.

Non-OTP-compliant messages

Upon receiving non-OTP-compliant messages, gen_server will execute the

handle_info(Msg, LoopData) callback function. The function should return

either {noreply, NewLoopData} or {stop, Reason, NewLoopData}.

Termination

Upon receiving a stop construct from one of the callback functions (except for

init), or upon abnormal process termination when trapping exits, the

terminate(Reason, LoopData) callback is invoked. In terminate/2, you

would typically undo things you did in init/1. Its return value is ignored.

Supervisors

The supervisor behavior’s task is to monitor its children and, based on some

preconfigured rules, take action when they terminate. The children that make up the
supervision tree include both supervisors and worker processes. Worker processes are

OTP behaviors including gen_server, gen_fsm (supporting finite state machine

behavior), and gen_event (which provides event-handling functionality).

Worker processes have to link themselves to the supervisor behavior and handle specific

system messages that are not exposed to the programmer. This is different from the way

in which one process links to another in raw Erlang, and we cannot mix the two

mechanisms. For this reason, it is not possible to add Erlang processes to the supervision

tree in the form you know them. So for the remainder of this section, we will stick to
describing supervision within the OTP framework.

You start a supervisor using the start or start_link function:

supervisor:start_link(ServerName, CallBackModule, Arguments)

supervisor:start(ServerName, CallBackModule, Arguments)

supervisor:start_link(CallBackModule, Arguments)

supervisor:start(CallBackModule, Arguments)

In the preceding calls:

ServerName

Is the name to be registered for the supervisor, and is a tuple of the format {local,

Name} or {global, Name}. If you do not want to register the supervisor, you use

the functions of arity two.

CallbackModule

Is the name of the module in which the init/1 callback function is placed.

O’Reilly Media, Inc. 5/21/2009

 14

Arguments

Is a valid Erlang term that is passed to the init/1 callback function when it is

called.

Note that the supervisor, unlike the gen_server, does not take any options. The

start and start_link functions will spawn a new process that calls the init/1

callback function. Upon initializing the supervisor, the init function has to return a

tuple of the following format:

{ok, {SupervisorSpecification, ChildSpecificationList}}

The supervisor specification is a tuple containing information on how to handle process

crashes and restarts. The child specification list specifies which children the supervisor

has to start and monitor, together with information on how to terminate and restart them.

Supervisor Specifications

The supervisor specification is a tuple consisting of three elements describing how the

supervisor should react when a child terminates:

{RestartStrategy, AllowedRestarts, MaxSeconds}

The restart strategy determines how other children are affected if one of their siblings

terminates. It can be one of the following:

one_for_one

Will restart the child that has terminated, without affecting any of the other children.

You should pick this strategy if all of the processes at this level of the supervision

tree are not dependent on each other.

one_for_all

Will terminate all of the children and restart them. You should use this if there is a

strong dependency among all of the children regardless of the order in which they

were started.

rest_for_one

Will terminate all of the children that were started after the child that crashed, and

will restart them. This strategy assumes that processes are started in order of

dependency, where spawned processes are dependent only on their already started
siblings.

What will happen if your process gets into a cyclic restart? It crashes and is restarted,
only to come across the same corrupted data, and as a result, it crashes again. This can’t

go on forever! This is where AllowedRestarts comes in, by specifying the

maximum number of abnormal terminations the supervisor is allowed to handle in

MaxSeconds seconds. If more abnormal terminations occur than are allowed, it is

assumed that the supervisor has not been able to resolve the problem, and terminates. The

supervisor’s supervisor receives the exit signal and, based on its configuration, decides
how to proceed.

Finding reasonable values for AllowedRestarts and MaxSeconds is not easy, as

they will be application-dependent. In production, we’ve used anything from one restart

per second to one per hour. Your choice will have to depend on what your child

O’Reilly Media, Inc. 5/21/2009

 15

processes do, how many of them you expect the supervisor to monitor, and how you’ve

set up your supervision strategy.

Child Specifications

The second argument in the structure returned by the init/1 function is a list of child

specifications. Child specifications provide the supervisor with the properties of each of

its children, including instructions on how to start it. Each child specification is of the

following form:

{Id, {Module, Function, Arguments}, Restart, Shutdown, Type, ModuleList}

In the preceding code:

Id

Is a unique identifier for a particular child within a supervisor. As a child process can

crash and be restarted, its process identifier might change. The identifier is used
instead.

The supervisor uses the tuple {Module, Function, Arguments} to start the

child process. The supervisor has to eventually call the start_link function for

the particular OTP behavior, and return {ok, Pid}.

Restart

Is one of the atoms transient, temporary, or permanent. Transient

processes are never restarted. Temporary processes are restarted only if they

terminate abnormally, and permanent processes are always restarted, regardless of

whether the termination was normal or non-normal.

Shutdown

Specifies how many milliseconds a behavior trapping exits is allowed to execute in

its terminate callback function after receiving the shutdown signal from its

supervisor, either because the supervisor has reached its maximum number of

allowed child restarts or because of a rest_for_one or one_for_all restart

strategy.

If the child process has not terminated by this time, the supervisor will kill it

unconditionally. Shutdown will also take the atom infinity, a value which

should always be chosen if the process is a supervisor, or the atom brutal_kill,

if the process is to be killed unconditionally.

Type

Specifies whether the child process is a worker or a supervisor.

ModuleList

Is a list of the modules that implement the process. The release handler uses it to
determine which processes it should suspend during a software upgrade. As a rule of

thumb, always include the behavior callback module.

In some cases, child specifications are created dynamically from a config file. In most

cases, however, they are statically coded in the supervisor callback module. The init/1

function is the only callback function that needs to be exported.

O’Reilly Media, Inc. 5/21/2009

 16

It can be easy to insert syntactical and semantic errors in child specification lists, as they

tend to get fairly complex. The help function check_childspecs/1 in the supervisor

module takes a list of child specifications and returns ok or the tuple {error,

Reason}. An example of a child specification for the mobile subscriber database will

follow in the next section. To ensure that you understand what is happening, map all of

the entries to their respective fields in the child specification structure.

Supervisor Example

In this example, the usr_sup module is a supervisor behavior, supervising one child

that is the usr example of a gen_server from earlier in the chapter.

We’ll start the supervisor using the start_link/0 call. Note that we’ve omitted the

option of passing a filename for the Dets tables, as it was originally included for test

purposes. Pay particular attention to the child and the supervisor specifications returned

by the init/1 function.

-module(usr_sup).

-behavior(supervisor).

-export([start_link/0]).

-export([init/1]).

start_link() ->

 supervisor:start_link({local, ?MODULE}, ?MODULE, []).

init(FileName) ->

 UsrChild = {usr,{usr, start_link, []},

 permanent, 2000, worker, [usr, usr_db]},

 {ok,{{one_for_all,1,1}, [UsrChild]}}.

Now you can try it out from the shell. Do not test only positive cases; also try to kill the

child and ensure that it has been restarted. Finally, kill the server more than

MaxRestart times in MaxSeconds (twice in one second in this example), to see

whether the supervisor terminates.

13> c(usr_sup).

{ok,usr_sup}

14> usr_sup:start_link().

{ok,<0.149.0>}

15> whereis(usr).

<0.150.0>

16> exit(whereis(usr), kill).

true

17> whereis(usr).

<0.156.0>

18> usr:lookup_id(0).

{ok,#usr{msisdn = 700000000,id = 0,status = disabled,

 plan = prepay,

 services = [data]}}

19> exit(whereis(usr), kill).

true

20> exit(whereis(usr), kill).

** exception exit: shutdown

O’Reilly Media, Inc. 5/21/2009

 17

When a process terminates, all the ETS tables that it created are
destroyed. If you want ETS tables to survive process restarts without

incurring the overhead of dealing with Dets tables or the filesystem, a

trick is to let your supervisor create the tables in its init/1 function,

rather than in the processes spawned.

Dynamic Children

So far, we have looked only at static children. What if you need a supervisor that

dynamically creates a child whose task is to handle a specific event, take care of the task,

and terminate when completed? It could be for every incoming instant message (IM) or

buddy update coming into your IM server. You can’t specify these children in your init

callback function, as they are created dynamically. Instead, you need to use the calls to

functions supervisor:???_child/2:

supervisor:start_child(SupervisorName, ChildSpec)

supervisor:terminate_child(SupervisorName, Id)

supervisor:restart_child(SupervisorName, Id)

supervisor:delete_child(SupervisorName, Id).

In the preceding calls:

SupervisorName

Is either the process identifier of the supervisor or its registered name

ChildSpec

Is a single child specification tuple, as described in the section “Child Specifications”

Id

Is the unique child identifier defined in the ChildSpec

Of particular importance in the ChildSpec tuple is the child Id. Even after

termination, the ChildSpec will be stored by the supervisor and referenced through its

Id, allowing processes to stop and restart the child. Only upon deletion will the child

specification be permanently removed.

If you’ve been skimming through the manual page for the supervisor

behavior, you probably realize that it does not export a stop function.

As supervisors are never meant to be stopped by anyone other than

their parent supervisors, this function was not implemented.

You can easily add your own stop function by including the

following code in your supervisor callback module. This will however

work only if stop is called by the parent:

stop() -> exit(whereis(?MODULE), shutdown).

If your supervisor is not registered, use its pid.

O’Reilly Media, Inc. 5/21/2009

 18

Applications

The application behavior is used to package Erlang modules into reusable components.
An Erlang system will consist of a set of loosely coupled applications. Some are

developed by the programmer or the open source community, and others will be part of

the OTP distribution. The Erlang runtime system and its tools will treat all applications

equally, regardless of whether they are part of the Erlang distribution.

There are two kinds of applications. The most common form of applications called

normal applications, will start the supervision tree and all of the relevant static workers.

Library applications such as the Standard Library, which come as part of the Erlang

distribution, contain library modules but do not start the supervision tree. This is not to
say that the code may not contain processes or supervision trees. It just means they are

started as part of a supervision tree belonging to another application.

In this section, we will cover all the functionality needed to encapsulate the mobile

subscriber system into an OTP application, starting its top-level supervisor. When done,

this application will behave like any other normal application. And don’t forget, when we

talk about applications in this chapter, we mean OTP applications.

Applications are loaded, started, and stopped as one unit. A resource file associated with

every application not only describes it, but also specifies its modules, registered
processes, and other configuration data. Applications have to follow a particular directory

structure which dictates where beam, module, resource, and include files have to be

placed. This structure is required for many of the existing tools, built around behaviors, to

function correctly. To find out which applications are running in your Erlang runtime

system, you use application:which_applications():

1> application:which_applications().

[{stdlib,"ERTS CXC 138 10","1.15.2"},

 {kernel,"ERTS CXC 138 10","2.12.2"}]

The Standard Library and the Kernel are part of the basic Erlang applications and

together form the minimal OTP subset when starting the runtime system. The first item in
the application tuple is the application name. The second is a description string, and the

third is the application version number. If you are wondering what the description string

in the preceding example means, you are not alone. It is the internal Ericsson product

numbering scheme.

We will show you where to configure the description of your applications later in this

chapter.

Directory Structure

In your Erlang shell, type code:get_path(). You did this when we were explaining

how to manipulate the code search path in the code server. What you probably did not

realize at the time was that each code path was pointing to a specially structured directory

of an OTP application.

Let’s pick the Inets application and inspect its contents in more detail. In Windows, the

path for this particular installation of Erlang would be as follows:

C:/Program Files/erl5.6.2/lib/inets-5.0.5/

O’Reilly Media, Inc. 5/21/2009

 19

In other operating systems, just cd to the lib directory from the Erlang root directory,

typically something like /usr/local/lib/erlang/lib, and look for the latest Inets release.

Among all the subdirectories in an application, the following ones comprise an OTP

release of the application in question:

src

Contains the source code of all the Erlang modules in the application.

ebin

Contains all of the compiled beam files and the application resource file; in this

example, it’s inets.app.

include

Contains all the Erlang header files (hrl) intended for use outside the application.

By using the following directive,

–include_lib("Application/include/Name.hrl")

where Application is the application directory name without the version number

(in the example it would be inets) and Name.hrl is the name of the include file,

the compiler will automatically pick up the version of the application pointed to by

the code search path.

priv

Is an optional directory that contains necessary scripts, graphics, configuration files,

or other non-Erlang-related resources. You can access it without knowing the

application version by using the code:priv_dir(Application) call.

You will notice that Inets (and other) applications may have a few more directories,
including docs and examples. These have no effect on the system during runtime, and are

there just for convenience. In some applications, you might not find the priv directory. If

you do not use it, omitting it is not a problem, even if omitting it might not be considered

a good practice by some. In live systems, the only mandatory directory is ebin. This is

because you probably don’t want to include your source code when shipping your system
to clients!

It is common to use scripts to create these directory structures, and to use make files

which, having compiled your code, move the beam files to the ebin directory. How you

set this up depends on the operating systems, build systems, repositories, and many other

non-Erlang-related dependencies in your application. Although it might be feasible to set

this up manually for small projects, you will probably want to use templates and

automate the task for larger projects.

The Application Resource File

The application resource file, also known as the app file, contains information on your

application resources and dependencies. Move into the ebin subdirectory of the Inets

application and look for the inets.app file. This is the resource file of the Inets

application. On closer inspection, you will notice that all other applications also have an

inets.app file. The application resource file consists of a tuple where the first element is

the application tag, the second is the application name, and the third is a list of features.

O’Reilly Media, Inc. 5/21/2009

 20

Let’s go through the features individually. Note that for space considerations, we’ve

omitted some of the modules in the example.

{application,inets,

 [{description,"INETS CXC 138 49"},

 {vsn,"5.0.5"},

 {modules,[inets,inets_sup,inets_app,inets_service,

 %% FTP

 ftp, ftp_progress,ftp_response,ftp_sup,

 %% HTTP client:

 http,httpc_handler,httpc_handler_sup,httpc_manager,

 %% TFTP

 tftp,tftp_binary,tftp_engine,tftp_file,tftp_lib,tftp_sup

]},

 {registered,[inets_sup, httpc_manager]},

 {applications,[kernel,stdlib]},

 {mod,{inets_app,[]}}]}.

In the preceding code, the description is a string that is displayed as a result of

calling the application:which_application/0 function. The vsn attribute is a

string denoting the version of the application. This should be the same as the suffix of the

application directory. In larger build systems, the application version is usually updated

automatically through proprietary scripts executed when committing your code.

The modules tag lists all the modules that belong to this application. The purpose of

listing them is twofold. The first is to ensure that all of them are present when building

the system and that there are no name clashes with any other applications. The second is

to be able to load them either at startup or when loading the application. For every

module, there should be a corresponding beam file. To ensure that there are no registered

name clashes with other applications, we list all of the registered processes in this

field. Clashes in module and registered process names are detected by the release-

handling tools used when creating your boot file. We will look at boot files in the next

section. Just including them in the application resource files will have no effect unless

these tools are used.

Most applications will have to be started after other applications on which they depend.

Your application will not start if the applications in the applications list included in

your app file are not already started. kernel and stdlib are the basic standard applications

on which every other application depends. After that, the particular dependencies will be

based on the nature of the application.

Finally, the mod parameter is a tuple containing the callback module and the arguments

passed to the start/2 callback function.

Not necessary to the Inets application, but certainly important to applications in general,

are environment variables. The env tag indicates a list of key-value tuples that can be

accessed from within the application using calls to the following functions:

application:get_env(Tag)

application:get_all_env().

To access environment variables belonging to other applications, just add the application

Name to either function call, as in the following:

application:get_env(Name,Tag)

application:get_all_env(Name).

O’Reilly Media, Inc. 5/21/2009

 21

The application resource file usr.app of our mobile subscriber service database would

contain four modules, two registered processes, and dependencies on the stlib and kernel

applications. Let’s also add the filename for the Dets table among the environment

variables:

{application, usr,

 [{description, "Mobile Services Database"},

 {vsn, "1.0"},

 {modules, [usr, usr_db, usr_sup, usr_app]},

 {registered, [usr, usr_sup]},

 {applications, [kernel, stdlib]},

 {env, [{dets_name, "usrDb"}]},

 {mod, {usr_app,[]}}]}.

Starting and Stopping Applications

You start and stop applications using the following commands:

application:start(ApplicationName).

application:stop(ApplicationName).

In the preceding code, ApplicationName is an atom denoting the name of your

application.

The application controller loads the environment variables belonging to the application,

as well as starts the top-level supervisor through a set of callback functions. When calling

start/1, the start(StartType, Arguments) function in the application

callback module is invoked. StartType is usually the atom normal, but if you are

dealing with distributed applications,2 you might come across the start types

takeover and failover. Arguments is a value of any valid Erlang data type,

which together with the callback module is defined in the application resource file.

Start has to return the tuple {ok, Pid} or {ok, Pid, Data}. Pid denotes the

process identifier of the top-level supervisor. Data is a valid Erlang data type used to

store data that is needed when terminating the application.

If you stop your application, the top-level supervisor is sent a shutdown message. This

results in the termination of all of its children in reverse startup order, propagating the
exit path through the supervision tree. Once the supervision tree has terminated, the

callback function stop(Data) is called in the application callback module. Data was

originally returned in the {ok, Pid, Data} construct of the start/2 callback

function. If your start/2 function did not return any data, just ignore the argument.

Should you want a callback function to be called before terminating the supervision tree,

export the function prep_stop(Data) in your callback module.

So, armed with all of the preceding information, how would you package your usr

server database into an application, what would the directory structure look like, and

what are the contents of the app file?

2 We do not cover distributed applications in this chapter. For more information on them, you will

need to consult the OTP documentation.

O’Reilly Media, Inc. 5/21/2009

 22

Let’s start with the application callback file. We export the start/2 and stop/1

functions:

-module(usr_app).

-behaviour(application).

-export([start/2, stop/1]).

start(_Type, StartArgs) ->

 usr_sup:start_link().

stop(_State) ->

 ok.

As you can see, the application callback module is relatively simple. Although we have

not done it in our example, it is not uncommon to join the supervisor and application

behavior modules into one. You would have the two –behaviour directives next to

each other, and if there is no conflict with the callback functions, the compiler will not

issue any warnings.

This leaves one minor change to be made in the usr.erl module, where we read the

environment variable in the start_link/0 call:

start_link() ->

 {ok, FileName} = application:get_env(dets_name),

 start_link(FileName).

With all of this in place, all that remains is our application directory structure, placing the

relevant files in there:

usr-1.0/src/usr.erl

 usr_db.erl

 usr_sup.erl

 usr_app.erl

 /ebin/usr.beam

 usr_db.beam

 usr_sup.beam

 usr_app.beam

 usr.app

 /priv/

 /include/usr.hrl

Let’s compile all the modules and take them for a test run. Move the beam files to the

ebin directory, and make sure they are accessible by telling the system about the path to

them. You can do that either with the erl –pa Dir directive when starting Erlang, or

directly in the shell using code:add_path(Dir).

In the following interaction, we start the application and run a few operations on the

customer settings before stopping it. In doing so, we check that the supervisor and

gen_server processes no longer exist.

1> code:add_path("usr-1.0/ebin").

true

2> application:start(usr).

ok

3> application:start(usr).

{error,{already_started,usr}}

4> usr:lookup_id(10).

{error,instance}

5> application:get_env(usr, dets_name).

O’Reilly Media, Inc. 5/21/2009

 23

{ok,"usrDb"}

6> application:stop(usr).

=INFO REPORT==== 27-Jan-2009::22:14:33 ===

 application: usr

 exited: stopped

 type: temporary

ok

6> whereis(usr_sup).

undefined

Note how we retrieved the dets_name environment variable from the environment. In

our usr example, we are calling the function from within the application, and as a result,

we do not need to specify the application name. Look through the manual page of the
application module, and experiment with the various options for retrieving application

environment variables.

The Application Monitor

The application monitor is a tool that provides an overview of all running applications.

Upon launching it with the appmon:start() call, you are presented with a list of all

the applications running on all distributed nodes. The various menus allow you to

manipulate the node and presentation, and the bar on the left shows the load on the node

under scrutiny (see Figure 12-3).

Figure 12-3. The application monitor window

In Figure 12-3, note how the stdlib application is not shown. Only applications with a
supervision tree appear. Double-clicking the application opens a new window with a

view of its supervision tree (see Figure 12-4). The menus and buttons allow you to

manipulate the various processes. The top processes linking to usr_sup are part of the

application controller. They are the ones that start, monitor, and stop the top-level

supervisor.

O’Reilly Media, Inc. 5/21/2009

 24

Figure 12-4. The supervision tree viewed in the application monitor

Release Handling

From our behaviors, we’ve created a supervision tree. The supervision tree is packaged in
an application that can be loaded, started, and stopped as one entity. Erlang systems

consist of a set of loosely coupled applications specified in a release file. This includes

the basic Erlang installation you have been running. From your Erlang root directory,

enter the releases directory, followed by one of the release subdirectories. In our

example, it is R12B (see Figure 12-5).

O’Reilly Media, Inc. 5/21/2009

 25

Figure 12-5. The releases directory

In it, you will find a list of release files, indicated by the .rel suffix, as shown in Figure
12-5. Pick start_clean.rel and inspect it:

{release, {"OTP APN 181 01","R12B"}, {erts, "5.6.2"},

 [{kernel,"2.12.2"},

 {stdlib,"1.15.2"}]}.

It consists of a tuple where the first element is the release tag and the second element

is a tuple with a release name and release version number. The third element is a tuple
with the version of the Erlang runtime system. The last element in the tuple is a list of

applications and their version numbers, defined in the order in which they should be

started.

Each application in this list points to an application resource file. When you call the

function systools:make_rel(Name, Options), these app files are retrieved and

inspected. Module and registered process name conflicts are checked, and if everything

matches, Name.boot and Name.script files are produced.

Name.boot is a binary file containing instructions on loading the application modules and

starting the top-level supervisors. The Name.script file is a text version of its binary

counterpart. The Options argument is a list in which the most important data includes

{path, [Dir]}, which describes any paths to the application ebin directories not

known by the code server. The paths commonly point to the ebin directories of your

applications. The local directive is another option to make_rel/2, stating that the

boot file should not assume that all the applications will be found under lib in the Erlang

root directory. The latter is useful if you want to separate the Erlang installation and your

applications.

O’Reilly Media, Inc. 5/21/2009

 26

In a deployed system, you will release only the applications that are relevant to your

system. These applications include both your applications and the subset of the ones you

need from the OTP release. They should all be stored in the lib subdirectory of the Erlang

root, but you can easily override this recommendation by adding paths in the code search

path used by the code server. We are in fact overriding this in our example by using the

local directive in the options list.

When the boot file has been created, you can start your system using the following

command:

erl –boot Name

This ensures that all of the modules specified in the boot file are loaded and that the

applications and their respective supervision trees are started correctly. If anything fails at

startup, the Erlang node will not start.

The release file of our mobile subscriber database, usr.rel, would include kernel and
stdlib, the two mandatory applications of any OTP release, together with version 1.0 of

our usr application:

{release, {"Mobile User Database","R1"}, {erts, "5.6.2"},

 [{kernel,"2.12.2"},

 {stdlib,"1.15.2"},

 {usr,"1.0"}]}.

Because in the running example we are using the shell where we previously added the

path to usr-1.0/ebin, we create a boot file which runs with the existing code path.

Had we not set the path in the shell, we would have had to add the option {dir,

["usr-1.0/ebin"]} to the release file.

7> systools:make_script("usr", [local]).

ok

8> ls().

usr-1.0

usr.boot

usr.rel

usr.script

usrDb

We can now start our system using erl –boot usr.

Have a look at the usr.script file that was generated when creating the
boot file. We will not explain it in this book, as most of its commands

should be fairly straightforward. You can edit the files and generate a

new boot file using the systools:script2bootfile/1 call.

Spare a thought for the early pioneers of OTP. In its first release back

in 1996, script files had to be generated manually, as the

make_script/2 function had not been implemented!

Other Behaviors and Further Reading

What we described in this chapter should cover a majority of the cases you will come

across when using OTP behaviors. However, you can go in more detail when working

with generic servers, supervisors, and applications. Behaviors we have not covered but

O’Reilly Media, Inc. 5/21/2009

 27

which we briefly introduced in this chapter include finite state machines (finite

LoopData machines), event handlers, and special processes. All of these behavior

library modules have manual pages that you can reference. In addition, the Erlang

documentation has a section on OTP design principles which provides more details and

examples of these behaviors.

Finite state machines are a crucial component of telecom systems. In Chapter 5, we

introduced the idea of modeling a phone as a finite state machine. If the phone is not

being used, it is in state idle. If an incoming call arrives, it goes to state ringing.

This does not have to be a phone; it could instead be an ATM cross-connect or the

handling of data in a protocol stack. The gen_fsm module provides you with a finite

state machine behavior which you can use to solve these problems. States are defined as

callback functions that return a tuple containing the next State and the updated loop

data. You can send events to these states both synchronously and asynchronously. The
finite state machine callback module should also export the standard callback functions

such as init, terminate, and handle_info. As gen_fsm is a standard OTP

behavior, it can be linked to the supervision tree.

Event handlers and managers are another behavior implemented in the gen_event

library module. The idea is to create a centralized point that receives events of a specific

kind. Events can be sent both synchronously and asynchronously with a predefined set of

actions being applied when they are received. Possible responses to events include

logging them to file, sending off an alarm in the form of an SMS, or collecting statistics.

Each of these actions is defined in a separate callback module with its own LoopData,

preserved in between calls. Handlers can be added, removed, or updated for every

specific event manager. So, in practice, for every event manager, there could be many

callback modules, and different instances of these callback modules could exist in
different managers.

Sometimes you might want to add to the supervision tree processes that are not generic

OTP behaviors. This might be for efficiency reasons, where you have implemented the

process using plain Erlang. You might want to attach to a supervision tree legacy code

that was written before OTP was available, or you might have abstracted a design pattern

and implemented your own behavior.

Writing your own behaviors is straightforward. The main differences are in how you

spawn your processes, and the system calls you need to handle. You should create

processes using the proc_lib library, which exports both spawn and start

functions. Using the proc_lib function stores the start data of the process, provides the

means to start the process synchronously, and generates error reports upon abnormal

termination. To be OTP-compliant, processes need to handle system messages and

events, yielding the control of the loop to the sys library module. They also need to be

linked to their parent, and if they are trapping exits, they need to terminate when the

parent terminates. You can find more information on writing your own OTP behaviors in

the sys and proc_lib library modules.

O’Reilly Media, Inc. 5/21/2009

 28

Exercises

Exercise 12-1: Database server revisited

Rewrite Exercise 5-1 in Chapter 5 using the gen_server behavior module. Use the

lists backend database module, saving your list in the loop data. You should register

the server and access its services through a functional interface. Exported functions in the

my_db_gen.erl module should include the following:

my_db_gen:start() ⇒ ok.

my_db_gen:stop() ⇒ ok.

my_db_gen:write(Key,Element) ⇒ ok.

my_db_gen:delete(Key) ⇒ ok.

my_db_gen:read(Key) ⇒ {ok,Element}|{error,instance}.

my_db:match(Element) ⇒ [Key1, ..., KeyN].

Hint: if you are using Emacs or Eclipse, use the gen_server skeleton template:

1> my_db:start().

ok

2> my_db:write(foo, bar).

ok

3> my_db:read(baz).

{error, instance}

4> my_db:read(foo).

{ok, bar}

5> my_db:match(bar).

[foo]

Exercise 12-2: Supervising the database server

Implement a supervisor that starts and monitors the gen_server in Exercise 12-1.

Your supervisor should be able to handle five crashes per hour. Your child should be

permanent and be given at least 30 seconds to terminate, as it might take some time to

close a large Dets file.

Exercise 12-3: The database server as an application

Encapsulate your supervision tree from Exercise 12-2 in an application, setting up the

correct directory structure, complete with application resource file.

