
Functional Pearl: Streams and Unique Fixed Points

Ralf Hinze
Computing Laboratory, University of Oxford

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf.hinze@comlab.ox.ac.uk

Abstract
Streams, infinite sequences of elements, live in a coworld: they are
given by a coinductive data type, operations on streams are im-
plemented by corecursive programs, and proofs are conducted us-
ing coinduction. But there is more to it: suitably restricted, stream
equations possess unique solutions, a fact that is not very widely
appreciated. We show that this property gives rise to a simple and
attractive proof technique essentially bringing equational reason-
ing to the coworld. In fact, we redevelop the theory of recurrences,
finite calculus and generating functions using streams and stream
operators building on the cornerstone of unique solutions. The de-
velopment is constructive: streams and stream operators are imple-
mented in Haskell, usually by one-liners. The resulting calculus or
library, if you wish, is elegant and fun to use. Finally, we rephrase
the proof of uniqueness using generalised algebraic data types.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.4 [Software/
Program Verification]: correctness proofs, formal methods; D.3.2
[Programming Languages]: Language Classifications—applicative
(functional) languages; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—specifi-
cation techniques

General Terms Design, Languages, Theory, Verification

Keywords streams, unique fixed points, coinduction, recurrences,
finite calculus, generating functions

1. Introduction
The cover of my favourite maths book displays a large, lonesome
Σ imprinted in concrete (Graham et al. 1994). There is a certain
beauty to it, but sure enough, when the letter first appears in the
text, it is decorated with formulas. Sigma denotes summation and,
traditionally, summation is a binder introducing an index variable
that ranges over some set. More often than not, the index variable
then appears as a subscript referring to an element of some other
set or sequence. If you turn the pages of this paper, you won’t
find any index variables and not many subscripts though we deal
with recurrences, summations and power series. Index variables
and subscripts have their rôle, but often they can be avoided by
treating the set or the sequence they refer to as a single entity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

Manipulating a single entity is almost always simpler and more
elegant than manipulating a cohort of singletons.

However, this paper is not about style, notation or even discrete
mathematics. Rather, the paper sets out to popularise a certain proof
technique, and it just so happens that recurrences, summations and
power series serve admirably as illustrations. The common denom-
inator of these examples is that they are, or rather, that they can be
based on streams, infinite sequences of elements. In a lazy func-
tional language, such as Haskell (Peyton Jones 2003), streams are
easy to define and many textbooks on Haskell reproduce the folk-
lore examples of Fibonacci or Hamming numbers defined by re-
cursion equations over streams. One has to be a bit careful in for-
mulating a recursion equation basically avoiding that the sequence
defined swallows its own tail. However, if this care is exercised,
the equation even possesses a unique solution, a fact that is not
very widely appreciated. Uniqueness can be exploited to prove that
two streams are equal: if they satisfy the same recursion equation,
then they are! We will use this technique to infer some intriguing
facts about particular streams and to develop the basics of finite
calculus and generating functions. Quite attractively, the resulting
proofs have a strong equational flavour. Whenever applicable, we
derive programs from their specifications. We also reproduce the
proof of uniqueness, which, perhaps surprisingly, involves gener-
alised algebraic data types (Hinze 2003; Peyton Jones et al. 2006)
and interpreters. But we are getting ahead of the story.

The rest of the paper is structured as follows. Sec. 2 intro-
duces the basic definitions, laws and proof techniques. Sec. 3 shows
how to capture recurrences as streams and solves some recreational
puzzles. Sec. 4 applies the techniques to finite calculus. Sec. 5
introduces generating functions and explains how to solve recur-
rences. Finally, Sec. 6 reviews related work and Sec. 7 concludes.
The proof of existence and uniqueness of solutions is relegated to
App. A in order not to disturb the flow.

2. Streams
The type of streams, Stream α, is like Haskell’s list data type [α],
except that there is no base constructor so we cannot construct
a finite stream. The Stream type is not an inductive type, but a
coinductive type, whose semantics is given by a final coalgebra
(Aczel and Mendler 1989).

data Stream α = Cons {head :: α, tail :: Stream α}

infixr 5 ≺
(≺) :: α → Stream α → Stream α
a ≺ s = Cons a s

Streams are constructed using ≺, which prepends an element to a
stream. They are destructed using head, which yields the first ele-
ment, and tail, which returns the stream without the first element.

We say s is a constant stream iff tail s = s. We let s, t and u
range over streams and c over constant streams.

2.1 Operations
Most definitions we encounter in the sequel make use of the follow-
ing functions, which lift n-ary operations (n = 0, 1, 2) to streams.

repeat :: α → Stream α
repeat a = s where s = a ≺ s
map :: (α → β) → (Stream α → Stream β)
map f s = f (head s) ≺ map f (tail s)
zip :: (α → β → γ) → (Stream α → Stream β → Stream γ)
zip f s t = f (head s) (head t) ≺ zip f (tail s) (tail t)

The call repeat 0 constructs a sequence of zeros (A0000041).
Clearly, a constant stream is of the form repeat k for some k. We
refer to repeat as a parametrised stream and to map and zip as
stream operators.

For convenience and conciseness of notation, let us lift the arith-
metic operations to streams. In Haskell, this is easily accomplished
using type classes. Here is an excerpt of the necessary code.

instance (Num a) ⇒ Num (Stream a) where
(+) = zip (+)
(−) = zip (−)
(∗) = zip (∗)
negate = map negate -- unary minus
fromInteger i = repeat (fromInteger i)

This instance declaration allows us, in particular, to use inte-
ger constants as streams — in Haskell, unqualified 3 abbreviates
fromInteger (3 :: Integer).

Using this vocabulary we can already define the usual suspects:
the natural numbers (A001477), the factorial numbers (A000142),
and the Fibonacci numbers (A000045).

nat = 0 ≺ nat + 1

fac = 1 ≺ (nat + 1) ∗ fac
fib = 0 ≺ fib ′

fib ′ = 1 ≺ fib ′ + fib

Note that ≺ binds less tightly than +. For instance, 0 ≺ nat + 1 is
grouped 0 ≺ (nat +1). The three sequences are given by recursion
equations adhering to a strict scheme: each equation defines the
head and the tail of the sequence, the latter possibly in terms of
the entire sequence. The Fibonacci numbers provide an example of
mutual recursion: fib ′, which denotes the tail of the sequence, refers
to fib and vice versa. Actually, in this case mutual recursion is not
necessary as a quick calculation shows: fib ′ = 1 ≺ fib ′ + fib =
(0 ≺ fib ′) + (1 ≺ fib) = fib + (1 ≺ fib). So, an alternative
definition is

fib = 0 ≺ fib + (1 ≺ fib)

As an aside, we will use the convention that the identifier x ′ denotes
the tail of x.

It’s fun to play with the sequences. Here is a short interactive
session.

� fib

� nat ∗ nat

� tail fib ^ 2− fib ∗ tail (tail fib)

� tail fib ^ 2− fib ∗ tail (tail fib) (−1) ^ nat

1 Most if not all integer sequences defined in this paper are recorded in
Sloane’s On-Line Encyclopedia of Integer Sequences (Sloane). Keys of the
form Annnnnn refer to entries in that database. Somewhat surprisingly,
repeat 0 is not A000000. Just in case you were wondering, the first
sequence (A000001) lists the number of groups of order n.

The part after the prompt, � , is the user’s input. The result of
each submission is shown in the subsequent line. This is the actual
output of the Haskell interpreter; the session has been generated au-
tomatically using lhs2TEX’s active features (Hinze and Löh 2008).

Obviously, we can’t print out a sequence in full. The Show
instance for Stream only displays the first n elements. Likewise, we
can’t test two streams for equality: only checks whether the first
n elements are equal. So, ‘equality’ is most useful for falsifying
conjectures. For the purposes of this paper, n equals .

Another important operator is interleaving of two streams.

infixr 5 g
(g) :: Stream α → Stream α → Stream α
s g t = head s ≺ t g tail s

Though the symbol is symmetric, g is not commutative. Neither
it is associative. Let’s look at an example application. The above
definition of the naturals is based on the unary number system.
Using interleaving, we can alternatively base the sequence on the
binary number system.

bin = 0 ≺ 2 ∗ bin + 1 g 2 ∗ bin + 2

Note that g has lower precedence than the arithmetic operators.
For instance, the right-hand side of the equation above is grouped
0 ≺ ((2 ∗ bin + 1) g (2 ∗ bin + 2)).

Now that we have two definitions of the natural numbers, the
question naturally arises as to whether they are actually equal.
Reassuringly, the answer is in the affirmative. Proving the equality
of streams or of stream operators is one of our main activities in the
sequel. However, we postpone a proof of nat = bin until we have
the necessary prerequisites at hand.

Finally, we can build a stream by repeatedly applying a given
function to a given value.

iterate :: (α → α) → (α → Stream α)
iterate f a = a ≺ iterate f (f a)

So, iterate (+1) 0 is yet another definition of the naturals.

2.2 Definitions
Not every legal Haskell definition of type Stream τ actually de-
fines a stream. Two simple counterexamples are s = tail s and
s = head s ≺ tail s. Both of them loop in Haskell; viewed as
stream equations they are ambiguous. In fact, they admit infinitely
many solutions: every constant stream is a solution of the first equa-
tion, every stream is a solution of the second one. This situation is
undesirable from both a practical and a theoretical standpoint. For-
tunately, it is not hard to restrict the syntactic form of equations so
that they possess unique solutions. We insist that equations adhere
to the following form.

x = h ≺ t
where x is an identifier of type Stream τ, h is a constant expression
of type τ, and t is an expression of type Stream τ possibly referring
to x or some other stream identifier in the case of mutual recursion.
However, neither h nor t may involve head x or tail x.

If x is a parametrised stream or a stream operator,

x x1 . . . xn = h ≺ t
then h or t may use head xi or tail xi provided xi is of the right
type. Furthermore, t may contain recursive calls to x, but we are
not allowed to take the head or the tail of a recursive call. However,
there are no further restrictions on the form of the arguments.

For a formal account of these requirements, we refer the inter-
ested reader to App. A, which contains a constructive proof that
equations of this form indeed have unique solutions. Looking back,
we find that the definitions we have encountered so far, including
map, zip and g, meet the requirements.

As an aside, we could relax the conditions somewhat so that

fib = 0 ≺ 1 ≺ tail fib + fib

becomes admissible. However, the gain in expressivity is modest
as we can always eliminate such calls to tail by introducing a name
for the tail. In the example above, we simply replace tail fib by fib ′

obtaining the two equations given in Sec. 2.1.
By the way, non-recursive definitions like

nat ′ = nat + 1

are unproblematic and unrestricted as they can always be inlined.

2.3 Laws
Since the arithmetic operations are defined point-wise, the familiar
arithmetic laws also hold for streams. In proofs we will signal their
use by the hint arithmetic.

Streams satisfy the following extensionality property.

s = head s ≺ tail s

App. A provides a coinductive proof of this law.
Interleaving interacts nicely with lifted operations: let 	 =

map (�) and ⊕ = zip (�), � and � arbitrary functions, then

c g c = c

(s) g (t) = 	 (s g t)

(s1 ⊕ s2) g (t1 ⊕ t2) = (s1 g t1) ⊕ (s2 g t2)

A simple consequence is (s g t) + 1 = s + 1 g t + 1. The
last property is called abide law because of the following two-
dimensional way of writing the law, in which the two operators
are written either above or beside each other.

s1 ⊕ s2
g

t1 ⊕ t2

=
s1 s2
g ⊕ g
t1 t2

The two-dimensional arrangement is originally due to Hoare, the
catchy name is due to Bird.

2.4 Proofs
In Sec. 2.2 we have planted the seeds by restricting the syntactic
form of equations so that they possess unique solutions. It is now
time to reap the harvest. If s = φ s is an admissible equation,
we denote its unique solution by fix φ. (The equation implicitly
defines a function in s. A solution of the equation is a fixed point
of this function and vice versa.) The fact that the solution is unique
is captured by the following universal property.

fix φ = s ⇐⇒ φ s = s

Read from left to right it states that fix φ is indeed a solution of
x = φ x. Read from right to left it asserts that any solution is equal
to fix φ. So, if we want to prove s = t where s = fix φ, then it
suffices to show that φ t = t.

As a first example, let us prove an earlier claim, namely, that a
constant stream is of the form repeat k for some k.

c

= { extensionality }

head c ≺ tail c
= { c is constant }

head c ≺ c

Consequently, c equals the unique solution of x = head c ≺ x,
which by definition is repeat (head c).

That was easy. The next proof is not much harder: we show that
nat = 2 ∗ nat g 2 ∗ nat + 1.

2 ∗ nat g 2 ∗ nat + 1

= { definition of nat }

2 ∗ (0 ≺ nat + 1) g 2 ∗ nat + 1

= { arithmetic }

(0 ≺ 2 ∗ nat + 2) g 2 ∗ nat + 1

= { definition of g }

0 ≺ 2 ∗ nat + 1 g 2 ∗ nat + 2

= { arithmetic }

0 ≺ (2 ∗ nat g 2 ∗ nat + 1) + 1

Inspecting the second but last term, we note that the result implies
nat = 0 ≺ 2∗nat+1 g 2∗nat+2, which in turn proves nat = bin.

Now, if both s and t are given as fixed points, s = fix φ and
t = fix ψ, then there are at least four possibilities to prove s = t:

φ (ψ s) = ψ s =⇒ ψ s = s =⇒ s = t
ψ (φ t) = φ t =⇒ φ t = t =⇒ s = t

We may be lucky and establish one of the equations. Unfortunately,
there is no success guarantee. The following approach is often more
promising. We show s = χ s and χ t = t. If χ has a unique fixed
point, then s = t. The point is that we discover the function χ on
the fly during the calculation. Proofs in this style are laid out as
follows.

s

= { why? }

χ s

⊂ { x = χ x has a unique solution }

χ t

= { why? }

t

The symbol ⊂ is meant to suggest a link connecting the upper and
the lower part. Overall, the proof establishes that s = t.

Let us illustrate the technique by proving Cassini’s identity:
fib ′ ^2−fib∗fib ′′ = (−1)^nat where fib ′′ = tail fib ′ = fib ′ +fib.

fib ′
^ 2− fib ∗ fib ′′

= { definition of fib ′′ and arithmetic }

fib ′
^ 2− (fib ∗ fib ′ + fib ^ 2)

= { definition of fib and fib ′
}

1 ≺ (fib ′′
^ 2− (fib ′ ∗ fib ′′ + fib ′

^ 2))

= { fib ′′ − fib ′ = fib and arithmetic }

1 ≺ (−1) ∗ (fib ′
^ 2− fib ∗ fib ′′)

⊂ { x = 1 ≺ (−1) ∗ x has a unique solution }

1 ≺ (−1) ∗ (−1) ^ nat
= { arithmetic }

(−1) ^ 0 ≺ (−1) ^ (nat + 1)

= { definition of nat and arithmetic }

(−1) ^ nat

When reading ⊂-proofs, it is easiest to start at both ends working
towards the link. Each part follows a typical pattern, which we will
see time and time again: starting with e we unfold the definitions
obtaining e1 ≺ e2; then we try to express e2 in terms of e.

So far, we have been concerned with proofs about streams.
However, the proof techniques apply equally well to parametric
streams or stream operators! As an example, let us prove the second
g-law by showing f = g where

f s t = 	 s g 	 t and g s t = 	 (s g t)

The proof is straightforward involving only bureaucratic steps.

f a b

= { definition of f }

	a g 	b
= { definition of g and 	 = map (�) }

� head a ≺ 	b g 	 tail a
= { definition of f }

� head a ≺ f b (tail a)

⊂ { x s t = � head s ≺ x t (tail s) has a unique solution }

� head a ≺ g b (tail a)

= { definition of g }

� head a ≺ 	 (b g tail a)

= { 	 = map (�) and definition of g }

	 (a g b)

= { definition of g }

g a b

In the sequel, we usually leave the two functions implicit sparing
ourselves two rolling and two unrolling steps. On the downside, this
makes the common pattern around the link more difficult to spot.

A popular benchmark for the effectiveness of proof methods for
corecursive programs is the iterate fusion law (Gibbons and Hutton
2005), which amounts to the free theorem of (α → α) → (α →
Stream α).

map h · iterate f1 = iterate f2 · h ⇐= h · f1 = f2 · h

The ‘unique fixed-point proof’ is short and sweet; it compares
favourably to the ones given by Gibbons and Hutton (2005).

map h (iterate f1 a)

= { definition of iterate and map }

h a ≺ map h (iterate f1 (f1 a))

⊂ { x a = h a ≺ x (f1 a) has a unique solution }

h a ≺ iterate f2 (h (f1 a))

= { assumption: h · f1 = f2 · h }

h a ≺ iterate f2 (f2 (h a))

= { definition of iterate }

iterate f2 (h a)

Interestingly, the linking equation g a = h a ≺ g (f1 a) corre-
sponds to the unfold operator, which captures a common recursion
pattern of stream-producing functions, see App. A.3.

The fusion law implies map f · iterate f = iterate f · f, which
is the key for proving nat = iterate (+1) 0.

iterate (+1) 0

= { definition of iterate }

0 ≺ iterate (+1) 1

= { iterate fusion law: h = f1 = f2 = (+1) }

0 ≺ iterate (+1) 0+ 1

3. Recurrences (≺, g)
Using ≺ and g we can easily capture recurrences: the sequence
defined by a0 = k and an+1 = f(an) becomes the stream
equation a = k ≺ map f a; likewise, the sequence given
by a0 = k, a2n+1 = f(an) and a2n+2 = g(an) becomes
a = k ≺ map f a g map g a. The point of this paper is that
a stream is easier to manipulate than a recurrence because a stream

is a single entity, often defined by a single equation. Nonetheless,
you may want to keep the correspondence in mind when studying
the following examples.

3.1 Bit fiddling
To familiarise ourselves with the notation, let us tackle some easy
problems first. How can we characterise the pots, the powers of
two (A036987)? Clearly, 1 is a pot (we only consider positive
numbers); the even number 2n is a pot, if n is; an odd number
greater than 1 is not one.

pot = True ≺ pot g repeat False

Using a similar approach we can characterise the most signifi-
cant bit of a positive number (0 ≺ msb is A053644).

msb = 1 ≺ 2 ∗ msb g 2 ∗ msb

Put differently, msb is the largest pot less than or equal to nat ′.
(Here we lift relations, “x and y are related by R”, to streams.)

Another example along these lines is the 1s-counting sequence
(A000120), also known as the binary weight. The binary represen-
tation of the even number 2n has the same number of 1s as n; the
odd number 2n + 1 has one 1 more. Hence, the sequence satisfies
ones = ones g ones + 1. Adding two initial values, we can turn
the property into a definition.

ones = 0 ≺ ones ′

ones ′ = 1 ≺ ones ′ g ones ′ + 1

It is important to note that x = x g x + 1 does not have a unique
solution. However, all solutions are of the form ones + c.

Let’s inspect the sequences.

� msb

� nat ′ − msb

� ones

The sequence nat ′ − msb (A053645) exhibits a nice pattern; it
describes the distance to the largest pot less than or equal to nat ′.

3.2 Binary carry sequence
Here is a sequence that every computer scientist should know: the
binary carry sequence or ruler function (A007814).

carry = 0 g carry + 1

(The form of the equation does not quite meet the requirements.
We allow ourselves some liberty as a simple unfolding turns it into
an admissible form: carry = 0 ≺ carry + 1 g 0. The unfolding
works as long as the the first argument of g is a sequence defined
elsewhere.) The sequence gives the exponent of the largest pot
dividing nat ′, that is, the number of trailing zeros in the binary
representation. In other words, it specifies the running time of the
binary increment.

There is also an intriguing connection to infinite binary trees.
Consider the following definition.

turn 0 = []
turn (n+ 1) = turn n++ [n] ++ turn n

The call turn n yields the heights of the nodes of a perfect binary
tree of depth n. Now, imagine traversing an infinite binary tree
starting at the leftmost leaf: visit the current node, visit its finite
right subtree and then continue with its parent — the tree has
no root, it extends infinitely upwards. The following parametrised
stream captures the traversal.

tree n = n ≺ turn n ≺≺ tree (n+ 1)

where ≺≺ prepends a list to a sequence.

infixr 5 ≺≺
(≺≺) :: [α] → Stream α → Stream α
[] ≺≺ s = s
(a : as) ≺≺ s = a ≺ (as ≺≺ s)

Here is the punch line: tree 0 also yields the binary carry sequence!
Turning to the proof, let us try the obvious: we show that tree 0

satisfies the equation x = 0 g x+ 1.

0 g tree 0+ 1

= { definition of g }

0 ≺ tree 0+ 1 g 0

= { proof obligation, see below }

0 ≺ tree 1
= { definition of tree and turn }

tree 0

We are left with the proof obligation tree 1 = tree 0+ 1 g 0. With
some foresight, we generalise to tree (k + 1) = tree k + 1 g 0.
The ⊂-proof below makes essential use of the mixed abide law: if
length x = length y, then

(x ≺≺ s) g (y ≺≺ t) = (x g y) ≺≺ (s g t)

where g in x g y denotes interleaving of two lists of the same
length. Noting that length (turn n) = 2n − 1, we reason (replicate
is abbreviated by rep)

tree (k+ 1)

= { definition of tree }

k+ 1 ≺ turn (k+ 1) ≺≺ tree (k+ 2)

⊂ { x n = n+ 1 ≺ turn (n+ 1) ≺≺ x (n+ 1) has a u. s. }

k+ 1 ≺ turn (k+ 1) ≺≺ (tree (k+ 1) + 1 g 0)

= { proof obligation, see below }

k+ 1 ≺ (rep 2k
0 g turn k+ 1) ≺≺ (tree (k+ 1) + 1 g 0)

= { definition of g and definition of ≺≺ }

((k+ 1 : turn k+ 1) g rep 2k
0) ≺≺ (tree (k+ 1) + 1 g 0)

= { mixed abide law }

((k+ 1 : turn k+ 1) ≺≺ tree (k+ 1) + 1) g (rep 2k
0 ≺≺ 0)

= { arithmetic and definition of ≺≺ }

(k ≺ turn k ≺≺ tree (k+ 1)) + 1 g 0

= { definition of tree }

tree k+ 1 g 0

It remains to show the finite version of the proof obligation:
turn (k + 1) = replicate 2k 0 g turn k + 1. We omit the
straightforward induction, which relies on an abide law for lists.

3.3 Fractal sequences
The sequence pot and the 1s-counting sequence are examples of
fractal or self-similar sequences: a subsequence is identical to the
entire sequence. Another fractal sequence is A025480.

frac = nat g frac

This sequence contains infinitely many copies of the natural num-
bers. The distance between equal numbers grows exponentially, 2n,
as we progress to the right. Like carry, frac is related to divisibility:

god = 2 ∗ frac + 1

is the greatest odd divisor of nat ′ = 2 ∗ nat + 1 g 2 ∗ nat + 2: The
greatest odd divisor of an odd number, 2 ∗ nat + 1, is the number

itself; the greatest odd divisor of an even number, 2 ∗ nat + 2, is the
god of nat ′.

Now, recall that 2 ^ carry is the largest power of two dividing
nat ′. Putting these observations together, we have

2 ^ carry ∗ god = nat ′

The proof is surprisingly straightforward.

2 ^ carry ∗ god
= { definition of carry and god }

2 ^ (0 g carry + 1) ∗ (2 ∗ nat + 1 g god)

= { arithmetic and abide law }

2 ∗ nat + 1 g 2 ∗ 2 ^ carry ∗ god
⊂ { x = 2 ∗ nat + 1 g 2 ∗ x has a unique solution }

2 ∗ nat + 1 g 2 ∗ (nat + 1)

= { arithmetic }

2 ∗ nat + 1 g 2 ∗ nat + 2

= { property of nat ′, see above }

nat ′

3.4 Josephus problem
Our final example is a variant of the Josephus problem (Graham
et al. 1994, Sec. 1.3). Imagine n people numbered 1 to n forming
a circle. Every second person is killed until only one survives. Our
task is to determine the survivor’s number.

Now, if there is only one person, then this person survives. For
an even number of persons the martial process starts as follows:
1 2 3 4 5 6 becomes 1 2/ 3 4/ 5 6/. Renumbering 1 3 5 to 1 2 3, we
observe that if i is killed in the sequence of first-round survivors,
then 2i − 1 is killed in the original sequence. Likewise for odd
numbers: 1 2 3 4 5 6 7 becomes 1/ 2/ 3 4/ 5 6/ 7 — since the
number is odd, the first person is killed, as well. Renumbering 3 5 7
to 1 2 3, we observe that if i is killed in the remaining sequence,
then 2i+ 1 is killed in the original sequence.

jos = 1 ≺ 2 ∗ jos − 1 g 2 ∗ jos + 1

It’s quite revealing to inspect the sequence.

� jos

� (jos − 1) / 2

Since the even numbers are eliminated in the first round, jos only
contains odd numbers. If we divide jos − 1 by two, we obtain a
sequence we have encountered before: nat ′ − msb. Indeed,

jos = 2 ∗ (nat ′ − msb) + 1

In terms of bit operations, jos implements a cyclic left shift: nat ′ −
msb removes the most significant bit, 2∗ shifts to the left and +1
sets the least significant bit.

2 ∗ (nat ′ − msb) + 1

= { definition of msb and property of nat ′
}

2 ∗ ((1 ≺ 2 ∗ nat ′ g 2 ∗ nat ′ + 1) −

(1 ≺ 2 ∗ msb g 2 ∗ msb)) + 1

= { definition of − and abide law }

2 ∗ (0 ≺ 2 ∗ nat ′ − 2 ∗ msb g 2 ∗ nat ′ + 1− 2 ∗ msb) + 1

= { arithmetic }

1 ≺ 2 ∗ (2 ∗ (nat ′ − msb) + 1) − 1 g

2 ∗ (2 ∗ (nat ′ − msb) + 1) + 1

4. Finite calculus (∆, Σ)
Let’s move on to another application of streams: finite calculus.
Finite calculus is the discrete counterpart of infinite calculus, where
finite difference replaces the derivative and summation replaces
integration. We shall see that difference and summation can be
easily recast as stream operators.

4.1 Finite difference
A common type of puzzle asks the reader to continue a given se-
quence of numbers. A first routine step towards solving the puzzle
is to calculate the difference of subsequent elements. This stream
operator, finite difference or forward difference, enjoys a simple,
non-recursive definition.

∆ :: (Num α) ⇒ Stream α → Stream α
∆ s = tail s− s

Here are some examples (A003215, A000079, A094267, not
listed).

� ∆ (nat ^ 3)

� ∆ (2 ^ nat)

� ∆ carry

� ∆ jos

Infinite calculus has a simple rule for the derivative of a power:
(xn+1) ′ = (n + 1)xn. Unfortunately, the first example above
shows that finite difference does not interact nicely with ordinary
powers: ∆ (nat^3) is not 3∗nat^2. Can we find a different notion
that enjoys an analogous rule? Let’s try. Writing xn for the new
power and its lifted variant, we calculate

∆ (natn+1)

= { definition of ∆ }

tail (natn+1) − natn+1

= { s
n = map (λx → x

n) s and definition of nat }

(nat + 1)n+1 − natn+1

Starting at the other end, we obtain

(repeat n+ 1) ∗ natn

= { arithmetic }

(nat + 1) ∗ natn − natn ∗ (nat − repeat n)

We can connect the loose ends if the new power satisfies both
x ∗ (x − 1)n = xn+1 = xn ∗ (x − n). That’s easy to arrange,
we use the first equation as a definition. (It is not hard to see that
the definition then also satisfies the second equation.)

x0 = 1

xn+1 = x ∗ (x− 1)n

The new powers are, of course, well-known: they are called falling
factorial powers.

One can convert mechanically between powers and falling fac-
torial powers using Stirling numbers (Graham et al. 1994, Sec. 6.1).
The details are beyond the scope of this paper. For reference, Fig. 1
displays the correspondence up to the third power.

4.1.1 Laws
Fig. 2 lists the rules for finite differences. First of all, ∆ is a linear
operator: it distributes over sums. The stream 2^nat is the discrete
analogue of ex as ∆ (2 ^ nat) = 2 ^ nat. In general, we have

x0 = x0

x1 = x1

x2 = x2 + x1

x3 = x3 + 3 ∗ x2 + x1

x0 = x0

x1 = x1

x2 = x2 − x1

x3 = x3 − 3 ∗ x2 + 2 ∗ x1

Figure 1. Converting between powers and falling factorial powers.

∆ (tail s) = tail (∆ s)

∆ (a ≺ s) = head s− a ≺ ∆ s
∆ (s g t) = (t− s) g (tail s− t)

∆ c = 0

∆ (c ∗ s) = c ∗ ∆ s
∆ (s+ t) = ∆ s+ ∆ t

∆ (s ∗ t) = s ∗ ∆ t+ ∆ s ∗ tail t
∆ (c ^ nat) = (c− 1) ∗ c ^ nat

∆ (natn+1) = (repeat n+ 1) ∗ natn

Figure 2. Laws for finite difference.

∆ (c ^ nat)
= { definition of ∆ }

tail (c ^ nat) − c ^ nat
= { c is constant and definition of nat }

c ^ (nat + 1) − c ^ nat
= { arithmetic }

(c− 1) ∗ c ^ nat

The product rule is similar to the product rule of infinite calculus
except for an occurrence of tail on the right-hand side.

∆ (s ∗ t)
= { definition of ∆ and ∗ }

tail s ∗ tail t− s ∗ t
= { arithmetic }

s ∗ tail t− s ∗ t+ tail s ∗ tail t− s ∗ tail t
= { distributivity }

s ∗ (tail t− t) + (tail s− s) ∗ tail t
= { definition of ∆ }

s ∗ ∆ t+ ∆ s ∗ tail t

4.1.2 Examples
Let’s get back to the Josephus problem: the interactive session in
Sec. 4.1 suggests that ∆ jos is almost always 2, except for pots. We
can express this property using a stream conditional.

∆ jos = (pot ′ → −nat ; 2)

where (→ ;) is if then else lifted to streams (using a
ternary version of zip). The stream conditional enjoys the standard
laws, such as (repeat True → s ; t) = s, and a ternary version of
the abide law.

(s1 g s2 → t1 g t2 ; u1 g u2) =
(s1 → t1 ; u1) g (s2 → t2 ; u2)

Both laws are used in the proof of the above property.

∆ jos
= { ∆ law and arithmetic }

0 ≺ 2 g 2 ∗ (tail jos − jos) − 2

= { definition of ∆ }

0 ≺ 2 g 2 ∗ ∆ jos − 2

⊂ { x = 0 ≺ 2 g 2 ∗ x− 2 has a unique solution }

0 ≺ 2 g 2 ∗ (pot ′ → −nat ; 2) − 2

= { arithmetic and definition of nat ′
}

0 ≺ 2 g (pot ′ → −(2 ∗ nat ′) ; 2)

= { definition of nat, pot and g }

(pot → −(2 ∗ nat) ; 2) g 2

= { conditional and abide law }

(pot g repeat False → −(2 ∗ nat g 2 ∗ nat + 1) ; 2 g 2)

= { definition of pot ′ and characterisation of nat }

(pot ′ → −nat ; 2)

4.2 Summation
Finite difference ∆ has a right-inverse: the summation operator Σ.
We can easily derive its definition.

∆ (Σ s) = s⇐⇒ { definition of ∆ }

tail (Σ s) − Σ s = s⇐⇒ { arithmetic }

tail (Σ s) = Σ s+ s

Setting head (Σ s) = 0, we obtain

Σ :: (Num α) ⇒ Stream α → Stream α
Σ s = t where t = 0 ≺ t+ s

Here are some examples (A004520, A000290, A011371).

� Σ (0 g 1)

� Σ (2 ∗ nat + 1)

� Σ carry

The definition of Σ suggests an unusual approach for determining
the sum of a sequence: if we observe that a stream satisfies t = 0 ≺
t+ s, then we may conclude that Σ s = t. For example, Σ 1 = nat
as nat = 0 ≺ nat + 1. This is summation by happenstance. Of
course, if we already know the sum, we can use the definition to
verify our conjecture. As an example, let us prove Σ fib = fib ′ − 1.

fib ′ − 1

= { definition of fib ′
}

(1 ≺ fib ′ + fib) − 1

= { arithmetic }

0 ≺ (fib ′ − 1) + fib

The unique fixed-point proof avoids the inelegant case analysis of
an inductive proof.

4.2.1 Laws
The Fundamental Theorem of finite calculus relates ∆ and Σ.

t = ∆ s ⇐⇒ Σ t = s− repeat (head s)

Σ (tail s) = tail (Σ s) − repeat (head s)
Σ (a ≺ s) = 0 ≺ repeat a+ Σ s

Σ (s g t) = (Σ s+ Σ t) g (s+ Σ s+ Σ t)

Σ c = c ∗ nat
Σ (c ∗ s) = c ∗ Σ s
Σ (s+ t) = Σ s+ Σ t

Σ (s ∗ ∆ t) = s ∗ t− Σ (∆ s ∗ tail t) − head (s ∗ t)
Σ (c ^ nat) = (c ^ nat − 1) / (c− 1)

Σ (natn) = natn+1
/ (repeat n+ 1)

Figure 3. Laws for summation.

The implication from right to left is easy to show using∆ (Σ t) = t
and ∆ c = 0. For the reverse direction, we reason

Σ (∆ s)

= { definition of Σ }

0 ≺ Σ (∆ s) + ∆ s

⊂ { x = 0 ≺ x+ ∆ s has a unique solution }

0 ≺ s− repeat (head s) + ∆ s

= { definition of ∆ and arithmetic }

(head s ≺ tail s) − repeat (head s)
= { extensionality }

s− repeat (head s)

Using the Fundamental Theorem we can transform the rules in
Fig. 2 into rules for summation, see Fig. 3. As an example, the rule
for products, summation by parts, can be derived from the product
rule of ∆. Let c = repeat (head (s ∗ t)), then

s ∗ ∆ t+ ∆ s ∗ tail t = ∆ (s ∗ t)⇐⇒ { Fundamental Theorem }

Σ (s ∗ ∆ t+ ∆ s ∗ tail t) = s ∗ t− c⇐⇒ { Σ is linear }

Σ (s ∗ ∆ t) + Σ (∆ s ∗ tail t) = s ∗ t− c⇐⇒ { arithmetic }

Σ (s ∗ ∆ t) = s ∗ t− Σ (∆ s ∗ tail t) − c

Unlike the others, this law is not compositional: Σ (s ∗ t) is not
given in terms of Σ s and Σ t, a situation familiar from calculus.

The only slightly tricky derivation is the one for interleaving.

(t− s) g (tail s− t) = ∆ (s g t)

= { Fundamental Theorem and head (s g t) = head s }

Σ ((t− s) g (tail s− t)) = (s g t) − repeat (head s)

At first glance, we are stuck. To make progress, let’s introduce two
fresh variables: x = t − s and y = tail s − t. If we can express s
and t in terms of x and y, then we have found the desired formula.

t− s = x and tail s− t = y⇐⇒ { arithmetic }

tail s− s = x+ y and t = x+ s⇐⇒ { definition of ∆ }

∆ s = x+ y and t = x+ s⇐= { ∆ (Σ s) = s }

s = Σ x+ Σ y and t = x+ Σ x+ Σ y

Since head s = 0, the interleaving rule follows.

4.2.2 Examples
Using the rules in Fig. 3 we can mechanically calculate summations
of polynomials. The main effort goes into converting between ordi-
nary and falling factorial powers. Here is a formula for the sum of
the first n squares, the square pyramidal numbers (0 ≺ A000330).

Σ (nat ^ 2)
= { converting to falling factorial powers }

Σ (nat2 + nat1)

= { summation laws }

1
3
∗ nat3 + 1

2
∗ nat2

= { converting to ordinary powers }
1
3
∗ (nat ^ 3− 3 ∗ nat ^ 2+ 2 ∗ nat) + 1

2
∗ (nat ^ 2− nat)

= { arithmetic }
1
6
∗ (nat − 1) ∗ nat ∗ (2 ∗ nat − 1)

Calculating the summation of a product, say, Σ (nat ∗c^nat) is
often more involved. Recall that the rule for products, summation
by parts, is imperfect: to be able to apply it, we have to spot a
difference among the factors. In the example above, there is an
obvious candidate: c ^ nat. Let’s see how it goes.

Σ (nat ∗ c ^ nat)
= { ∆ (c ^ nat) = (c− 1) ∗ c ^ nat }

Σ (nat ∗ ∆ (c ^ nat) / (c− 1))

= { Σ is linear }

Σ (nat ∗ ∆ (c ^ nat)) / (c− 1)

= { summation by parts }

(nat ∗ c ^ nat − Σ (∆ nat ∗ tail (c ^ nat))) / (c− 1)

= { ∆ nat = 1, c constant, and definition of nat }

(nat ∗ c ^ nat − c ∗ Σ (c ^ nat)) / (c− 1)

= { summation law }

(nat ∗ c ^ nat − c ∗ (c ^ nat − 1) / (c− 1)) / (c− 1)

= { arithmetic }

(((c− 1) ∗ nat − c) ∗ c ^ nat + c) / (c− 1) ^ 2

That wasn’t too hard.
As a final example, let us tackle a sum that involves interleaving:

Σ carry (A011371). The sum is important as it determines the
amortised running time of the binary increment. Going back to the
interactive session, Sec. 4.2, we observe that the sum is always
less than or equal to nat, which would imply that the amortised
running time is constant. That’s nice, but can we actually quantify
the difference? Let’s approach the problem from a different angle.
The binary increment changes the number of 1s, so we might hope
to relate carry to ones. The increment flips the trailing 1s to 0s
and flips the first 0 to 1. Now, since carry defines the number of
trailing 0s, we obtain the following alternative definition of ones.

ones = 0 ≺ ones + 1− carry

We omit the proof that both definitions are indeed equal. (If you
want to try, use a ⊂-proof.) Now, we can invoke the summation by
happenstance rule.

ones = 0 ≺ ones + (1− carry)⇐⇒ { summation by happenstance }

Σ (1− carry) = ones⇐⇒ { arithmetic }

Σ carry = nat − ones

Voilà. We have found a closed form for Σ carry.
That was fun. But surely, the interleaving rule in Fig. 3 would

yield the result directly, wouldn’t it? Let’s try.

Σ carry
= { definition of carry }

Σ (0 g carry + 1)

= { summation law }

Σ (carry + 1) g Σ (carry + 1)

= { Σ is linear and Σ 1 = nat }

(Σ carry + nat) g (Σ carry + nat)
= { abide law }

(Σ carry g Σ carry) + (nat g nat)

That’s quite a weird property. Since we know where we are aiming
at, let us determine nat − Σ carry.

nat − Σ carry
= { property of nat and Σ carry }

(2 ∗ nat g 2 ∗ nat + 1) − ((Σ carry g Σ carry) + (nat g nat))
= { arithmetic }

(nat − Σ carry) g (nat − Σ carry) + 1

Voilà again. The sequence nat − Σ carry satisfies x = x g
x + 1, which implies that nat − Σ carry = ones. For the sake of
completeness, we should also check that head ones = head (nat −
Σ carry), which is indeed the case.

4.2.3 Perturbation method
The Fundamental Theorem has another easy consequence, which
is the basis of the perturbation method. Setting t = tail s − s and
applying the theorem from left to right we obtain

Σ s = Σ (tail s) − s+ repeat (head s)

The idea of the method is to try to express Σ (tail s) in terms of
Σ s. Then we obtain an equation whose solution is the sum we
seek. Let’s try the method on a sum we have done before.

Σ (nat ∗ c ^ nat)
= { perturbation, head (nat ∗ c ^ nat) = 0 }

Σ (tail (nat ∗ c ^ nat)) − nat ∗ c ^ nat
= { definition of nat }

Σ ((nat + 1) ∗ c ^ (nat + 1)) − nat ∗ c ^ nat
= { summation law }

c ∗ Σ (nat ∗ c ^ nat) + c ∗ Σ (c ^ nat) − nat ∗ c ^ nat
= { summation law }

c ∗ Σ (nat ∗ c ^ nat) + c ∗ (c ^ nat − 1) / (c− 1) −

nat ∗ c ^ nat

The sum Σ (nat ∗ c ^ nat) appears again on the right-hand side. All
that is left to do is to solve the resulting equation, which yields the
result we have seen in Sec. 4.2.2.

As an aside, the perturbation method also suggests an alternative
definition of Σ, this time as a second-order fixed point.

Σ s = 0 ≺ repeat (head s) + Σ (tail s)

The code implements the naı̂ve way of summing: the i-th element
is computed using i additions not reusing any previous results.

5. Generating functions (×, ÷)
In this section, we look at number sequences from a different per-
spective: we take the view that a sequence, a0, a1, a2 . . . , repre-

sents a power series, a0 + a1z+ a2z
2 + · · ·, in some formal vari-

able z. It’s an alternative view and we shall see that it provides us
with additional operators and techniques for manipulating streams.

5.1 Power series
Let’s put on the ‘power series’ glasses. The simplest series, the
constant function a0 and the identity z (A063524), are given by

const :: (Num α) ⇒ α → Stream α
const n = n ≺ repeat 0
z :: (Num α) ⇒ Stream α
z = 0 ≺ 1 ≺ repeat 0

The sum of two power series is implemented by +. The successor
function, for instance, is const 1 + z. The product of two series,
however, is not given by ∗ since, for example, (const 1 + z) ∗
(const 1 + z) = const 1 + z. So, let us introduce a new operator
for the product of two series, say, × and derive its implementation.
The point of departure is Horner’s rule for evaluating a polynomial,
rephrased as an identity on streams.

s = const (head s) + z× tail s

The rule implies z × s = 0 ≺ s. In other words, multiplying by z
amounts to prepending 0. The derivation of × proceeds as follows
(we abbreviate head, tail and const).

s× t
= { Horner’s rule }

(con (hd s) + z× tl s)× t
= { arithmetic }

con (hd s)× t+ z× tl s× t
= { Horner’s rule }

con (hd s)× (con (hd t) + z× tl t) + z× tl s× t
= { arithmetic }

con (hd s)× con (hd t) + con (hd s)× z× tl t+ z× tl s× t
= { con a× con b = con (a ∗ b) and arithmetic }

con (hd s ∗ hd t) + z× (con (hd s)× tl t+ tl s× t)
= { Horner’s rule }

hd s ∗ hd t ≺ con (hd s)× tl t+ tl s× t
The first line jointly with the last one serves as a perfectly valid
implementation. However,× is a costly operation; we can improve
the efficiency somewhat if we replace const k × s by repeat k ∗ s
(this law also follows from Horner’s rule).

infixl 7 ×
(×) :: (Num α) ⇒ Stream α → Stream α → Stream α
s× t = head s ∗ head t ≺ repeat (head s) ∗ tail t+ tail s× t

Here are some examples (A014824, 0 ≺ A099670, tailA002275).

� nat × 10 ^ nat

� 9 ∗ (nat × 10 ^ nat)

� 9 ∗ (nat × 10 ^ nat) + nat ′

The operator × is also called convolution product. The first exam-
ple suggests how it works: the product of a0, a1, a2, . . . and b0,
b1, b2, . . . is a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0,

Let us complete our repertoire of arithmetic operators with
reciprocal and division. Convolution was a little more complicated
than the other operations, so it is wise to derive reciprocal from a
specification (note that recip is yet another class method).

s× recip s = const 1

We reason

head s ∗ head (recip s) = 1⇐⇒ { arithmetic }

head (recip s) = recip (head s)

and

const (head s)× tail (recip s) + tail s× recip s = 0⇐⇒ { arithmetic }

−const (head s)× tail (recip s) = tail s× recip s⇐⇒ { arithmetic }

tail (recip s) = const (−recip (head s))× tail s× recip s

Again replacing const k× s by repeat k ∗ s, we obtain

recip s = t where a = recip (head s)
t = a ≺ repeat (−a) ∗ (tail s× t)

infixl 7 ÷
s÷ t = s× recip t

Finally, we use sn, where n is a natural number, for iterated
convolution and set s−n = (recip s)n.

5.2 Laws
The familiar arithmetic laws also hold for const n, +, −, ×
and ÷. Perhaps surprisingly, we can reformulate the streams we
introduced so far in terms of these operators. In other words, we
view them with our new ‘power series’ glasses. Mathematically
speaking, this conversion corresponds to finding the generating
function of a sequence. The good news is that we need not leave
our stamping ground: everything can be accomplished within the
world of streams. The only caveat is that we have to be careful not
to confuse const n and × with repeat n and ∗.

As a start, let’s determine the generating function for repeat a.

repeat a = a ≺ repeat a⇐⇒ { Horner’s rule }

repeat a = const a+ z× repeat a⇐⇒ { arithmetic }

const 1× repeat a− z× repeat a = const a⇐⇒ { arithmetic }

(const 1− z)× repeat a = const a⇐⇒ { arithmetic }

repeat a = const a÷ (const 1− z)

The form of the resulting equation, s = u÷ (const 1− v), is quite
typical reflecting the shape of streams equations, s = h ≺ t.

Geometric sequences are not much harder.

repeat a ^ nat
= { definition of ^ and nat }

1 ≺ repeat a ∗ repeat a ^ nat
= { Horner’s rule and repeat k ∗ s = const k× s }

const 1+ z× const a× repeat a ^ nat

Consequently, repeat a ^ nat = const 1÷ (1− const a× z).
We can even derive a formula for the sum of a sequence.

Σ s = 0 ≺ Σ s+ s⇐⇒ { Horner’s rule }

Σ s = z× (Σ s+ s)⇐⇒ { arithmetic }

Σ s = s× z÷ (const 1− z)

const k× s = repeat k ∗ s
repeat a = const a÷ (const 1− z)

repeat a ^ nat = const 1÷ (1− const a× z)
Σ s = s× z÷ (const 1− z)

nat = z÷ (const 1− z)2

Figure 4. Laws for generating functions.

This implies that the generating function of the natural numbers is
nat = Σ (repeat 1) = z ÷ (const 1 − z)2. Fig. 4 summarises our
findings.

Of course, there is no reason for jubilation: the formula for the
sum does not immediately provide us with a closed form for the
coefficients of the generating function. In fact, to be able to read
off the coefficients, we have to reduce the generating function to a
known stream, for instance, repeat a, nat or repeat a ^ nat. This is
what we do next.

5.3 Solving recurrences
Let’s try to find a closed form for our all-time favourite, the Fi-
bonacci sequence. As a first step, we determine the generating func-
tion of fib, that is, we express fib in terms of × and friends.

fib = 0 ≺ fib + (1 ≺ fib)

= { Horner’s rule }

fib = z× (fib + (const 1+ z× fib))

= { arithmetic }

fib = z÷ (const 1− z− z2)

Now, to find a closed form for fib we have to turn the right-hand side
into a generating function or a sum of generating functions whose
coefficients we know. The following algebraic identity points us
into the right direction (α 6= β).

x

(1− αx)(1− βx)
=

1

α− β

„
1

1− αx
−

1

1− βx

«
Inspecting Fig. 4 we realize that we know the stream expression for
the right-hand side:

repeat (1 / α− β) ∗ (repeat α ^ nat − repeat β ^ nat)

So, we are left with the task of transforming 1 − z − z2 into the
form (1−αz)(1−βz). It turns out that the roots of z2 − z− 1 are
the reciprocals of the roots of 1 − z − z2. (The trick of reversing
the coefficients works in general, see (Graham et al. 1994, p. 339).)
A quick calculation shows that φ = 1

2
(1 +

√
5), the golden

ratio a+b
a

= a
b

, and φ̂ = 1
2
(1 −

√
5) are the roots we seek.

Consequently, 1− z− z2 = (1−φz)(1− φ̂z). Since furthermore
φ− φ̂ =

√
5, we have inferred that

fib = repeat (1 / sqrt 5) ∗ (repeat φ ^ nat − repeat φ̂ ^ nat)

A noteworthy feature of the derivation is that is stays within the
world of streams. For the general theory of solving recurrences, we
refer the interested reader to Graham et al. (1994, Sec. 7.3).

6. Related work
The two major sources of inspiration were Rutten’s work on stream
calculus (Rutten 2003, 2005) and the text book on concrete mathe-
matics (Graham et al. 1994). Rutten introduces streams and stream
operators using coinductive definitions. which he calls behavioural

differential equations. As an example, the Haskell definition of sum

s+ t = head s+ head t ≺ tail s+ tail t

translates to

(s+ t)(0) = s(0) + t(0) and (s+ t) ′ = s ′ + t ′

where s(0) denotes the head of s, its initial value, and s ′ the tail
of s, its stream derivative. (The notation goes back to Hoare.) Rut-
ten relies on coinduction as the main proof technique and empha-
sises the ‘power series’ view of streams. In fact, we have given
power series and generating functions only a cursory treatment as
there are already a number of papers on that subject, most notably,
(Karczmarczuk 1997; McIlroy 1999, 2001). Both Karczmarczuk
and McIlroy mention the proof technique of unique fixed points
in passing by: Karczmarczuk sketches a proof of iterate f · f =
map f · iterate f and McIlroy shows 1/ex = e−x.

Various proof methods for corecursive programs are discussed
by Gibbons and Hutton (2005). Interestingly, the technique of
unique fixed points is not among them.2 Unique fixed-point proofs
are closely related to the principle of guarded induction (Coquand
1994). Loosely speaking, the guarded condition ensures that func-
tions are productive by restricting the context of a recursive call to
one ore more constructors. For instance,

nat = 1 ≺ nat + 1

is not guarded as + is not a constructor. However, nat can be
defined by iterate (+1) 0 as iterate is guarded. The proof method
then allows us to show that iterate (+1) 0 is the unique solution of
x = x ≺ x + 1 by constructing a suitable proof transformer using
guarded equations. Indeed, the central idea underlying guarded
induction is to express proofs as lazy functional programs.

7. Conclusion
I hope you enjoyed the journey. Lazy functional programming has
proven its worth: with a couple of one-liners we have hacked, eerh,
built a small domain-specific language for manipulating infinite
sequences. Suitably restricted, stream equations possess unique
fixed points, a property that can be exploited to redevelop the theory
of recurrences, finite calculus and generating functions.

Acknowledgments
A big thank you to Jeremy Gibbons for improving my English.
Thanks are also due to Nils Anders Danielsson and the anonymous
referees for pointing out several typos.

A. Proof of existence and uniqueness of solutions
This appendix reproduces the proof of existence and uniqueness of
solutions (Rutten 2003). It has been rephrased in familiar program-
ming language terms to make it accessible to a wider audience.

A.1 Coalgebras
There are many data types that support head and tail operations.
So, let’s turn the two functions into class methods

class Coalgebra σ where
head :: σ α → α
tail :: σ α → σ α

with Stream an obvious instance of this class. We call an element
of σ τ, where σ is an instance of Coalgebra, a stream-like value.

2 The minutes of the 2003 Meetings of the Algebra of Programming Re-
search Group, 21st November, seem to suggest that the authors were
aware of the technique, but were not sure of constraints on applicabil-
ity, see http://www.comlab.ox.ac.uk/research/pdt/ap/minutes/
minutes2003.html#21nov.

A.2 Coinduction
If we are given two stream-like values, not necessarily of the same
type, then we can relate them by studying their behaviour: do they
yield the same head and are the tails related, as well?

a R b =⇒ head a = head b and (tail a) R (tail b)

A relation R that satisfies this property is called a bisimulation. (In
Haskell, products are lifted so the definition of a bisimulation is
actually more involved. We simply ignore this complication here.)
Bisimulations are closed under union. The greatest bisimulation,
written ∼, is the union of all bisimulations.

∼ =
[

{R | R is a bisimulation }

Bisimulations are also closed under relational converse and rela-
tional composition. In particular, a ∼ b implies b ∼ a; further-
more, a ∼ b and b ∼ c imply a ∼ c.

If ∼ relates elements of the same type, it is called the bisimilarity
relation. In this case, because = is a bisimulation, ∼ is an equiva-
lence relation. Streams are a special coalgebra: if two streams be-
have the same, then they are the same. This is captured by the

Theorem 1 (Coinduction proof principle) Let s, t ∈ Stream τ,
then s and t are bisimilar iff they are equal.

s ∼ t ⇐⇒ s = t

PROOF. ⇐= : trivial as = is a bisimulation. =⇒ : This direc-
tion can be shown with the Approximation Lemma (Gibbons and
Hutton 2005) using the fact that ∼ is a bisimulation. �

Let us illustrate the coinduction proof principle with a simple
example: s = head s ≺ tail s. Let R = (=) ∪ { (s, head s ≺
tail s) | s ∈ Stream τ }. We show that R is a bisimulation. Case
s R s: trivial since = is a bisimulation. Case s R (head s ≺ tail s):
the head and the tail of both streams are, in fact, identical. Since
= ⊆ R, this implies (tail s) R (tail (head s ≺ tail s)), as desired.

A.3 The operator unfold

A stream-like value can be converted into a real stream using

unfold :: (Coalgebra σ) ⇒ σ α → Stream α
unfold s = head s ≺ unfold (tail s)

From the definition of unfold we can derive the following laws.

head · unfold = head
tail · unfold = unfold · tail

In fact, unfold is the unique solution of these equations.

Lemma 1 unfold is a functional bisimulation.

a ∼ unfold a

PROOF. Using the properties of unfold it is straightforward to show
that R = { (a, unfold a) | a ∈ σ τ } is a bisimulation. �

Lemma 2 Two elements are related by ∼ iff they evaluate to the
same stream.

a1 ∼ a2 ⇐⇒ unfold a1 = unfold a2

PROOF. =⇒ : We reason

a1 ∼ a2

=⇒ { Lemma 1 and ∼ is symmetric and transitive }

unfold a1 ∼ unfold a2⇐⇒ { Coinduction }

unfold a1 = unfold a2

⇐= : We show that R = { (a1, a2) | unfold a1 = unfold a2} is
a bisimulation. This follows from the properties of unfold. �

A.4 Syntactic streams
The central idea underlying the proof is to recast streams and
stream operators as interpreters that operate on syntactic represen-
tations of streams. As a first step, let us define a data type of stream
expressions (we list only a few representative examples).

data Expr :: ∗→ ∗ where
Var :: Stream α → Expr α
Repeat :: α → Expr α
Plus :: (Num α) ⇒ Expr α → Expr α → Expr α
Nat :: Expr Integer

The definition makes use of a recent extension of Haskell, called
generalised algebraic data types. The type argument of Expr spec-
ifies the type of the elements of the stream represented. If we re-
place Expr by Stream in the signatures above, we obtain the orig-
inal types of repeat, + and nat. The only extra constructor is Var,
which allows us to embed a stream into a stream expression.

We turn Expr into a coalgebra by transforming the stream equa-
tions into definitions for head and tail: s = h ≺ t becomes
head s = h and tail s = t̂ where t̂ is t with repeat, + and nat
replaced by the corresponding constructors Repeat, Plus and Nat.

instance Coalgebra Expr where
head (Var s) = head s
head (Repeat a) = a
head (Plus e1 e2) = head e1 + head e2

head Nat = 0

tail (Var s) = Var (tail s)
tail (Repeat a) = Repeat a
tail (Plus e1 e2) = Plus (tail e1) (tail e2)
tail Nat = Plus Nat (Repeat 1)

Both head and tail are given by simple inductive definitions. In fact,
the restrictions on stream equations, detailed in Sec. 2.2, are chosen
in order to guarantee this property! In particular, head and tail may
only be invoked on the arguments of a stream operator.

Using unfold we can evaluate a stream expression into a stream.

eval :: Expr α → Stream α
eval = unfold

Furthermore, using eval alias unfold we can define the streams and
stream operators in terms of their syntactic counterparts.

repeat k = eval (Repeat k)
plus s1 s2 = eval (Plus (Var s1) (Var s2))
nat = eval Nat

For plus, we embed the argument streams using Var and then
evaluate the resulting expression. We claim that these definitions
satisfy the original stream equations (App. A.5) and furthermore
that they are the unique solutions (App. A.6).

A.5 Existence of solutions
When we turned the stream equations into definitions for head and
tail, we replaced functions by constructors. In order to prove that
the stream equations are satisfied, we have to show that eval undoes
this conversion step replacing constructors by functions. In other
words, we have to show that eval is an interpreter. Working towards
this goal we first prove that ∼ is a congruence relation.

Lemma 3 ∼ is a congruence relation on expressions.

t1 ∼ u1 and t2 ∼ u2 =⇒ Plus t1 t2 ∼ Plus u1 u2

PROOF. Let R be given by the following inductive definition.

R = ∼ ∪ { (Plus t1 t2,Plus u1 u2) | t1 R u1 and t2 R u2 }

Note that R is a congruence relation by construction, indeed, the
smallest congruence containing ∼. We show that R is a bisimu-
lation by induction over its definition. Case t ∼ u: trivial. Case
(Plus t1 t2) R (Plus u1 u2): The definition of R implies that
t1 R u1 and t2 R u2. Ex hypothesi, head t1 = head u1 and
(tail t1) R (tail u1), and likewise for t2 and u2.

head (Plus t1 t2)

= { definition of head }

head t1 + head t2
= { ex hypothesi }

head u1 + head u2

= { definition of head }

head (Plus u1 u2)

tail (Plus t1 t2)

= { definition of tail }

Plus (tail t1) (tail t2)

R { R is a congruence }

Plus (tail u1) (tail u2)

= { definition of tail }

tail (Plus u1 u2)

Consequently, R ⊆ ∼ and furthermore R = ∼. �

Lemma 4 eval is an interpreter.

eval (Var s) = s
eval (Repeat k) = repeat k
eval (Plus e1 e2) = plus (eval e1) (eval e2)
eval (Nat) = nat

PROOF. Case Var s: First of all, { (Var s, s) | s ∈ Stream τ }
is a bisimulation, consequently Var s ∼ s. Lemma 1 furthermore
implies Var s ∼ eval (Var s). Transitivity gives eval (Var s) ∼ s,
which in turn implies eval (Var s) = s. Case Repeat k: By
definition. Case Plus e1 e2: We first show that Var (eval e) ∼ e.

Var s ∼ s

=⇒ { substitute s = eval e }

Var (eval e) ∼ eval e
=⇒ { eval e ∼ e }

Var (eval e) ∼ e

We proceed

e1 ∼ Var (eval e1) and e2 ∼ Var (eval e2)

=⇒ { Lemma 3: ∼ is a congruence }

Plus e1 e2 ∼ Plus (Var (eval e1)) (Var (eval e2))⇐⇒ { Lemma 2 }

eval (Plus e1 e2) =

eval (Plus (Var (eval e1)) (Var (eval e2)))⇐⇒ { Definition of plus }

eval (Plus e1 e2) = plus (eval e1) (eval e2)

Case Nat: By definition. �
Equipped with this lemma we can now show that repeat, nat

and plus satisfy the recursion equations. We only give the proof for
nat as the others follow exactly the same scheme.

nat
= { definition of nat and eval }

head Nat ≺ eval (tail Nat)
= { definition of head and tail }

0 ≺ eval (Plus Nat (Repeat 1))
= { Lemma 4: eval is an interpreter }

0 ≺ plus nat (repeat 1)

A.6 Uniqueness of solutions
Assume that repeat, plus and nat also satisfy the stream equations.
We show that they must be equal to repeat, plus and nat. Let R be
given by the following inductive definition.

R = ∼ ∪ { (repeat k, repeat k) | k ∈ τ }

∪ { (plus s1 s2, plus t1 t2) | s1 R t1 and s2 R t2 }

∪ { (nat, nat) }

We show that R is a bisimulation by induction on its definition.
Hence, R ⊆ ∼ and consequently R = ∼. Case s ∼ t: trivial. Case
(repeat k) R (repeat k): Omitted. Case nat R nat: Omitted. Case
(plus s1 s2) R (plus t1 t2): The definition of R implies that
s1 R t1 and s2 R t2. Ex hypothesi, head s1 = head t1 and
(tail s1) R (tail t1), and likewise for s2 and t2.

head (plus s1 s2)

= { plus satisfies the eqn }

head s1 + head s2
= { ex hypothesi }

head t1 + head t2
= { plus satisfies the eqn }

head (plus t1 t2)

tail (plus s1 s2)

= { plus satisfies the eqn }

plus (tail s1) (tail s2)

R { definition of R }

plus (tail t1) (tail t2)

= { plus satisfies the eqn }

tail (plus s1 s2)

Since R = ∼, it follows that nat ∼ nat and by coinduction nat =
nat, and likewise for the other operations. �

References
P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E. Ry-

deheard, P. Dybjer, and A. Poigné, editors, Category Theory and Com-
puter Science (Manchester), LNCS 389, pages 357–365, 1989. Springer.

Thierry Coquand. Infinite objects in type theory. In H. Barendregt and
T. Nipkow, editors, Types for Proofs and Programs, International Work-
shop TYPES’93, Nijmegen, The Netherlands, May 24-–28, 1993, Se-
lected Papers, LNCS 806, pages 62–78, 1994. Springer.

Jeremy Gibbons and Graham Hutton. Proof methods for corecursive pro-
grams. Fundamenta Informaticae, (XX):1–14, 2005.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
mathematics. Addison-Wesley, 2nd edition, 1994.

Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de Moor,
editors, The Fun of Programming, pages 245–262. Palgrave Macmillan,
2003. ISBN 1-4039-0772-2 hardback, ISBN 0-333-99285-7 paperback.

Ralf Hinze and Andres Löh. Guide2lhs2tex (for version 1.13), February
2008. http://people.cs.uu.nl/andres/lhs2tex/.

Jerzy Karczmarczuk. Generating power of lazy semantics. Theoretical
Computer Science, (187):203–219, 1997.

M. Douglas McIlroy. The music of streams. Information Processing Letters,
(77):189–195, 2001.

M. Douglas McIlroy. Power series, power serious. J. Functional Program-
ming, 3(9):325–337, May 1999.

Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge
University Press, 2003.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In J. Lawall, editor, Pro-
ceedings of the 11th ACM SIGPLAN international conference on Func-
tional programming, Portland, 2006, pages 50–61. ACM Press, 2006.

J.J.M.M. Rutten. Fundamental study — Behavioural differential equations:
a coinductive calculus of streams, automata, and power series. Theoret-
ical Computer Science, (308):1–53, 2003.

J.J.M.M. Rutten. A coinductive calculus of streams. Math. Struct. in Comp.
Science, (15):93–147, 2005.

Neil J.A. Sloane. The on-line encyclopedia of integer sequences. http:
//www.research.att.com/~njas/sequences/.

