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1 Properties and Generators

1.1 Testing and Test Automation

How do we know that software works? The answer, almost always, is that we
test it. For example, consider the delete function in the Erlang lists module,
which removes an element from a list. We might test it in the Erlang shell as
follows:

4> lists:delete(2,[1,2,3]).
[1,3]
5> lists:delete(4,[1,2,3]).
[1,2,3]

See, it obviously works!
The biggest problem with testing is actually not that bugs may remain in

well-tested code—although of course they may. The biggest problem is that
reaching acceptable quality by testing is so inordinately expensive! Testing
typically accounts for around half the cost of a software project—so finding
ways to reduce its cost, without compromising the quality of the result, is very
valuable indeed.

Running tests manually is the most expensive way to perform them. In
practice, developers automate their tests in order to write them once, then run
them many times. For example, the two tests above might be automated via
the function definitions

delete_present_test() ->
lists:delete(2,[1,2,3]) == [1,3].

delete_absent_test() ->
lists:delete(4,[1,2,3]) == [1,2,3].

Many unit testing tools exist to find and run such tests automatically, of which
EUnit is the most popular for Erlang. Such tools make running the test suite
very easy, which encourages developers to do so often. Running tests often, as
software evolves, helps developers to catch mistakes that break something in
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the code as soon as the mistake is made. This practice is the foundation of
test-driven development, which encourages developers to write their tests even
before the code itself. Under test-driven development, the tests are used as a
criterion for when the job is done—coding is considered complete when all the
tests pass. This approach to development is claimed to improve quality and
productivity (although the results of actual studies are somewhat mixed).

Yet even automated testing is expensive. Thorough testing demands an
enormous volume of test code: at Ericsson, 35% of all code written is test code.
Even so, it can never be economic to write a test case for every possible scenario,
with the result that there is always a risk that bugs remain undetected by the
test suite. In practice, many test cases are added to the test suite to provoke an
error already discovered by other means—such test cases do not help to find the
error in the first place, but they do help developers to avoid making the same
mistake twice.

1.2 Property-based Testing

How can we reduce the cost of automated testing? Since the costly part is
writing the test code in the first place, the key to doing so must be to generalise
the test functions, so that each function covers not one test case, but many. In
the case of the lists:delete function, let us generalise the element and the
list, and write one test function that can test delete with any element and list:

...lists:delete(I,L)...

We run into a problem immediately: we can no longer predict the “expected”
result, as we did in the two tests above, unless of course we reimplement the
delete function in another way—which rather defeats the purpose. Instead, we
must find some other way to determine whether the result of delete is correct.
We can do so by identifying a general property of the result that should hold in
all cases—such as, that I does not occur in the list after the deletion:

prop_delete(I,L) ->
not lists:member(I, lists:delete(I,L)).

This is not a complete test by any means—lists:delete might always return
the empty list, for example, and still pass this test—but on the other hand, it
is applicable in any test case. By identifying sufficiently many such properties,
we can give a complete specification of the delete function, which can be used
to test it with any inputs whatsoever.

Once we’ve identified a general property such as this, we would like to test it
automatically in many different cases, without the effort of specifying each case
manually. But since the property should now hold, whatever the inputs, then
we can safely generate them instead of choosing them by hand. This is what
QuickCheck does—we rewrite the definition above as a QuickCheck property,

prop_delete() ->
?FORALL({I,L},{int(),list(int())},

not lists:member(I, lists:delete(I,L))).
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and then test it using QuickCheck:

21> eqc:quickcheck(examples:prop_delete()).
.................................................................
...................................
OK, passed 100 tests

We can read the additional line of code logically as

∀{I,L} ∈ int()× list(int()). . . .

making a universal statement of the truth of the property. QuickCheck instead
interprets {int(),list(int())} as a test data generator, which produces pairs
of an integer and a list of integers, and uses it to generate test cases which
are bound to the pattern {I,L} in the rest of the test. Note that the first
argument of ?FORALL is the binding occurrence of the variables I and L. Running
quickcheck then performs (by default) 100 random tests of the property, and
in this case, they all passed—each dot represents a successful test.

Of course, such a property is a partial formal specification of the delete
function; using QuickCheck, we test code against a formal specification, rather
than a set of test cases. We focus our effort on formulating properties, rather
than on coming up with corner cases. We find this shift in perspective not only
helps us test more effectively, but also improves our understanding of the code
under test, and of the problem that it solves.

1.3 Failure Diagnosis and Shrinking

Having defined a QuickCheck property, we can test it in very many test cases—
for example, as follows:

29> eqc:quickcheck(eqc:numtests(1000,examples:prop_delete())).
.................................................................
.................................................................
.................................................................
.................................................................
.................................................................
....................Failed! After 346 tests.
{2,[-7,-13,-15,2,2]}
Shrinking.(1 times)
{2,[2,2]}

The numtests function sets the number of tests that should be performed to
1,000, and QuickCheck then begins testing—but after almost 350 tests, one of
them fails! The next line of output

{2,[-7,-13,-15,2,2]}
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is the failed test case itself; it is the data generated in the ?FORALL, and so is the
value bound to the pattern {I,L}. So when I is 2, and L is [-7,-13,-15,2,2],
then the property fails.

In this example, as in many cases, the randomly generated test case contains
junk values that have nothing to do with the test failure itself. The next step
is therefore to search for a simpler, but similar test case that also fails. We call
this process “shrinking”, and its result in this case is the last line of output:

{2,[2,2]}

That is, the property fails when I is 2 and L is [2,2]. This is a minimal
example, derived (in this case) by discarding irrelevant elements from the first
failing case that was generated. We can think of shrinking as filtering away the
“noise” from the test case, that random generation inevitably creates, leaving
just the “signal” that is actually responsible for the test failure. Shrinking is
tremendously important in making QuickCheck useful, since it automates the
first stage of fault diagnosis—finding a minimal example that provokes failure.
Without it, randomly generated failing cases would often be so large as to be
almost useless.

When we see the result of shrinking, then the reason the property fails is
almost obvious. In this case,

16> lists:delete(2,[2,2]).
[2]

we only delete the first occurrence of 2 from the list,

17> lists:member(2,[2]).
true

with the result that 2 is still a member of the list after deletion,

18> not true.
false

and the test fails.

1.4 Conditional Properties

Now in fact, although the failed test does reveal a problem, it is not in the
implementation of delete. Rather, the problem is sloppiness or a misconception
on our part—the delete function does not delete all occurrences of the element
from a list, but only one occurrence. From the documentation:

“Returns a copy of List1 where the first element matching Elem is
deleted, if there is such an element.”

So we must correct the property, not the definition of delete.
One way to correct the property is to note that it does indeed hold, provided

the list contains no duplicates. So if we instead formulate a conditional property,
then our tests should pass. We can define such a property as follows:
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prop_delete() ->
?FORALL({I,L},{int(),list(int())},
?IMPLIES(no_duplicates(L),

not lists:member(I,lists:delete(I,L)))).

no_duplicates(L) -> lists:usort(L) == lists:sort(L).

where no_duplicates(L) returns true if L contains no duplicate elements, using
the library function lists:usort which sorts a list and removes any duplicates
in one go. The most interesting line here is

?IMPLIES(no_duplicates(L),...)

which we can read logically as no duplicates(L) =⇒ . . ., and which restricts
test cases to those where the precondition holds.

With this new definition, testing the property succeeds:

39> eqc:quickcheck(examples:prop_delete()).
....................x........x..................x.x......xx....
.......x....x....xx....x..x..........x.x.........x..
OK, passed 100 tests

The crosses (‘x’) in the output represent test cases which were generated, but
were not run because the precondition was not satisfied; they are not counted
among the 100 successful tests.

1.5 Custom Generators

Conditional properties can be very useful, but at the same time they incur a
cost during testing—some test cases are generated, then discarded. If too many
test cases are discarded, then testing will become very slow. Wouldn’t it be
better just to generate lists without duplicates in the first place?

QuickCheck provides a powerful API for defining custom generators, and
when test data satisfying complex invariants is needed, then writing a custom
generator is the only reasonable approach. In this case, a good way to generate
a random list without duplicates is first to generate a random list, and then
remove duplicates from it. We can define a custom list generator which does so
as follows:

ulist(Elem) ->
?LET(L,list(Elem),

lists:usort(L)).

Here Elem is a generator for list elements, so list(Elem) is a generator for
arbitrary lists of these elements. ?LET sequences two generators: it binds L to
the list generated by list(Elem), then uses it in a second generator—in this
case lists:usort(L), which just returns L with the duplicates removed. Note
that it would be wrong to write
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ulist(Elem) ->
L = list(Elem),
lists:usort(L).

because list(Elem) returns a generator, not a list, and lists:usort would
complain of an argument of the wrong type. Generators must be treated as
an abstract data type, and sequenced using ?LET when multi-stage generation is
needed1.

Once a custom generator is defined, then we can use it like any other:

prop_delete() ->
?FORALL({I,L},{int(),ulist(int())},
not lists:member(I,lists:delete(I,L))).

This property will pass any number of tests without discarding any test cases.

1.6 Distribution of Test Cases

Returning to our original—buggy—property, note that the problem was quite
hard to find: we had to run over 300 tests to do so. In retrospect, it’s clear
why: I is chosen from int(), while L is chosen from list(int()), and for the
property to fail then I must occur in L not just once, but twice. The probability
of finding a random integer twice in a randomly generated list is not very high!
This is why many tests were needed to provoke the error.

However, it is dangerous to guess the probabilities of different kinds of
test data; much better is to measure them. We can do so by instrumenting
a QuickCheck property to collect statistics during testing. For example, we
might instrument prop_delete as follows, to measure how often I appears at
all in L:

prop_delete() ->
?FORALL({I,L},{int(),list(int())},
collect(lists:member(I,L),

not lists:member(I,lists:delete(I,L))).

The effect of the line

collect(lists:member(I,L),...)

is to collect the value of lists:member(I,L) in each test, and after testing is
complete, to display the distribution of the values collected. In this case, testing
the instrumented property yields

34> eqc:quickcheck(examples:prop_delete()).
.............................................................
.......................................
OK, passed 100 tests
88% false
12% true

1Generators are a monad, and ?LET is its bind—for those familiar with those concepts.
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We can see from this that, most of the time, I doesn’t even occur once in L, let
alone twice!

Thus, almost ninety percent of the time, we are testing lists:delete in the
case of an element that does not appear at all in the list. It is clear that this is
not an efficient use of testing time. We can improve test efficiency by generating
test cases more carefully, to increase the probability—or even to guarantee—
that the element will occur in the list, at least once. One way to do so is to
generate the list first, and then simply choose one of its elements to delete. We
can express this by nesting ?FORALL,

prop_delete_2() ->
?FORALL(L,list(int()),
?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L))).

where elements(L) generates a random element of the list L. In fact, this
property has to be refined slightly further, since elements([]) fails with an
exception—what could it generate, after all? We add a precondition to avoid
this case:

prop_delete_2() ->
?FORALL(L,list(int()),
?IMPLIES(L /= [],
?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L)))).

and now testing this revised property finds a counterexample quickly.

45> eqc:quickcheck(examples:prop_delete_2()).
.xx.x.x.xx...x.x...x....x.......xx.....Failed! After 28 tests.
[-8,0,7,0]
0
Shrinking...(3 times)
[0,0]
0

In this small example, the poor distribution of tests data wasn’t really impor-
tant. We could find the fault quickly anyway, just by running a few hundred
tests. In more complex situations, measuring the distribution of test data, and
ensuring it is appropriate, is essential to find errors in a reasonable time.

1.7 Properties that Fail

When a property fails, it is tempting just to correct it or delete it—after all,
it was proven to be incorrect. Yet in some cases, it’s worth retaining such
properties, and recording the fact that they fail. We can do so by adding fails
to the property definition:
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prop_delete_misconception() ->
fails(
?FORALL(L,list(int()),
?IMPLIES(L /= [],
?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L)))))).

When such a property is tested, it is expected to fail:

49> eqc:quickcheck(examples:prop_delete_misconception()).
x...x.x....x..........OK, failed as expected. After 19 tests.

An error will be reported only if the property unexpectedly passes.
Failing properties serve two useful purposes.

• Firstly, they document a misconception that one might well harbour about
the code. “You might think that XY Z holds, but oh no! Here is a
counterexample.” By documenting the misconception, we help to ensure
that it will not be repeated.

• Secondly, they test our test case generation. If the distribution of test
data that we generate is not good enough to falsify the property within
the specified number of tests, then an error is reported.

1.8 Points to Remember

Using QuickCheck, we test code against a formal specification. Often, as in
the example we presented, the errors that emerge are in the specification, not
the code. Do not hold formal specifications in awe just because they are called
specifications—they are as likely to be wrong as programs. Errors are revealed
by inconsistencies between the properties and the code, which describe the
same behaviour in two different ways. When an inconsistency is found, it is
the developer’s responsibility to decide whether the code or the specification
is wrong, and make an appropriate correction. This results not only in high
quality code, but in a specification which has been tested against the code, and is
therefore much more likely to be correct than a formal specification which has
simply been formulated.

The biggest danger in using QuickCheck is that we no longer see the test
data—nor would we want to, there is far too much of it. As a result, we
may be lulled into a false sense of security by a large number of passing tests,
but fail to notice that the distribution is badly skewed. For example, if the
list(int()) generator were always to generate the empty list, then all the
tests in this section would pass—but that would mean very little. QuickCheck
users cannot abdicate responsibility for the test data, just because they do not
see it—but they exercise that responsibility at a higher level. Rather than
focussing on individual test cases, we collect statistics on the test data, and
satisfy ourselves that it is relevant and thorough. Traditional tools such as code
coverage measures can be used to help evaluate the quality of our test data.
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1.9 Exercises

1. Getting Started.
QuickCheck should already be installed on your account. To start it, start
an Erlang shell, and type

eqc:start().

QuickCheck will download an activation from the licence server, and begin
a session—you should see something like

Starting eqc version 1.162 (compiled at {{2009,4,22},{16,10,31}})
Licence reserved until {{2009,4,22},{19,1,51}}

If QuickCheck asks you for a registration identifier when you try to start
it, then it is not correctly installed. In this case, ask for help.

When you finish using QuickCheck, you should use eqc:stop() to release
the licence again (although this will happen anyway if you terminate the
Erlang shell).

You can test whether QuickCheck is working by running

eqc:quickcheck(true).

which tests the property true—which should pass 100 tests, of course.

QuickCheck is supplied with HTML documentation (generated by edoc);
you should find a bookmark to it in your browser. The two modules we
will use today are eqc, which defines properties and the shell API, and
eqc_gen which defines generators. Don’t take more than a quick look at
the documentation right now: it is more important to get on with some
practical exercises.

You have been provided with a file lecture1.erl, containing the example
properties presented above. Open the file in an editor. If you are using
Emacs, then you should find that a “QuickCheck” menu appears whenever
you edit an Erlang file. If you do not see this menu, then try running

eqc_emacs_mode:install().

in an Erlang shell, then restarting Emacs. Clicking on the menu, you
should see sub-menus “Properties” and “Generators” that contain all the
forms of property and generator that QuickCheck provides: if you’re look-
ing for something, this is a good way to find it. Choosing one of the func-
tions from the menu prompts you for the parameters. The “full module
header” entry under “Properties” can be used for quickly creating a new
QuickCheck specification module. If you aren’t using Emacs, then no such
support is provided. You will need to manually insert
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-include_lib("eqc/include/eqc.hrl").

at the head of each module that uses QuickCheck, to make the QuickCheck
API available.

Compile the lecture1 file, and use QuickCheck to test the two properties
it contains.

c(lecture1).
eqc:quickcheck(lecture1:prop_delete()).
eqc:quickcheck(lecture1:prop_delete_misconception()).

2. Simple numeric properties. Add properties to the lecture1 file stating
that the square of a real number is always positive, and that the square
root of a real squares to the original real. You will need the generator for
real numbers, which is called real(), and the square root function, which
is called math:sqrt.

You may find this informal partial grammar of properties helpful:

<property> ::= ?FORALL(<pattern>,<generator>,<property>)
| ?IMPLIES(<boolean expression>,<property>),
| collect(<expression>,<property>)
| begin <erlang expressions>, <property> end

The last case was not presented in the lecture, and is just there to remind
you that a begin. . . end block whose value is a property can also be used as
a property. The Erlang expressions can also bind variables—for example,
they might be

Y = math:sqrt(X)

3. Properties of deletion. The properties developed in the lecture are far
from a complete characterization of deletion. To strengthen the specifica-
tion, implement, test, and debug if necessary, these properties too:

(a) Deleting an element that does not occur in a list leaves the list un-
changed.

(b) Deleting X from L1++[X]++L2 returns L1++L2.

Together, these properties completely characterize deletion.

4. Choice of test data So far, we have generated list elements using the
primitive generator int(), which generates values between ±30, roughly.
We could have specified the upper and lower bounds explicitly, using the
generator choose(-30,30) instead. Use this generator to experiment with
larger and smaller ranges of test data, and investigate the effect this vari-
ation has on the number of tests needed to falsify the property
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prop_delete() ->
?FORALL({I,L},{elem(),list(elem())},

not lists:member(I, lists:delete(I,L)))

(where elem() is the element generator that you define). What general
lesson can you draw about the choice of test data generator?

5. Generating lists without duplicates. We saw a simple way to generate lists
without duplicate elements above: just generate a random list, then sort
it with usort. One disadvantage of this method is that it only generates
sorted lists, and so the properties we tested using it might only hold for
sorted lists. Define your own generator for lists without duplicates that
does not suffer from this limitation—rather, it should potentially be able
to generate any list of elements without duplicates. You may find the
function eqc_gen:sample(G) useful, which displays a selection of values
generated by G; alternatively you can collect statistics about your gener-
ated values using a property of the form

prop_collect() ->
?FORALL(X,<my generator>,

collect(<some property of X>,
true)).

Hint: one solution to this exercise uses the list difference operator Xs--Ys.
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1.10 lecture1.erl

-module(lecture1).
-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

prop_delete() ->
?FORALL({I,L},
{int(),list(int())},
?IMPLIES(no_duplicates(L),
not lists:member(I,lists:delete(I,L)))).

no_duplicates(L) ->
lists:usort(L) == lists:sort(L).

ulist(Elem) ->
?LET(L,list(Elem),

lists:usort(L)).

prop_delete_misconception() ->
fails(
?FORALL(L,list(int()),
?IMPLIES(L /= [],
?FORALL(I,elements(L),
not lists:member(I,lists:delete(I,L)))))).
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2 Symbolic Test Cases

2.1 An Abstract Data Type of Dictionaries

In this section we shall introduce a number of methods useful for testing data-
structure libraries. As an example, we shall test the dict module from the
Erlang standard libraries. This module implements a key-value store as a purely
functional abstract data type, with a rich API containing such functions as

• new()—which returns a new, empty dictionary,

• store(Key,Val,Dict)—which returns a new dictionary extending Dict
with the pair {Key,Val},

• fetch(Key,Dict)—which returns the value associated with Key in Dict.

The representation of dictionaries is complex, and our goal is not to understand
it: we aim to test dict without needing to understand the internal representa-
tions. Thus we are engaged in black box testing, where we test the module’s
API, but need know nothing about the module internals. This is an appropriate
kind of testing for the user of the dict module to apply.

We note in passing that the developer of the dict module would no doubt be
interested in other properties, such as that invariants of the dictionary represen-
tation are preserved. This would be an example of “white box” testing, in which
the module internals are also tested. Both kinds of testing are appropriate in
some situations, and of course, QuickCheck can be used for either.

2.2 Generating Dictionaries

We begin by testing a very simple property indeed: the dict library provides a
way to extract the list of keys from a dictionary; we shall check that each key
is unique.

prop_unique_keys() ->
?FORALL(D,dict(),
no_duplicates(dict:fetch_keys(D))).

Now this property might or might not be true, depending on how the dict
library is designed, but it is reasonable to test it in any case—by doing so, we
will improve our understanding of the dict library. Thus at this point we are
using QuickCheck as a program understanding tool, rather than a testing tool.

However, we cannot begin to test this property until we can generate dictio-
naries. Since we do not understand the structure of dictionaries, the only way
we can do so is using the API that the dict library provides. To begin with, we
shall use only the dict:new and dict:store operations to generate test data.

A first stab at a dictionary generator might be as follows:

dict() ->
oneof([dict:new(),
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?LET({K,V,D},{key(),value(),dict()},
dict:store(K,V,D))]).

The oneof function is provided by QuickCheck: it combines a list of generators
into a generator that chooses one of the generators randomly, and then uses it
to generate its own result. In this case we either generate a new dictionary, or
generate a dictionary in two stages (?LET), first by choosing a key, value, and
(recursively) a dictionary, then by storing the key value pair in that dictionary
D. Note that we can freely use values as generators (dict:new()), and use tuples
(or lists for that matter) containing generators as generators themselves.

We can use oneof to generate more interesting data as keys and values
also—for example,

key() -> oneof([int(),real(),atom()]).
value() -> key().

Here the atom() generator just chooses from a representative sample of atoms:

atom() -> elements([a,b,c,undefined]).

(where elements is another QuickCheck function that just generates one of the
elements of a list).

Now although the dict() generator above looks appealing, it does not actu-
ally work—and the reason is that Erlang is a strict programming language. The
second choice in the list passed to oneof contains a recursive call of dict(),
and this is an infinite recursion. Even though oneof only uses one element of
its argument, the entire list, with all of its elements, must be evaluated since
Erlang is strict. Thus, even when oneof chooses an empty dictionary, we still
recursively construct another dictionary to store into—and the infinite loop is
a fact.

We would often like to use lazy evaluation when building generators, so that
only the part of the generator that is actually used is ever constructed. To
make this possible, QuickCheck provides a generator construction ?LAZY(Gen),
which is entirely equivalent to Gen, except that constructing the generator is
always constant time. The price of constructing the argument is paid only if
the generator is actually used. Thus we can avoid the infinite loop in the dict()
generator as follows:

dict() ->
?LAZY(
oneof([dict:new(),

?LET({K,V,D},{key(),value(),dict()},
dict:store(K,V,D))])

).

Only one ?LAZY is needed to guarantee that recursive calls to dict() terminate
at once.

Now we can test our simple property, and. . . surprise, surprise. . . it fails!
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9> eqc:quickcheck(eqc:numtests(10000,examples2:prop_unique_keys())).
.....................................................................
.....................................................................
.....................................................................
.....................................................................
.....................................................................
.....................................................................
....................................Failed! After 451 tests.
{dict,2,16,16,8,80,48,

{[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]},
{{[[0.0|0.0],[0|0.0]],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]}}}

false

Thus this is an example of a dictionary which contains duplicate keys—but the
failure report reveals a problem with our approach. Since we are engaged in
black box testing, we do not understand the representation of the problematic
dictionary that QuickCheck has reported. We do not even know where the keys
are in the structure that we see! Clearly, displaying the representation of failing
test cases is not appropriate for black box testing—and in the next subsection,
we will see how to avoid it.

2.3 Symbolic Test Cases

As we just saw, the representation of test data is often not useful for under-
standing a test failure. Instead, we would like to know how the test data was
constructed using the API under test. We can indeed display this information
instead—if we construct a symbolic representation of the test case, instead of
its actual value.

QuickCheck supports a simple symbolic representation of function calls as
Erlang terms: the term {call,M,F,Args} is used to represent the function
call M:F(. . . Args. . . ). Symbolic representations can be interpreted using the
function eval(X), which takes any term X containing symbolic function calls,
and replaces each call by its value. Thus we can convert our dictionary generator
to generate symbolic dictionaries instead, and add a call of eval to the property
like this:

prop_unique_keys() ->
?FORALL(D,dict(),

no_duplicates(dict:fetch_keys(eval(D)))).

The symbolic dictionary generator can be defined as follows:

dict() ->
?LAZY(oneof([{call,dict,new,[]},

{call,dict,store,[key(),value(),dict()]}])).

Note that we no longer need to use ?LET to generate the key, value, and recursive
dictionary before constructing the call to dict:store. . . we can simply insert
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their generators directly into the symbolic call. These generators will still be
converted to proper values before the call to dict:store is actually made, since
this now happens later on in eval(D), rather than during the generation of the
test data.

Now when we test the property, then the failing case is reported in an un-
derstandable form:

13> eqc:quickcheck(eqc:numtests(10000,examples2:prop_unique_keys())).
...Failed! After 4 tests.
{call,dict,store,

[1,0.0,
{call,dict,store,

[0.0,undefined,
{call,dict,store,

[-1.0,c,
{call,dict,store,

[0.0,1,
{call,dict,store,

[0,b,
{call,dict,store,

[1.0,1,
{call,dict,store,

[a,-1.0,{call,dict,new,[]}]}]}]}]}]}]}]}

We can see exactly how the dictionary with non-unique keys was constructed
using the dict API: it is the value of

dict:store(1,0.0,
dict:store(0,0,undefined,
dict:store(-1.0,c,
dict:store(0.0,1,
dict:store(0,b,
dict:store(1.0,1,
dict:store(a,-1.0,
dict:new())))))))

It must be admitted that this information is less useful than we might have
hoped. It is hard to believe that such a complex construction is necessary to
provoke the problem we have discovered. But wait. . . this is just the test case
that QuickCheck first generated, which as we already learned contains a lot of
random noise. Shouldn’t it shrink to a simpler case? Indeed, it does—here is
the result of shrinking in this case:

Shrinking.........(9 times)
{call,dict,store,

[0,0.0,
{call,dict,store,

[0.0,a,
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{call,dict,store,
[0.0,a,
{call,dict,store,

[0.0,0,
{call,dict,store,

[0,a,
{call,dict,store,

[0.0,0,
{call,dict,store,

[a,0.0,{call,dict,new,[]}]}]}]}]}]}]}]}
false

Unfortunately, this term is the same size as, and has the same structure as,
the original. The only simplification is that some keys and values have been
replaced by others—all the numbers are now zero, for example. Sadly, this is
only of limited help in understanding the cause of the failure.

What we would like, of course, is to see QuickCheck simplify the test case
be eliding unnecessary symbolic calls. Why doesn’t this happen? The answer
is that QuickCheck cannot know the semantics of the test data, and so cannot
know which simplifications make sense. For example, we know that it makes
sense to simplify {call,dict,store,[K,V,D]} to just D, because D is a simpler
argument of the same type. But QuickCheck cannot know this—unless we tell
it! In the next section we will see how to tailor QuickCheck’s shrinking strategy
so that it shrinks these examples well.

2.4 Shrinking Symbolic Tests

Shrinking is one of the most useful features of QuickCheck, and so in addition
to built-in strategies, QuickCheck provides many ways to tailor the shrinking
for particular kinds of test data. Shrinking is thus very much under the users’
control, and can be used to replace test data by any data that the user considers
“simpler”—even terms that are actually larger, if that is what the user wants.
Shrinking is specified as a part of generators: a QuickCheck generator specifies a
set of possible test data, a probability distribution over that set, and a shrinking
strategy.

In particular, QuickCheck provides a construction

?LETSHRINK([X1,X2,...],
[G1,G2,...],
Result(X1,X2,...))

which is intended for use in recursive generators, such as the dict() genera-
tor above. ?LETSHRINK generates a list of values using [G1,G2,...] (which
are intended to be the recursive components of the result), binds them to the
variables X1, X2,. . . , then returns a value generated by Result. Should the re-
sulting test fail, then QuickCheck will try to simplify this result to each of the
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values X1, X2,. . . in turn—in addition to the other shrinking steps inherent in
G1,G2,\dots and \verbResult!.

For example, to allow symbolic calls of dict:store to be elided, we could
use ?LETSHRINK as follows:

dict() ->
?LAZY(oneof([{call,dict,new,[]},

?LETSHRINK([D],[dict()],
{call,dict,store,[key(),value(),D]})])).

Now symbolic calls {call,dict,store,[K,V,D]} can shrink to D.
With this new generator, failing test cases shrink much more effectively. For

example,

20> eqc:quickcheck(eqc:numtests(10000,examples2:prop_unique_keys())).
...Failed! After 4 tests.
{call,dict,store,

[-1.0,b,
{call,dict,store,

[-1,-1.0,
{call,dict,store,

[c,c,
{call,dict,store,

[0,-1,
{call,dict,store,

[1.0,b,{call,dict,new,[]}]}]}]}]}]}
Shrinking.....(5 times)
{call,dict,store,[-1.0,a,{call,dict,store,[-1,0.0,{call,dict,new,[]}]}]}
false

All but two calls of store shrink away, and we are left with a dictionary that
just contains two keys— -1.0 and -1. Hmmm. Does this dictionary contain
duplicate keys? That may depend very critically on the exact definition of
“duplicate”. . . !

We will not diagnose this problem further, but just close by remarking that,
just as in the last section, effective shrinking makes the cause of a test failure
very easy to spot.

2.5 Hoare Testing of Abstract Data Types

We have now developed a good generator for dictionaries, but the property we
are testing is still very weak—many incorrect implementations would satisfy
this property. In this section, we shall see how to define stronger properties
that characterize correct behaviour of the library. These properties are based
on Hoare’s 1972 article on proving the correctness of abstract data type imple-
mentations, and so we refer to this kind of testing as “Hoare testing”.

The key idea is to relate the implementation to an abstract model of the data
type, which is to taken to define correct behaviour. Hoare used set-theoretic
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models, but we need executable Erlang ones, and so we shall model dictionaries
by lists of key-value pairs, or “property lists”. With this simple representation,
it is easy to see how each operation should behave; moreover we can use another
Erlang library, the proplists library, to define the operations in the model.

Having chosen a model, the first step is to relate the implementation to the
model. This is done by defining an abstraction function that uses the dict API
to convert a dictionary representation into the corresponding abstract value. In
this case, this is very easy, since the dict API already contains an operation to
do precisely that:

model(Dict) -> dict:to_list(Dict).

Now, to test each operation, we need to define a corresponding operation
in the model. For example, adding a key-value pair to a property list can be
achieved by

model_store(K,V,L) -> [{K,V} | L].

Correctness of each operation can then be formulated as a commuting diagram:

In other words, for any dictionary Dict, storing a key-value pair, and con-
verting the result to its model, should give the same result as converting the
original dictionary to its model, and adding the key-value pair using the model
operation. If every operation in the API satisfies such a commuting diagram,
then any program using the dict operations will behave in the same way as an
abstract program using model operations instead. That is, if these properties
hold, then dict is a correct implementation of the model.

Commuting diagrams such as these can easily be represented as QuickCheck
properties. For example, the diagram above can be represented as:

prop_store() ->
?FORALL({K,V,D},

{key(),value(),dict()},
begin
Dict = eval(D),
model(dict:store(K,V,Dict)) ==
model_store(K,V,model(Dict))

end).
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A similar property can be written for each of the API operations; if all these
properties pass an arbitrary number of tests, then we know that the implemen-
tation of dictionaries is correct. Thus, a complete test suite for the dict module
should contain one such property for each API operation.

Yet this alone is not enough to test the dict module thoroughly. It is also
important that the dict() generator used in these properties can generate any
possible dictionary—otherwise we are testing the correctness properties in only
a subset of the relevant cases. The generator presented above may not do so,
because it only constructs dictionaries using dict:new and dict:store. The
real dict API provides a variety of other ways to construct dictionaries, such
as append, update, filter and merge—and any one of these operations might
break a dictionary invariant and construct a dictionary representation on which
other operations fail. We therefore need to include every API operation that
returns a dictionary in the dict() generator.

When we do so, then note that the property above does not only test the
store operation, it actually tests store plus all of the operations used to con-
struct the test data Dict—a much more thorough test.

We leave completion of the test suite as an exercise for the reader. For now,
let us just test the property above—which reveals that it is not true!

29> eqc:quickcheck(eqc:numtests(10000,examples2:prop_store())).
..Failed! After 3 tests.
{0,0.0,{call,dict,store,[0,0.0,{call,dict,new,[]}]}}
false

That is, when we insert they key-value pair {0,0.0} into a dictionary that
already contains it, then the implementation and the model disagree. Assuming
that a well-tested library module is probably correct, then there is a deficiency
in our model—but it is far from clear what that might be. In the next section
we will see how to debug failing properties of this sort.

2.6 Debugging Failing Properties

When a property fails, we often need more information than just the inputs
to the test if we are to diagnose the failure easily. An easy way to generate
this information is just to print additional values using io:format from within
the property. Yet if we simply add such calls to our properties, then output is
generated during every test QuickCheck runs—including the tests that pass, and
the tests that QuickCheck runs while searching for a minimal failing example.
The result is usually an enormous volume of information, almost all of which is
irrelevant.

Ideally, we would like to add print-outs that are performed only in test cases
that QuickCheck is reporting, namely the first failed test, and the final result
of shrinking. QuickCheck provides another form of property to achieve this:

?WHENFAIL(Action,Property)
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is equivalent to Property, but also performs Action when a failed test is re-
ported to the user. Typically Action is a call to io:format that displays useful
additional information.

For example, in the properties used in Hoare testing, then the property holds
if two terms in the model are equal. We can replace the equality test by a call
of the following function

equal(X,Y) ->
?WHENFAIL(io:format("~p /= ~p~n",[X,Y]),

X==Y).

which is logically equivalent, but reports the two values that differ when a
test fails. With this modification, retesting prop_store generates the following
output:

31> eqc:quickcheck(eqc:numtests(10000,examples2:prop_store())).
Failed! After 1 tests.
{a,0,

{call,dict,store,
[a,undefined,
{call,dict,store,

[0,b,{call,dict,store,[undefined,0,{call,dict,new,[]}]}]}]}}
[{0,b},{a,0},{undefined,0}] /= [{a,0},{0,b},{a,undefined},{undefined,0}]
Shrinking...(3 times)
{a,0,{call,dict,store,[a,a,{call,dict,new,[]}]}}
[{a,0}] /= [{a,0},{a,a}]
false

The penultimate line displays the two abstract values that differ; we see im-
mediately that the one on the right (produced by our model_store function)
contains a duplicate key, which the real implementation avoided. Referring back
to the definition of model_store,

model_store(K,V,L) -> [{K,V} | L].

we see at once that it does not model a dictionary which maintains only a single
value per key—which is what dict is intended to do. So as we suspected, our
model needs to be adjusted to match the real intent of the library.

In the exercises that follow, we will improve this specification of the dict
library.

2.7 Exercises

You are provided with a file lecture2.erl, which contains some of the def-
initions from this lecture—namely, a partial specification of the dict library.
Compile the file, and run

eqc:module(lecture2)

21



which tests all the properties exported from the module. You will see that both
properties fail.

1. Property debugging. The property prop_dict() expresses a corre-
spondance between dictionaries constructed from a property list using the
from_list function, and the original property list—but it fails. Generate
several counter-examples using QuickCheck, examine them for common
features, and form a hypothesis about why the property fails. Make a
simple correction to the property so that it passes instead.

2. Correcting the model. The property prop_store() performs Hoare
testing of the store operation, but it fails because the model is incorrect.
Use QuickCheck to derive counterexamples to the property, then adjust
the model (i.e. the functions model and model_store) until the property
passes. Do not modify the property itself—there is no need to.

3. Adding an operation. So far, the only operations tested are new and
store. Read the documentation of dict:erase(Key,Dict), and define a
model version model_erase and Hoare correctness property prop_erase.
Use QuickCheck to check that your model is correct.

4. Extending the generator. To test erase properly, it should also be
added to the dict() generator, since it provides yet another way to build
dictionaries. Do so, and think specifically about how to shrink symbolic
dictionaries once erase is introduced. In general, calling erase may make
a dictionary smaller—does this mean that shrinking ought to insert calls
of erase, rather than remove them?

5. Controlling size in generators. The purpose of this exercise is to add
the merge function to the tested API—read the documentation of this
function now. Testing merge demands that we construct a model and a
Hoare property, but also that we add it to the dict() generator. This
step is the trickiest, so it is the one we will focus on.

To begin with, add a generator for calls of merge to the dict() generator,
using the approach illustrated in the lecture. You will need to generate
random 3-argument functions that return values, which you can do using
the generator function3(value()). Compile your specification and test
prop_store() again. You are likely to find that you run out of memory.

The problem is that a symbolic call of merge contains two recursive dic-
tionaries, with the result that generated terms can grow exponentially. In
this situation, it is essential to limit the size of terms that dict() can
generate. Add a natural number parameter Size to the dict() genera-
tor, and reduce it in the recursive calls, to ensure that generated terms
cannot contain more than Size+1 symbolic calls. (The smallest possible
dictionary, {call,dict,new,[]}, contains one call, and must be gener-
ated when Size is zero). You can redefine an unparameterised dictionary
generator via
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dict() -> ?SIZED(Size,dict(Size)).

which gives control of the Size parameter to QuickCheck. Now check that
your properties still pass using

eqc:module(lecture2).

6. Adding real numbers. The key() generator provided in lecture2.erl
generates only integers and atoms—real numbers, which caused problems
in the lecture, have been omitted for simplicity. Add real() as a possible
way to generate keys, and retest all the properties in your module using

eqc:module({numtests,1000},lecture2).

which returns a list of the properties that fail. You can inspect the coun-
terexamples found using eqc:counterexamples(). Diagnose the failures,
and correct your model so that the properties pass once again. Hint: read
section 6.11 of the Erlang reference manual, on “Term Comparisons”.

7. Specifying merge. Complete your specification of merge, by adding a
model_merge to the model, and a Hoare property prop_merge(). (This
will be easiest to do if you do not include real numbers in the test data).

This exercise can of course be continued much further. There are many more
operations in the dict module, waiting to be specified. There are other similar
modules—such as orddict and gb_trees—which provide related functionality
in a different way. These modules could be tested against the same (or a very
similar) model. Why not choose an abstract datatype implementation from the
Erlang libraries, and build a complete QuickCheck specification of your own?
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2.8 lecture2.erl

%%% File : lecture2.erl
%%% Author : <John Hughes@HALL>
%%% Description :
%%% Created : 21 May 2009 by <John Hughes@HALL>

-module(lecture2).
-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

%% A generator for symbolic dictionaries

dict() ->
?LAZY(oneof([{call,dict,new,[]},

?LETSHRINK([D],[dict()],
{call,dict,store,[key(),value(),D]})])).

%% Auxiliary generators

key() ->
oneof([int(),atom()]).

value() ->
key().

atom() ->
elements([a,b,c,undefined]).

%% Dictionaries constructed using from_list behave like property lists

prop_dict() ->
?FORALL(L,list({key(),value()}),
?IMPLIES(L/=[],
?FORALL(K,elements(proplists:get_keys(L)),
equal(proplists:get_value(K,L) ,

dict:fetch(K,dict:from_list(L)))))).

%% Hoare testing: the model

model(Dict) ->
dict:to_list(Dict).

%% Hoare testing of store
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model_store(K,V,L) ->
[{K,V}|L].

prop_store() ->
?FORALL({K,V,D},
{key(),value(),dict()},
begin

Dict = eval(D),
equal(model(dict:store(K,V,Dict)),

model_store(K,V,model(Dict)))
end).

%% Property auxiliary

equal(X,Y) ->
?WHENFAIL(io:format("~p /= ~p~n",[X,Y]),
X==Y).
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3 Testing Stateful Systems

3.1 The Process Registry

In many cases, real software manipulates internal state and offers a stateful
API. A useful testing tool must be able to test stateful systems also, not just
purely functional libraries. In this section we introduce QuickCheck’s support
for testing stateful software using abstract state machines.

The example we use for illustration is the Erlang process registry. This is a
local name server that enables Erlang processes to find services running on the
same node. Processes are named by atoms, and the central part of the API is
the three functions

• register(Name,Pid)—which creates an association between an atom Name
and a process identifier Pid,

• unregister(Name)—which removes any association for the given Name,
and

• whereis(Name)—which returns the pid associated with Name, if any.

These functions are all in the erlang module containing built-in functions;
detailed documentation can be found in the documentation of that module.

Interestingly, the process registry is really just another example of a key-
value store—and we shall test it against a model in a similar way.

3.2 Testing Stateful Interfaces

Stateful APIs offer new challenges for testing (one good reason to prefer purely
function APIs whenever possible!). The state is an implicit argument to and
result from every API call, yet it is not directly accessible to the test code. We
would like to model the state abstractly, just as we did in the previous section,
and test in a similar way—but because the state is not directly observable, then
we cannot define an abstraction function model which recovers the abstract
state before and after a test. Although such a function should exist in principle,
and the same diagram ought to commute as in the previous section, we cannot
implement our tests in this manner. We must find an alternative.

However, although we cannot observe the abstract state directly, we can
compute it using state transition functions that model the operations in the
API under test. These functions correspond to model_store, model_erase and
so on defined above, and are used in the same way to predict the model state
after each operation—but whereas in the last section we could directly compare
the predicted model state to the actual observed one, in this section we will only
be able to use the results returned by the API operations. Our approach will
thus be to test whether the real observed results of each API call are consistent
with the predicted model state. If the predicted state and the actual state ever
become inconsistent, then this inconsistency will eventually be observed via the
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result of some sequence of API calls—unless, of course, no sequence of calls can
distinguish the two, in which case the difference is arguably of no importance.

The test cases we generate for stateful systems are sequences of API calls.
We can gain a general idea of how such test cases are generated and used from
the property used to test the registry:

prop_registry() ->
?FORALL(Cmds,commands(?MODULE),
begin
{H,S,Res} = run_commands(?MODULE,Cmds),
cleanup(),
?WHENFAIL(
io:format("History: ~p\nState: ~p\nRes: ~p\n", [H,S,Res]),
Res == ok)

end).

Referring to this definition, we see that:

• We quantify over a list of symbolic commands, Cmds, generated by the
function commands, which is a part of QuickCheck. These correspond to
the symbolic dictionaries of the previous section.

• We execute the list of commands using run_commands, another function
provided by QuickCheck, which corresponds to eval in the previous sec-
tion.

• The result of run_commands is a triple whose third component, Res, sum-
marizes the outcome of the test. If this is the atom ok, then the test
passed.

• The other components of the result contain debugging information; it is
useful to display this when a test fails using ?WHENFAIL.

• After each test, the registry must be restored to a known state in prepara-
tion for the next test; properties for testing stateful systems almost always
need to contain clean-up code to do this.

• Both commands and run_commands take a module name as a parameter.
This module provides callbacks that define the behaviour of the state ma-
chine model, and it is these callbacks that are the heart of the QuickCheck
specification.

In the next sections we will explain the callbacks that make up a QuickCheck
state machine specification. Definitions of these callbacks must be placed in,
and exported from, the module whose name appears in the property above.
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3.3 Generating Commands

The first callback we shall consider, called command, defines how the symbolic
API calls that make up a test case should be generated. Since we intend to test
register, unregister and whereis, then we might expect to define

command() ->
oneof([{call,erlang,register,[name(),pid()]},

{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]}
]).

where name() generates a random atom, and pid() generates a random process
identifier. We generate names via

name() -> elements([a,b,c,d]).

choosing atoms from a small set so that a test case is likely to refer to the same
name several times. But what about pid()? This should choose from a small
pool of process identifiers—but process identifiers must be created dynamically.
It is important to create new process identifiers each time a test case is run,
since otherwise earlier tests may corrupt the test data (process identifiers) used
in later ones, leading to test failures that are virtually impossible to diagnose.

It follows that process creation must be a part of the generated test cases.
This is easy to achieve by defining a local function spawn() that just starts a
process that does nothing, and including calls in test cases:

command() ->
oneof([{call,erlang,register,[name(),pid()]},

{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

However, we still have to arrange for pid() to choose one the processes previ-
ously created by a spawn() in the same test case.

In order to do so, we maintain a test case state which collects all the process
identifiers generated by spawn(), and we parameterise pid() (and command())
on this state so that previously spawned pids can be chosen:

command(S) ->
oneof([{call,erlang,register,[name(),pid(S)]},

{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

The command callback is thus a one-argument function, not a zero-argument one
as it appeared to be earlier. In fact, this kind of situation arises frequently: it
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is often the case that a resource allocated by one API call needs to be returned
as a parameter to a later one, and so a mechanism for supporting this is an
important part of a state machine testing framework.

We now need to maintain a test case state for two different reasons: firstly,
as an abstract model of the state of the system under test, and secondly, so
that we can generate call sequences that reuse the results of earlier calls later
in the sequence. In principle we might track two separate states, but we have
chosen instead to merge them into one. We are thus now in a position to choose
a model state for testing the process registry: it is an Erlang record defined as
follows:

-record(state,{pids=[],
regs=[]
}).

The first component is a list of the pids spawned in the current test, while the
second is a property list modelling the state of the registry. With this definition,
we can finally define

pid(S) -> elements(S#state.pids).

3.4 Modelling State Transitions

We have now defined how to generate the next command from a test case state,
but we have yet to define how each command changes the state. We do this via
a next_state callback, which maps the state before a call, and the symbolic
call, into the resulting state afterwards. Since this state may depend on the
actual result of the call, then this is also supplied as a parameter. For example,
the clause for spawn adds the result of the call (the parameter V, a pid) to the
list of pids in the test case state:

next_state(S,V,{call,_,spawn,_}) ->
S#state{pids=[V|S#state.pids]};

The next_state function is used to simulate the test case state as a test case
is generated, enabling the command generator in the previous section to refer to
previously spawned pids.

Similarly, the state transitions for register and unregister make the ex-
pected changes to the modelled registry contents:

next_state(S,_V,{call,_,register,[Name,Pid]}) ->
S#state{regs=[{Name,Pid}|S#state.regs]};

next_state(S,_V,{call,_,unregister,[Name]}) ->
S#state{regs=proplists:delete(Name,S#state.regs)};

Finally, we include a catch-all clause specifying that other calls do not change
the model state.

next_state(S,_V,{call,_,_,_}) ->
S.
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In this case the only other call is whereis, and sure enough, we do not expect
it to change the registry state.

We also need to define the initial test case state, which is done by a third
callback that can simply construct a state record with default field values:

initial_state() -> #state{}.

3.5 Conditional Generation

Glossing over a few details, we are now ready to run our first tests. When we
do so, they fail immediately:

40> eqc:quickcheck(reg_eqc:prop_registry()).
Failed! Reason:
{’EXIT’,{eqc,elements,[[]]}}
After 1 tests.
false

The error message indicates that the test failed because of an exception raised
when elements([]) was called—to generate an element of the empty list! Of
course, this is impossible, so elements should not be called in this way—we have
a bug in our command generator. The problem is that in the initial test case
state, S#state.pids is empty—and so if we try to generate a call of register,
then we must choose a pid from the empty list, which raises the exception. The
solution is to include register as an alternative in the list of possible commands
only if S#state.pids is non-empty. We could do so using a case-expression,
but we prefer a little trick which offers a very concise notation:

command(S) ->
oneof([{call,erlang,register,[name(),pid(S)]}

|| S#state.pids/=[]] ++
[{call,?MODULE,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

The first operand of ++ above is a list comprehension with no generators, a
form one does not see very often, but which is just what we need here. Such
a comprehension is evaluated as follows: [X||true] evaluates to [X], while
[X||false] evaluates to []. Thus the effect is to include the call to register
in the list from which oneof chooses precisely when the list of pids in the
state is non-empty. In fact, the generator for register is not even evaluated
if the condition is false—so such a list comprehension can be used as a kind of
“if. . . then. . . ” expression in Erlang, something many programmers more used
to imperative languages miss sorely.

With this change, our command generator works, and we can start running
tests for real.
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3.6 Specifying Preconditions

Once again, when we try to test our property, then it fails immediately:

42> eqc:quickcheck(reg_eqc:prop_registry()).
Failed! After 1 tests.
[{set,{var,1},{call,reg_eqc,spawn,[]}},
{set,{var,2},{call,erlang,whereis,[b]}},
{set,{var,3},{call,erlang,unregister,[d]}},
{set,{var,4},{call,reg_eqc,spawn,[]}},
{set,{var,5},{call,reg_eqc,spawn,[]}},
{set,{var,6},{call,erlang,register,[b,{var,5}]}},
{set,{var,7},{call,erlang,whereis,[c]}},
{set,{var,8},{call,erlang,whereis,[a]}},
{set,{var,9},{call,erlang,whereis,[a]}},
{set,{var,10},{call,erlang,register,[d,{var,1}]}},
{set,{var,11},{call,erlang,unregister,[d]}},
{set,{var,12},{call,erlang,register,[c,{var,1}]}}]

History: [{{state,[],[]},<0.2066.0>},{{state,[<0.2066.0>],[]},undefined}]
State: {state,[<0.2066.0>],[]}
Res: {exception,{’EXIT’,{badarg,[{erlang,unregister,[d]},

<...7 more lines...>]}}}

We can see from the output that test cases are more than just a list of symbolic
commands: they are a list of symbolic variable bindings. Just as {call,M,F,Args}
represents a function call symbolically, so {var,N} represents a variable. . . think
of it as vN . The test case above binds {var,1} to the result of spawn, {var,2}
to the result of whereis, and so on. Variables can be reused in the arguments of
later symbolic calls—for example, {var,1} is reused as an argument in the line
binding {var,10}. One of the main differences between eval and run_commands
is just that the latter manages these symbolic variable definitions, as well as per-
forming symbolic calls.

Looking at the diagnostic output from the ?WHENFAIL, we see that the reason
for the test failure was a badarg exception raised by unregister. However, the
test case is too complex for us to understand the problem immediately. Luckily,
it shrinks to a much simpler one—continuing the QuickCheck output, we see

Shrinking....(4 times)
[{set,{var,3},{call,erlang,unregister,[a]}}]
History: []
State: {state,[],[]}
Res: {exception,{’EXIT’,{badarg,[{erlang,unregister,[a]},

<...7 more lines...>]}}}
false

This test does nothing other than call unregister(a). Now it is pretty clear
that the exception is raised because we are unregistering a name which has
not previously been registered—and indeed, the documentation confirms that
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unregister is supposed to raise an exception in this case. We must revise our
model to reflect this.

One way to do so is to specify a precondition for unregister, stating that it
may only be called when the name to be unregistered is actually in the registry.
QuickCheck uses a fourth callback, precondition, to determine when API calls
may be made. We can define unregister’s precondition as follows:

precondition(S,{call,_,unregister,[Name]}) ->
unregister_ok(S,Name);

precondition(_S,{call,_,_,_}) ->
true.

unregister_ok(S,Name) ->
proplists:is_defined(Name,S#state.regs).

(where the second clause of the precondition callback was already present—
otherwise the tests would have failed with an undefined function). All precondi-
tions are satisfied in all tests that QuickCheck generates, so with this addition
then the problem we encountered can no longer occur.

3.7 Specifying Postconditions

The change we just made to the specification is an example of “positive testing”—
we restrict test cases to those in which we expect unregister to work. Yet it
is in a sense unsatisfactory. We know that unregister is intended to raise an
exception when called with a name that is not in the registry, but positive tests
will not test this. We might therefore prefer not to specify a precondition for
unregister, but instead check that an exception is indeed raised whenever it
ought to be. This kind of testing is referred to as “negative testing”, because
we also test the (specified) error behaviour of the system under test.

We can perform this kind of testing using QuickCheck by removing the
unnecessary precondition, and adding a postcondition for unregister instead.
Postconditions are defined via the fifth and final callback that makes up a
QuickCheck state machine model, which is passed the state before a call, the
symbolic call, and the actual result of the call, and is expected to return true
or false. We can add a postcondition for unregister as follows:

postcondition(S,{call,_,unregister,[Name]},Res) ->
case Res of
{’EXIT’,_} -> not unregister_ok(S,Name);
true -> unregister_ok(S,Name)

end;
postcondition(_S,{call,_,_,_},_Res) ->
true.

where once again, the last clause was already present. Examining the code, we
see that if the actual result Res is an exit value, then the postcondition holds
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only if the call was expected to fail, while if the actual result is true, then the
postcondition holds only if the call was expected to succeed.

Note that we have made heavy use of unregister_ok, which defines when a
call of unregister is expected to succeed. It is because such conditions are often
moved between pre- and post-conditions that we defined a separate function to
test it in the first place.

Our job is not quite complete. We have added a postcondition to test for an
exception, but this will have no effect unless we arrange to catch the exception
first—QuickCheck always considers an uncaught exception to be a test failure.
We can catch the exception by defining a local version of unregister that does
so,

unregister(Name) -> catch erlang:unregister(Name).

and replacing calls of erlang:unregister in test cases by calls of the local
version:

command(S) ->
oneof([...{call,?MODULE,unregister,[name()]},...]).

With these changes, we can now rerun our tests—and they will fail for a different
reason!

44> eqc:quickcheck(reg_eqc:prop_registry()).
.Failed! After 2 tests.
<... 35 lines omitted ...>
Shrinking......(6 times)
[{set,{var,1},{call,reg_eqc,spawn,[]}},
{set,{var,3},{call,erlang,register,[a,{var,1}]}},
{set,{var,4},{call,erlang,register,[a,{var,1}]}}]

History: [{{state,[],[]},<0.2101.0>},{{state,[<0.2101.0>],[]},true}]
State: {state,[<0.2101.0>],[{a,<0.2101.0>}]}
Res: {exception,{’EXIT’,{badarg,[{erlang,register,[a,<0.2101.0>]},

<... 7 lines omitted ...>]}}}
false

This time the failed test spawns a process, then tries to register it twice. We can
see from the failure reason that one of the calls to register raised a badarg
exception. The diagnostic information contains a history, in the form of the
state before and result of each operation performed, and the final state after
the last call—we can see that spawn returned the pid <0.2101.0>, the first call
of register returned true, and that {a,<0.2101.0>} was in the model state
after that call. It is not too big a stretch to guess that register is supposed
to raise an exception when the name to be registered is already present in the
registry, and so we now have enough information to refine our model further.

We will leave further model refinement to the exercises. For now, notice that
the same property has revealed two different bugs—or rather, inconsistencies
between the model and the real code. The ability to find different bugs using
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the same property is a major advantage of property-based testing over a fixed
set of test cases, in which one test case can hardly ever reveal more than one
bug.

3.8 QuickCheck in Industry

In these notes, we show how to use QuickCheck to test parts of the Erlang stan-
dard libraries—relatively simple (and well-tested) code, in comparison to real
industrial products. Yet the principles we have presented are equally applicable
to testing real software.

In a typical industrial scenario, QuickCheck might be used to test a system
that communicates with the outside world using one of the standardized tele-
com or internet protocols. In this case, a QuickCheck state machine is used to
generate test cases containing commands that send a protocol message to the
system under test, then wait for and check the response. Typically the protocol
messages are large and complex, and a significant amount of work goes into con-
tructing suitable generators. This work can be partially automated—tools exist
to convert both ABNF and ASN.1 grammars into QuickCheck generators—but
manual intervention is needed to generate protocol messages that “make sense”,
as opposed to random rubbish. The state machine then models just enough of
the internal state of the system to generate sensible message sequences, and
validate the responses. When a test fails, then QuickCheck finds a minimal
failing sequence as usual. We shall illustrate this with a couple of examples of
real bugs found using QuickCheck.

For example, in one project, QuickCheck was used to test a 3G radio base sta-
tion for mobile telephony (RBS), by sending control messages using the NBAP
protocol and observing the responses. An RBS maintains a number of radio
channels which are used to exchange information with the mobile phones in each
cell. During a call, there is a dedicated radio channel between the handset and
the base station, but even handsets which are not currently making a call need
to communicate with the base station occasionally. A single signalling channel
is used for this purpose, shared between all the handsets in a cell. Now, every
channel needs to be set up, and parameters such as the power level assigned—
this is done when another product, a Radio Network Controller, sends NBAP
commands to the base station telling it how to set up each channel. Note that
even though there is only one signalling channel, it still needs to be set up and
configured. Thus there is a command in the NBAP protocol for this purpose.
Although this command should only be sent once, since there can only be one
such channel, it is of course possible to send it to the base station more than
once—and it is easy to imagine situations in which this might really happen, for
example when a Radio Network Controller has crashed and is coming back on-
line. If the signalling channel has already been set up, than an RBS is supposed
to reject subsequent attempts to set it up again. We found this to be true for the
software we were testing—almost always. But QuickCheck found a combination
of parameters in the first and second set-up messages which caused the RBS to
accept the second set-up command—and to create two signalling channels at the
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same time. This violated a fundamental invariant of the base station software,
leading within a few seconds to a hard failure, with the base station becoming
unresponsive to all further commands. Interestingly, the first sign of trouble
turned out to be Java exceptions in the base station log. . . which surprised us
since we knew that the base station was implemented using C++! It transpired
that Java had been used to build an operator GUI, which visualized the state
of the base station, and this visualization was the first part of the software to
crash when the signalling channel invariant was violated.

In another project, QuickCheck was used to test an Ericsson Media Proxy.
This is a kind of firewall for multimedia IP-telephony (that is, carried using
the internet protocol); it is one component of a Session Border Gateway, that
isolates an operator’s network from the internet at large. The Media Proxy
opens and closes “media pinholes” to allow the media streams making up a call
to pass the firewall. It is controlled by the H.248 or Megaco protocol, which
defines commands to add and remove callers from a call (or “terminations” from
a “context”, in Megaco-speak). A call is created when the first caller is added,
and deleted when the last caller is removed—and just as in the process registry
tests, a call-ID is created by the first addition, and must be embedded in later
messages to the Proxy concerning the same call.

The Megaco protocol supports any number of callers in a call, but the Media
Proxy is restricted to just two. Nevertheless, QuickCheck found the following
command sequence that provoked a crash:

• First, two callers are added to a call (the normal situation).

• Now the call is “full”, and no further caller can be added—but one caller
can be removed.

• Now the call is not full: a third caller can be added, and then removed
again.

• The call is still not full; a fourth caller can be added and removed. On
this final removal, something inside the Proxy crashes!

This sequence of seven commands was minimal for provoking this crash.
This case is interesting for several reasons. Firstly, because it cannot rea-

sonably be found using manually constructed test cases—no tester in their right
minds would test this case! After all, if adding and removing a caller works
once, and works twice, then “by induction” it must work three times—right?
Yet it does not. More seriously, because it is expensive to construct test cases
manually, then it is impractical to test all sequences of seven commands, and
there is no a priori reason to suspect that this one is worth testing. Coverage
measures would not help here—it is likely that all the code, all the paths, and
all the state transitions were already covered by the first five commands, so
coverage measures would not indicate that we should go on to test the last two
also.

Secondly, this example illustrates the tremendous power of shrinking—this
minimal test failure was extracted from a random failing sequence of over 160

35



commands. The problem was tricky enough to diagnose from this minimal ex-
ample; from a sequence of 160 commands, diagnosis would have been impossible.

Thirdly, this case will probably never, ever arise in practice—but the failed
case is just the symptom of a fault, not the cause. The cause turned out to be
corruption of internal data-structures on removing a caller from a call—and this
corruption occurred every time a caller was removed. It just so happened that,
in the normal case, when the only thing following the removal of the first caller
was the removal of the second, then the data corruption passed unobserved.
The fourth to the seventh commands in the failing test are needed just in order
to convert the corrupted data into a crash. Even if it was not causing a problem
at the time, it was well worth while discovering and correcting this corruption.
After all, in a year’s time another developer might well modify the code, and
would naturally assume that the data structures inside such a tried-and-tested
product were correct—but they were not. The corrupt data would have been a
trap lying in wait for future developers, if QuickCheck had not revealed it and
enabled the problem to be fixed.

Interestingly, QuickCheck was able to reveal these corrupt data structures
even though we did not know of their existence! Had we known about them, and
added code to the specification to check their invariants after each call, then the
fault would have been found more quickly, and with a shorter failing test—only
the first three commands would have been needed to provoke a failure. But
this more detailed specification was not necessary to reveal the fault. This is
a general observation—we find that surprisingly simple properties often suffice
to reveal deeply-hidden bugs. Once software begins to go wrong, then there is
often some continuation which makes it go very wrong indeed—and so testing
basic properties can often reveal subtle bugs, if we only run enough tests. For
this reason it is often not worthwhile to formulate a complete formal specifica-
tion of the system under test, which can be quite expensive—we can trade off
specification effort against testing time instead.

An interesting study of two larger projects at Erlang Training and Consult-
ing, one developed with and one without using QuickCheck, appeared at the
ACM Erlang Workshop last year.

3.9 Exercises

You have been provided with an incomplete specification of the process registry,
in the file reg_eqc.erl. Inspect this file now. Note the line

-include_lib("eqc/include/eqc_statem.hrl").

at the top of the file, which is needed to make the QuickCheck state machine
features available. Should you need to develop such a specification yourself,
then a skeleton specification can be created by selecting “Complete eqc statem
spec” from the “State machine specs” menu in the QuickCheck Emacs mode.

1. Adding a precondition. Compile reg_eqc.erl, and use QuickCheck
to test prop_registry(). You will find that the property fails, because

36



register raises an exception. Define a function register_ok(S,Name,Pid)
which returns true of register(Name,Pid) ought to succeed in state S,
and use it to specify a precondition for register that enables this prop-
erty to pass.

Hint: the function lists:keymember may be useful.

2. Adding a postcondition. The previous exercise implements positive
testing of register. Now we shall implement negative testing instead.
First remove the precondition just added, and instead add a postcon-
dition for register saying that an exception is raised precisely when
register_ok is false. Revise your specification until prop_registry()
passes.

3. Testing whereis. Add another postcondition to your specification, test-
ing that whereis returns the correct result.

4. Killing processes. In this exercise, we shall investigate how the registry
behaves when processes crash. Add the following definition to reg_eqc.erl:

stop(Pid) ->
exit(Pid,kill),
timer:sleep(1).

This function kills the process referred to by Pid (and then waits a mil-
lisecond for it to die completely). Add calls of stop to your generated
test cases, and retest prop_registry(). Since the registry documenta-
tion does not mention dead processes, then we would expect stop to have
no effect on test case behaviour. Since the default clauses in next_state,
precondition and postcondition say that stop may be called at any
time, and has no effect, then we would expect all tests to pass. If this is
the case, then you are finished with this exercise.

If not, then your task is to revise the model so that the property passes
again. You should do this without imposing restrictive preconditions on
the operations, because the whole point of this exercise is to test what
happens to the registry when relevant processes really do die.

Hint: the function lists:keydelete may be useful.

5. Dealing with non-determinism This is an ambitious exercise, which
you are likely to require help with—don’t worry if you don’t have time for
it. Also, if you encounter behaviour you do not understand, ask for help.

Taking your passing specification from the previous exercise, remove timer:sleep(1)
from the definition of stop, and observe the effect on tests. Try to adjust
your model so that tests pass again. You are likely to encounter evidence of
non-deterministic behaviour, caused when the Erlang scheduler preempts
your running test at an unpredictable point.

To make any further progress, you need to recover deterministic testing.
This can be achieved by a combination of techniques:
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• Restrict your test cases to a maximum of 30 commands. This keeps
them short enough to run to completion in one time slice.

• Add ?SOMETIMES to your property, to permit occasional failures (read
the documentation, to be found in module eqc).

Once your tests run deterministically, then failed tests should shrink to a
test case that makes diagnosis possible. Finish adjusting your model.

Finally, extend your command generator to add calls of timer:sleep(1)
to your test cases. Once again, you will need to adjust your model to
make tests pass: having done so, you will have a good understanding of
both the immediate, and the delayed effects of a process crash.

Having finished the exercises, why not select one of the Erlang library mod-
ules with a stateful interface, and construct a QuickCheck state machine speci-
fication of your own?
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3.10 rec eqc.erl

%%% File : reg_eqc.erl
%%% Author : <John Hughes@HALL>
%%% Description : Process registry specification for CEFP
%%% Created : 21 May 2009 by <John Hughes@HALL>

-module(reg_eqc).

-include_lib("eqc/include/eqc.hrl").
-include_lib("eqc/include/eqc_statem.hrl").

-compile(export_all).

-record(state,{pids=[], % pids spawned in this test
regs=[] % list of {Name,Pid} in the registry

}).

%% Initialize the state
initial_state() ->

#state{}.

%% Command generator, S is the state
command(S) ->

oneof([{call,erlang,register,[name(),pid(S)]} || S#state.pids/=[]] ++
[{call,?MODULE,unregister,[name()]},
{call,erlang,whereis,[name()]},
{call,?MODULE,spawn,[]}
]).

-define(names,[a,b,c,d]).

name() ->
elements(?names).

pid(S) ->
elements(S#state.pids).

%% Next state transformation, S is the current state
next_state(S,V,{call,_,spawn,_}) ->

S#state{pids=[V|S#state.pids]};
next_state(S,_V,{call,_,register,[Name,Pid]}) ->

S#state{regs=[{Name,Pid}|S#state.regs]};
next_state(S,_V,{call,_,unregister,[Name]}) ->

S#state{regs=proplists:delete(Name,S#state.regs)};
next_state(S,_V,{call,_,_,_}) ->
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S.

%% Precondition, checked before command is added to the command sequence
precondition(_S,{call,_,_,_}) ->

true.

%% Postcondition, checked after command has been evaluated
%% OBS: S is the state before next_state(S,_,<command>)
postcondition(S,{call,_,unregister,[Name]},Res) ->

case Res of
{’EXIT’,_} ->

not unregister_ok(S,Name);
true ->

unregister_ok(S,Name)
end;

postcondition(_S,{call,_,_,_},_Res) ->
true.

%% The conditions under which operations ought to succeed.

unregister_ok(S,Name) ->
proplists:is_defined(Name,S#state.regs).

%% The main property.

prop_registry() ->
?FORALL(Cmds,commands(?MODULE),
begin

{H,S,Res} = run_commands(?MODULE,Cmds),
cleanup(),
?WHENFAIL(

io:format("History: ~p\nState: ~p\nRes: ~p\n",[H,S,Res]),
Res == ok)
end).

cleanup() ->
[catch erlang:unregister(Name) || Name <- ?names].

%% Exception-catching versions of the API under test

unregister(Name) ->
catch erlang:unregister(Name).

%% Spawn a dummy process to use as test data. Processes die after 5
%% seconds, long after the test is over, to avoid filling the Erlang
%% heap with dummy processes.
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spawn() ->
spawn(timer,sleep,[5000]).
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