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1 Introduction

Units-of-measure are to science what types are to programming. In science and
engineering, dimensional and unit consistency provides a first check on the cor-
rectness of an equation or formula, just as in programming the passing of a
program by the type-checker eliminates one possible reason for failure.

Units-of-measure errors can have catastrophic consequences, the most famous
of which was the loss in September 1999 of NASA’s Mars Climate Orbiter probe,
caused by a confusion between newtons (the SI unit of force) and lbf (pound-
force, a unit of force sometimes used in the US). The report into the disaster
made many recommendations [14]. Notably absent, though, was any suggestion
that programming languages might assist in the prevention of such errors, either
through static analysis tools, or through type-checking.

Over the years, many people have suggested ways of extending programming
languages with support for static checking of units-of-measure. It’s even possible
to abuse the rich type systems of existing languages such as C++ and Haskell
to achieve it, but at some cost in usability [18, 6]. More recently, Sun’s design
for its Fortress programming language has included type system support for
dimensions and units [2].

In this short course, we’ll look at the design supported by the F# program-
ming language, the internals of its type system, and the theoretical basis for
units safety. The tutorial splits into three parts:

– Section 2 is a programmer’s guide to units-of-measure in F#, intended to be
accessible to any programmer with some background in functional program-
ming.

– Section 3 presents details of the type system and inference algorithm.
– Section 4 considers the semantics of units, including a link with classical

dimensional analysis.



Fig. 1. Editing F# code in Visual Studio

2 An introduction to units-of-measure in F#

We begin by taking a gentle tour through the units-of-measure feature of F#.
For this you will need the F# command-line compiler (fsc) and interactive en-
vironment (fsi), and optionally (available on Windows only), the Visual Studio
integrated development environment. Throughout the tutorial we will present
code snippets, like this,

let rec fact n = if n=0 then 1 else n * fact(n-1)

and also fragments of dialogue from fsi, like this:

> let rec fact n = if n=0 then 1 else n * fact(n-1);;

val fact : int -> int

If you are reading this tutorial online using a program such as Adobe Reader,
you can copy-and-paste examples directly into fsi.

If you have Visual Studio you might instead prefer to try out code in its
editor, as shown in Figure 1. The tooltips feature of VS is especially useful:
if you hover the mouse cursor over an identifier, its type will be displayed in
a box, along with information gathered from the “///” comment preceding its
definition.

The F# programming language shares a subset with Caml; this subset will
be familiar to SML programmers, and unsurprising for Haskell programmers too.
For the most part, we stay within this subset, extended with units-of-measure
of course, even though some examples can be made slicker by using the object-
oriented and other advanced features of F#. (One significant departure from
Caml is the use of F#’s indentation based layout, similar to Haskell’s ‘offside
rule’.) Sticking to this subset also illustrates how units-of-measure types and
inference could be usefully added to other functional languages. (Language de-
signers, take note!)
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2.1 Introducing units

We must first declare some base units. As it’s the 21st century, we shall employ
the SI unit system (Système I nternational d’Unités [1]) and declare units for
mass, length and time:

[<Measure>] type kg // kilograms

[<Measure>] type m // metres

[<Measure>] type s // seconds

The [<Measure>] attribute in front of type indicates that we’re not really intro-
ducing types in the usual sense, but rather measure constructors, namely kg, m
and s.

Now let’s declare a well-known constant1 with its units, which we can do
simply by tacking the units onto a floating-point literal, in between angle brack-
ets:

let gravityOnEarth = 9.808<m/s^2> // an acceleration

Notice how conventional notation for units is used, with / for dividing, and ^ for
powers. Juxtaposition just means product (or you can write * if you prefer), and
negative powers can be used in place of division. We could express the units of
acceleration slightly differently:

let gravityOnEarth = 9.808<m * s^-2>

Or we might even go against recommended practice and write it this way:

let gravityOnEarth = 9.808<m/s/s>

What is the type of gravityOnEarth? In F# Interactive, the compiler tells us:

> let gravityOnEarth = 9.808<m/s/s>;;

val gravityOnEarth : float<m/s ^ 2> = 9.808

The float type is parameterized on units-of-measure, here instantiated with
m/s^2, just as list takes a type parameter, as in list<int>. (In F#, ordinary type
parameters can be written prefix, as in int list, or postfix in angle brackets, as
in list<int>. Units-of-measure parameters must be written in the latter style.)

Now we can do some physics! If an object is dropped off a building that is
40 metres tall, at what speed will it hit the ground?2

> let heightOfBuilding = 40.0<m>;;

val heightOfBuilding : float<m> = 40.0

> let speedOfImpact = sqrt (2.0*gravityOnEarth*heightOfBuilding);;

val speedOfImpact : float<m/s> = 28.01142624

1 constant at a particular point on the earth’s surface, at least!
2 Assuming no atmosphere!
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Fig. 2. A units error in Visual Studio

Magic! Units-of-measure are not just handy comments-on-constants: they are
there in the types of values, and, moreover, F# knows the “rules of units”.
When values of floating-point type are multiplied, the units are multiplied too;
when they are divided, the units are divided too, and when taking square roots,
the same is done to the units. So by the rule for multiplication, the expression in-
side sqrt above must have units m^2/s^2, and therefore the units of speedOfImpact
must be m/s.

What if we make a mistake?

> let speedOfImpact = sqrt (2.0*gravityOnEarth+heightOfBuilding);;

let speedOfImpact = sqrt (2.0*gravityOnEarth+heightOfBuilding);;

---------------------------------------------^^^^^^^^^^^^^^^^

stdin(142,50): error FS0001: The unit of measure ’m’ does not match

the unit of measure ’m/s ^ 2’

We’ve tried to add a height to an acceleration, and F# tells us exactly what we’ve
done wrong. The units don’t match up, and it tells us so! In Visual Studio, errors
are shown interactively: a red squiggle will appear, and if you hover the mouse
cursor over it, the error message will be shown, as in Figure 2.

Now let’s do a little more physics. What force does the ground exert on me
to maintain my stationary position?

> let myMass = 65.0<kg>;;

val myMass : float<kg> = 65.0

> let forceOnGround = myMass*gravityOnEarth;;

val forceOnGround : float<kg m/s ^ 2> = 637.52

We’ve just applied Newton’s Second Law of motion. Newton’s eponymous unit,
the newton, is the SI unit of force. Now instead of the cumbersome kg m/s^2 we
can introduce a derived unit and just write N, the standard symbol for newtons.

[<Measure>] type N = kg m/s^2

let forceOnGround:float<N> = myMass*gravityOnEarth

Derived units are just like type aliases: as far as F# is concerned, N and
kg m/s^2 mean exactly the same thing.
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2.2 Interlude: the F# PowerPack

The F# ‘PowerPack’ library declares all of the
SI base and derived units, under the names-
pace Microsoft.FSharp.Math.SI. It also defines
various physical constants in the namespace
Microsoft.FSharp.Math.PhysicalConstants. To
import this library, you will need to reference
it from your project in Visual Studio, by right-
clicking on References (see right) and then selecting the FSharp.PowerPack com-
ponent. Alternatively, you can use the #r directive in fsi, as below:

> #r "FSharp.PowerPack";;

--> Referenced ’C:\Program Files\FSharp\bin\FSharp.PowerPack.dll’

Now let’s use the units and constants from the PowerPack to implement
Newton’s law of universal gravitation:

F = G
m1m2

r2

Here m1 and m2 are the masses of two bodies, r is the distance between them,
G is the gravitational constant and F is the force of attraction between the two
bodies. We can code this as follows:

> open Microsoft.FSharp.Math;;

> open SI;;

> let attract (m1:float<kg>) (m2:float<kg>) (r:float<m>) : float<N> =

- PhysicalConstants.G * m1 * m2 / (r*r);;

val attract : float<kg> -> float<kg> -> float<m> -> float<N>

>

Figure 3 shows this function being defined in Visual Studio.

2.3 Unit conversions

So for physicists, at least, there is no excuse to go non-metric. But if you insist,
you can define units from other systems. Here is our earlier example, using feet
instead of metres as the unit of length.

[<Measure>] type ft

let gravityOnEarth = 32.2<ft/s^2>

let heightOfBuilding = 130.0<ft>

let speedOfImpact = sqrt (2.0 * gravityOnEarth * heightOfBuilding)

What if you need to convert between feet and metres? First, define a conversion
factor.

let feetPerMetre = 3.28084<ft/m>
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Fig. 3. Using the PowerPack in Visual Studio

Naturally enough, the units of feetPerMetre are feet per metre, or ft/m for short.
Now we can convert distances...

let heightOfBuildingInMetres = heightOfBuilding / feetPerMetre

...and speeds...

let speedOfImpactInMPS = speedOfImpact / feetPerMetre

...and we can convert back the other way by multiplying instead of dividing:

let speedOfImpactInFPS = speedOfImpactInMPS * feetPerMetre

As far as F# is concerned, ft and m have nothing to do with each other. It’s up
to the programmer to define appropriate conversion factors. But the presence
of units on the conversion factors makes mistakes much less likely. For example,
what happens if we divide instead of multiply above? The type of the result
suggests that something is awry, and will probably lead to a compile-time error
later in the code:

> let speedOfImpactInFPS = speedOfImpactInMPS / feetPerMetre;;

val speedOfImpactInFPS : float<m ^ 2/(ft s)> = 8.500500698

It’s probably a good idea to package up conversion factors with the unit-of-
measure to which they relate. A convenient way to do this in F# is to make use
of the ability to define static ‘members’ on types:

[<Measure>]

type ft =

static member perMetre = 3.28084<ft/m>

Now we can just write ft.perMetre.

2.4 Interfacing non-unit-aware code

We’ve seen how to use syntax such as 2.0<s> to introduce units-of-measure into
the types of floating-point values. But what if a quantity is stored in a file, or
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entered by the user through a GUI, or in a web form? In that case it’ll probably
start out life as a string, to be parsed and converted into a float. How can
we convert a vanilla float into, say, a float<s>? That’s easy: just multiply by
1.0<s>! Here’s an example:

let rawString = reader.ReadLine()

let rawFloat = System.Double.Parse(rawString)

let timeInSeconds = rawFloat * 1.0<s>

If we want to convert back to a vanilla float, say, to pass to a non-units-aware
function or method, we just divide by 1.0<s>:

let timeSpan = System.TimeSpan.FromSeconds(timeInSeconds / 1.0<s>)

2.5 Dimensionless quantities

But hold on – what’s going on with that last example? The variable timeInSeconds

has type float<s>, and we divided it by 1.0<s> which has type float<s>. So the
units cancel out, producing units which we write simply as the digit 1. Hence
the type of timeInSeconds / 1.0<s> is float<1>. Such a quantity is called di-
mensionless. Conveniently, F# defines the ordinary float type to be an alias for
float<1>, as if there is a definition

type float = float<1>

which makes use of overloading on the arity of the type constructor.
Traditionally, angles have been considered dimensionless, since they are de-

fined as the ratio of arc length to radius. The built-in trigonometric functions
sin, cos, and so on, accept dimensionless floats. There are, however, several
units used to measure angles, such as degrees, or revolutions, in addition to the
‘natural’ unit radians. It’s easy enough to define such units, and appropriate
conversion factors, if stricter type-checking is required:

[<Measure>]

type deg =

static member perRadian = 360.0<deg> / (2.0 * System.Math.PI)

[<Measure>]

type rev =

static member perRadian = 1.0<rev> / (2.0 * System.Math.PI)

let l = sin (90.0<deg> / deg.perRadian)

2.6 Parametric polymorphism

So far, we’ve seen how to write code that uses specific units-of-measure. But what
if we’re writing code that doesn’t care what units it is working in? Let’s start
simple. What is the type of fun x -> x*x? Well, multiplication is overloaded,
and F# defaults to integers:
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> let sqr x = x*x;;

val sqr : int -> int

But if we annotate the argument, we can define squaring for all kinds of floats:

> let sqrLength (x:float<m>) = x*x;;

val sqrLength : float<m> -> float<m ^ 2>

> let sqrSpeed (x:float<m/s>) = x*x;;

val sqrSpeed : float<m/s> -> float<m ^ 2/s ^ 2>

This is very painful: we’d really like to write a single, generic squaring function,
and then re-use it on values with differing units. And indeed, we can do just
that:

> let sqr (x:float<_>) = x*x;;

val sqr : float<’u> -> float<’u ^ 2>

The underscore notation in float<_> tells the F# compiler to infer the unit-of-
measure parameter, and as can be seen from the output, it infers a generic or
parametrically-polymorphic type for squaring. The notation ’u looks like a type
variable, but is in fact a unit-of-measure variable that can be instantiated with
any unit-of-measure expression. Let’s use it on lengths and speeds:

> let d2 = sqr 3.0<m>;;

val d2 : float<m ^ 2> = 9.0

> let v2 = sqr 4.0<m/s>;;

val v2 : float<m ^ 2/s ^ 2> = 16.0

F# can fully infer polymorphic unit-of-measure types, with type annotations
required only in situations where overloaded operators must be resolved. More-
over, as with ordinary ML-style type inference, it infers the most general, or
principal type, of which all other possible types are instances. Here are some
simple examples:

> let cube x = x*sqr x;;

val cube : float<’u> -> float<’u ^ 3>

> let pythagoras x y = sqrt (sqr x + sqr y);;

val pythagoras : float<’u> -> float<’u> -> float<’u>

> let average (x:float<_>) y = (x+y)/2.0;;

val average : float<’u> -> float<’u> -> float<’u>
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Here’s one that requires a bit of head-scratching to understand:

> let silly x y = sqr x + cube y;;

val silly : float<’u ^ 3> -> float<’u ^ 2> -> float<’u ^ 6>

We can now see that many of the built-in arithmetic operators and functions
have a unit-polymorphic type as one possible overloading:

> let add (x:float<_>) y = x+y;;

val add : float<’u> -> float<’u> -> float<’u>

> let sub (x:float<_>) y = x-y;;

val sub : float<’u> -> float<’u> -> float<’u>

> let mul (x:float<_>) y = x*y;;

val mul : float<’u> -> float<’v> -> float<’u ’v>

> let div (x:float<_>) y = x/y;;

val div : float<’u> -> float<’v> -> float<’u/’v>

> fun (x : float<_>) -> sqrt x;;

val it : float<’u ^ 2> -> float<’u> = <fun:clo0>

> fun x -> sqrt x;;

val it : float -> float = <fun:clo0-1>

The last example here illustrates that without a type annotation, sqrt defaults
to dimensionless float. This is in part to avoid units-of-measure confusing novice
programmers, and in part to retain some Caml-compatibility.

Exercise 1. Without trying it out, what do you think is the most general type
of the following function?

let sillier x y z = sqr x + cube y + sqr z * cube z

Now try it. Were you right?

2.7 Zero

Suppose we want to sum the elements of a list. In true functional style, we use
one of the fold operators.

> let sum xs = List.fold (+) 0.0 xs;;

val sum : float list -> float

Oops – we don’t have a nice polymorphic type! The reason is simple: unless units
are specified, constants, including zero, are assumed to have no units, i.e. to be
dimensionless. (This means that the subset of F# that coincides with Caml has
the same static and dynamic behaviour as in Caml.) So instead, let’s give 0.0

some units, but not tell F# what they are, by writing 0.0<_>:
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> let sum xs = List.fold (+) 0.0<_> xs;;

val sum : float<’u> list -> float<’u>

That’s better!
Zero is the only numeric literal that is ‘polymorphic’ in its units, as is illus-

trated by the dialogue below.

> 0.0<_>;;

val it : float<’u> = 0.0

> 1.0<_>;;

val it : float = 1.0

Exercise 2. Can you think why this is so? (When we study the semantics of
units, we will see the reason why it must be the case.) In fact, there are some
other very special floating-point values that are polymorphic. Can you guess
what they are?

2.8 Application area: statistics

Now let’s do some statistics. First, we define the arithmetic mean µ of a list of n
numbers [a1; . . . ; an], as given by

µ =
1
n

n∑
i=1

ai.

This is easy, using the sum function defined earlier:

> let mean xs = sum xs / float (List.length xs);;

val mean : float<’u> list -> float<’u>

Exercise 3. Write a unit-polymorphic function to compute the standard devia-
tion σ of a list of n numbers [a1; . . . ; an], as given by

σ2 =
1
n

n∑
i=1

(ai − µ)2.

The geometric mean is given by

g = (a1 · a2 · · · an)
1
n

A straightforward implementation of this function does not get assigned a nice
polymorphic type:

> let reciplen x = 1.0 / float (List.length x)

val reciplen : ’a list -> float
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> let gmean (x:float<_> list) = List.reduce ( * ) x ** reciplen x;;

let gmean (x:float<_> list) = List.reduce ( * ) x ** reciplen x;;

-------------------^

stdin(15,21): warning FS0191: This code is less generic than

indicated by its annotations. A unit-of-measure specified using

’_’ has been determined to be ’1’, i.e. dimensionless. Consider

making the code generic, or removing the use of ’_’.

val gmean : float list -> float

We have ‘hinted’ to the compiler that we want a parameterized float type, but
it has inferred a dimensionless type, and so it helpfully emits a warning. But why
did it not infer the type float<’u> list -> float<’u>? The answer lies in the
type of the product and in the type of the exponentiation operator **. Consider
first the expression List.reduce ( * ) x, which implements the product a1 ·
a2 · · · an. If x has type float<’u> list then we might expect it to have type
float<’u^n>. But n is the length of the list, which is not known statically – we
want a dependent type! Furthermore, the type of exponentiation is

val ( ** ) : float -> float -> float

in which both its arguments and result are dimensionless.

Exercise 4. With a little work, it is possible to write a function gmean that is
assigned the polymorphic type that we expected. Hint: consider ‘normalizing’
the list before computing the product.

2.9 Application area: calculus

Now let’s do some calculus. Higher-order functions abound here: for example,
differentiation is a higher-order function D : (R → R) → (R → R). To numer-
ically differentiate a function f to obtain its approximate derivative f ′, we can
use the formula

f ′(x) ≈ f(x+ h)− f(x− h)
2h

,

where h represents a small change in x. Let’s write this in F#:

> let diff (h:float<_>) (f:_ -> float<_>) = fun x -> (f(x+h)-f(x-h))

/ (2.0*h);;

-

val diff : float<’u> -> (float<’u> -> float<’v>) -> float<’u> ->

float<’v/’u>

Notice how the type of diff precisely describes the effect of differentiation on
the units of a function. For example, let’s use it to compute the rate of change
of the gravitational force between the earth and the author as the author moves
away from the earth:
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> let earthMass = 5.9736e24<kg>;;

val earthMass : float<kg> = 5.9736e+24

> diff 0.01<m> (attract myMass earthMass);;

val it : (float<m> -> float<kg/s ^ 2>) = <fun:it54-6>

The units kg/s^2 appear a little strange, but we can confirm that they really are
‘force per unit length’:

> (diff 0.01<m> (attract myMass earthMass) : float<m> -> float<N/m>)

;;

val it : (float<m> -> float<N/m>) = <fun:it57-8>

We can likewise integrate a function, using one of the simplest methods: the
trapezium rule [17, Section 4.1]. It is defined by the following formula, which
gives an approximation to the area under the curve defined by f in the interval
a 6 x 6 b using n+ 1 values of f(x):∫ b

a

f(x) dx ≈ h

2
(f(a) + 2f(a+ h) + · · ·+ 2f(b− h) + f(b)) , h =

b− a
n

.

Here is an implementation in F#:

let integrate (a:float<_>) (b:float<_>) n (f:_ -> float<_>) =

let h = (b-a) / (float n)

let rec iter x i =

if i=0 then 0.0<_>

else f x + iter (x+h) (i-1)

h * (f a / 2.0 + iter (a+h) (n-1) + f b / 2.0)

Exercise 5. Without typing it in, what do you think the unit-polymorphic type
of integrate is?

Our final example is an implementation of the Newton-Raphson method for
finding roots of equations, based on the iteration of

xn+1 = xn −
f(xn)
f ′(xn)

.

This method calculates a solution of f(x) = 0, making use of the derivative f ′.
The F# code is as follows:

let rec newton (f:float<_> -> float<_>) f’ x xacc =

let dx = f x / f’ x

let x’ = x - dx

if abs dx / x’ < xacc

then x’

else newton f f’ x’ xacc

It accepts a function f, its derivative f’, an initial guess x and a relative accu-
racy xacc. Its type is
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val newton :

(float<’u> -> float<’v>) ->

(float<’u> -> float<’v/’u>) -> float<’u> -> float -> float<’u>

2.10 Unit-parameterized types

So far we have seen units applied to float, the built-in primitive type of double-
precision floating-point numbers. The types float32 and decimal can be param-
eterized by units too:

[<Measure>] type USD

[<Measure>] type yr

let fatcatsalary = 1000000M<USD/yr> // decimal constants have suffix M

let A4paperWidth = 0.210f<m> // float32 constants have suffix f

It’s natural to parameterize other numeric types on units, such as a a type
for complex numbers, or a type for vectors in 3-space. Or a unit-parameterized
numeric type might be required for a component of some other type, such as a
scene model type for a ray-tracer, and so that type must be parameterized too.
Such types are supported in F# simply by marking the parameters with the
[<Measure>] attribute:

// Record types parameterized by units

type complex< [<Measure>] ’u> = { re:float<’u>; im:float<’u> }

type vector3< [<Measure>] ’u> = { x:float<’u>; y:float<’u>; z:float<’u> }

type sphere< [<Measure>] ’u> = { centre:vector3<’u>; radius:float<’u> }

// A discriminated union parameterized by units

type obj< [<Measure>] ’u> =

| Sphere of sphere<’u>

| Group of obj<’u> list

We can now instantiate such types with concrete units:

> let gravity = { x = 0.0<_>; y = 0.0<_>; z = -9.808<m/s^2> };;

val gravity : vector3<m/s ^ 2> = {x = 0.0;

y = 0.0;

z = -9.808;}

> let scene = Group [Sphere {centre={x=2.0<m>;y=3.0<m>;z=4.0<m>};

radius = 1.5<m> }];;

val scene : obj<m> = Group [Sphere {centre = {x = 2.0;

y = 3.0;

z = 4.0;};

radius = 1.5;}]

It’s straightforward to write functions over such types, with appropriate unit-
polymorphic types. For example, the dot product of two vectors can be defined
as follows, with its type inferred automatically:
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> let dot v w = v.x*w.x + v.y*w.y + v.z*w.z;;

val dot : vector3<’u> -> vector3<’v> -> float<’u ’v>

Here are functions to convert from and to the polar representation of complex
numbers:

let fromPolar (m:float<_>, p) = { re = m*cos p; im = m*sin p }

let magnitude c = sqrt (c.re*c.re + c.im*c.im)

let phase c = atan2 c.im c.re

It’s desirable to define unit-polymorphic arithmetic operators for types such
as complex and vector3. This is supported through the use of ’static members’:3

type complex< [<Measure>] ’u> = { re:float<’u>; im:float<’u>} with

static member (+) (a:complex<’u>,b) = { re = a.re+b.re; im = a.im+a.im }

static member (-) (a:complex<’u>,b) = { re = a.re-b.re; im = a.im-a.im }

static member ( * ) (a:complex<’u>,b:complex<’v>) =

{ re = a.re * b.re - a.im * b.im; im = a.im * b.re + b.im * a.re }

We can now use complex numbers to do arithmetic on AC voltages:

> let voltage1 : complex<V> = polar 2.0<V> 0.0;; // 2 volts

val voltage1 : complex<V> = {re = 2.0;

im = 0.0;}

> let voltage2 = polar 3.0<V> (System.Math.PI/4.0);; // 3 volts at 45

degree phase

val voltage2 : complex<kg m ^ 2/(A s ^ 3)> = {re = 2.121320344;

im = 2.121320344;}

> magnitude (voltage1 + voltage2);;

val it : float<kg m ^ 2/(A s ^ 3)> = 4.635221826

> phase (voltage1 + voltage2);;

val it : float = 0.4753530566

2.11 Polymorphic recursion

For our final example of unit-parameterized types we return to calculus. We saw
that given a function of type float<’u> -> float<’v>, its derivative has type
float<’u> -> float<’v/’u>. Naturally enough, its second-order derivative (the
derivative of the derivative) has type float<’u> -> float<’v/’u^2>. But what if
we want to repeat this process, and create a list of successive derivatives? We
can’t just use the built-in list type, because it requires list elements to each
have the same type. We want a list in which the types of successive elements are
related but not the same. We can define such a custom type as follows:

3 Full units support only from F# beta1 onwards
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type derivs<[<Measure>] ’u, [<Measure>] ’v> =

| Nil

| Cons of (float<’u> -> float<’v>) * derivs<’u,’v/’u>

An expression Cons(f,Cons(f’,Cons(f’’,. . .))) of type derivs<’u,’v> repre-
sents a function f of type float<’u> -> float<’v>, its first-order derivative f’

of type float<’u> -> float<’v/’u>, its second-order derivative f’’ having type
float<’u> -> float<’v/’u^2>, and so on. The type makes use of polymorphic
recursion in its definition, meaning that the recursive reference (derivs) is used
at a type distinct from its definition. (This is also called a nested or non-regular
datatype in the literature.)

In order to use such a type in a recursive function, the type of the function
must be annotated fully with its type, as type inference for polymorphic recur-
sion is in general undecidable. Here is a function that makes use of our earlier
numerical differentiation function diff to compute a list of the first n derivatives
of a function f.

let rec makeDerivs<[<Measure>] ’u, [<Measure>] ’v>

(n:int)

(h:float<’u>)

(f:float<’u> -> float<’v>) : derivs<’u,’v> =

if n=0 then Nil else Cons(f, makeDerivs (n-1) h (diff h f))
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3 Polymorphic type inference for units-of-measure

Ever since Robin Milner’s classic paper on polymorphic type inference [13], re-
searchers have developed ever more sophisticated means of automatically in-
ferring types for programs. Pottier’s survey article presents a good overview
of the state-of-the-art [16, §10]. The variety of parametric polymorphism de-
scribed in Milner’s original work has become known as “let-polymorphism”,
being equivalent in expressivity to the simple typing of a program after ex-
panding all let-bindings. One fruitful direction for research has been to support
‘first-class’ polymorphism in the style of System F and beyond [11, 10, 20]. Oth-
ers have extended inference to handle new type constructs such as Generalized
Algebraic Data Types (GADTs) or existentials [19]. Another direction is to con-
sider polymorphism over entities other than just types, for example records or
effects. Units-of-measure are an instance of this idea.

Immediately we should address the question: how are units different from
types? Even the original ML type system can be used to encode all sorts of
invariants such as well-formed contexts [12] and well-formed lambda terms [4].
We could perhaps define dummy type constructors UOne, UProd and UInv, together
with base units, and then build derived units such as UProd<m,UInv<UProd<s,s>>>

for accelerations. The crucial aspect of units-of-measure that is not captured
here is equations that hold between syntactically distinct units. For example,
the units m s are equivalent to s m; and s s^-1 can be simplified to 1. Any
encoding of units in types must somehow encode this equational theory of units,
typically requiring some kind of witnesses to applications of properties such as
commutativity and associativity. Better to build this theory in: and moreover,
it turns out that the equational theory has some very pleasant properties that
support full type inference.

3.1 Grammar for units

First let’s pin down a formal grammar for unit expressions:

u, v, w ::= b | α | 1 | u * v | u^-1

We use u, v and w for unit expressions. They’re built from

– base units such as kg, ranged over by b, and drawn from a set UBase;
– unit variables, which we write as α, β, etc., and drawn from a set UVars;
– the ‘unit’ unit, written 1, representing dimensionless quantities without units;
– product of units, written u * v; and
– inverse of units, written u^-1.

Let vars(u) be the unit variables occurring in unit expression u. For example,
vars(α * β^-1) = {α, β}.

For the surface syntax, we de-sugar quotients and integer powers of units:

u/v = u * v^-1

u^n =

u * u^(n− 1) if n > 0,
1 if n = 0,
u^-1 * u^(n+ 1) if n < 0.
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u =U u
(refl)

u =U v

v =U u
(sym)

u =U v v =U w

u =U w
(trans)

u =U v

u^-1 =U v^-1
(cong1)

u =U v u′ =U v′

u * u′ =U v * v′
(cong2)

u * 1 =U u
(id)

(u * v) * w =U u * (v * w)
(assoc)

u * v =U v * u
(comm)

u * u^-1 =U 1
(inv)

Fig. 4. Equational theory of units =U

For clarity, we will often write un for powers.

3.2 Equations for units

Units of measure obey rules of associativity, commutativity, identity and inverses,
and thus form an Abelian group. We can formalize this as an equivalence relation
on unit expressions =U , defined inductively by the rules of Figure 4. These rules
just say that =U is the smallest congruence relation that is closed under the
Abelian group axioms.

The relation =U is an example of an equational theory. Other common ex-
amples are AC (with just the axioms for associativity and commutativity), AC1
(adding the identity axiom to AC), and ACI (adding an axiom for idempotency
to AC). These three theories are all regular, meaning that if a term t is equivalent
to a term t′ under the equational theory, then vars(t) = vars(t′). In contrast,
our theory AG (Abelian groups) is non-regular, due to the axiom (inv) whose
left and right sides do not have matching sets of variables. This is the source of
many challenges, as we shall see!

Baader and Nipkow’s book on term rewriting provides a good introduction
to equational theories, and the problem of unification that we study later [3].

3.3 Deciding equations

An obvious first question is: how can we decide whether two unit expressions u
and v are equivalent, i.e. is the equation u =U v valid? This is straightforward,
as unit expressions can be put into a unique normal form with respect to =U ,
as follows:

α1
x1 * · · · * αmxm * b1

y1 * · · · * bnyn

Here the x’s and y’s are non-zero integers, and the unit variables and base units
are ordered alphabetically. (In fact the F# compiler does something similar
when displaying units-of-measure, except that units with negative powers are
separated from those with positive powers.) Hence to check whether two unit-of-
measure expressions are equivalent, they must simply be put into normal form
and then checked syntactically for equality.
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Exercise 6. Write a family of functions expu : (UBase∪UVars)→ Z that, given
a base unit or unit variable, returns an integer representing its exponent in the
unit expression u.

It’s easy to show that expu = expv if and only if u =U v. The function
expu is a more ‘semantic’ representation of units than unit expressions, and is
often nicer to work with. Indeed, a recent Coq formalization of ideas presented
in Section 4 simply makes the following definitions for unit variables and unit
expressions [9]:

Definition Var := nat.

Definition Unt := Var -> Z.

3.4 Solving equations

For languages such as Pascal and Java that support only type checking, it is
relatively easy to add support for checking units-of-measure, using the procedure
outlined in the previous section. But for F#, we go further, and support full type
inference. To do this, we must not only check equations; we must solve them.
Consider the following dialogue:

> let area = 20.0<m^2>;;

val area : float<m ^ 2> = 20.0

> let f (y:float<_>) = area + y*y;;

val f : float<m> -> float<m ^ 2>

In order to infer a type for f, the compiler will generate a fresh unit variable α
for the units of y, and will then solve the equation

α2 =U m2

in order to satisfy the requirements of the addition operation. Of course, this
equation is easy to solve (just set α := m), but in general, the equation can have
arbitrarily complex units on either side.

Moreover, there may be many ways to solve the equation. Consider the equa-
tion

α * β =U m2

for which {α := m, β := m}, {α := m2, β := 1}, and {α := 1, β := m2} are three
distinct solutions. These solutions are all ground, meaning that they contain only
base units and no variables. All three, though, are subsumed by the non-ground,
‘parametric’ solution S = {α := β^-1 * m2}, in the following sense: each can
be presented as {β := u} ◦ S for some u. (Check this: set u to be m, 1 and m2

respectively.) In fact, here S is the most general solution for this equation from
which all others can be derived.
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Exercise 7. Present solutions in α and β to the equation

α * β =U kg * s

Can you express a most general solution? Can you express a most general solu-
tion without using inverse?

The idea of solving equations by computing a syntactic substitution for its
variables is known as unification, and will be familiar to anyone who has studied
the type inference algorithms for ML, Haskell, or other similar languages. The
well known principal types property for those languages relies on the following
property of syntactic unification: if two types are unifiable, then there exists a
most general unifier from which all other unifiers can be derived.

For units-of-measure we must solve equations with respect to the equa-
tional theory of Abelian groups. In general, for an equational theory =E , an
E-unification problem is the following: for given terms t and u, find a substitu-
tion S such that S(t) =E S(u).

If the terms are unifiable at all, there can be an infinite number of possible
unifiers. We say that a unifier S1 is more general than a unifier S2 and write
S1 �U S2 if R ◦ S1 =E S2 for some substitution R. (And we say that S2 is an
instance of S1.) In contrast to syntactic unification, for equational unification
there may not be a single most general unifier. For example, in the presence of
nullary constants, unification problems in AC1 may have a finite set of unifiers
of which all unifiers are instances, but which are not instances of each other.
This was hinted at in Exercise 7: under AC1, in which the rule (inv) of Abelian
groups is not available, there are in fact four incomparable unifiers, namely {α :=
kg, β := s}, {α := s, β := kg}, {α := 1, β := kg * s} and {α := kg * s, α := 1}.

3.5 A unification algorithm

We are fortunate that the theory of Abelian groups with nullary constants is
unitary, the technical term for “possesses most general unifiers”. (Rather few
equational theories have this property; one other is the theory of Boolean Rings.)
Moreover, unification is decidable, and the algorithm is straightforward.

Figure 5 presents the algorithm Unify , which takes a pair of unit expressions u
and v and either returns a substitution S such that S(u) =U S(v), or returns fail
indicating that no unifier exists. First observe that the equation

u =U v

is equivalent (i.e. has the same set of solutions) to

u * v^-1 =U 1,

and so unification can be reduced to the problem of matching against 1.
The core algorithm UnifyOne is a variant of Gaussian elimination, and works

by iteratively applying a solution-set-preserving substitution that reduces the

19



Unify(u, v) = UnifyOne(u * v^-1)

UnifyOne(u) =
let u = αx1

1 * · · · * αxm
m * by1

1 * · · · * byn
n where |x1| 6 |x2|, · · · , |xm|

in
if m = 0 and n = 0 then id
if m = 0 and n 6= 0 then fail

if m = 1 and x1 | yi for all i then {α1 7→ b
−y1/x1
1 * · · · * b−yn/x1

m }
if m = 1 otherwise then fail
else S2 ◦ S1 where

S1 = {α1 7→ α1 * α
−bx2/x1c
2 * · · · * α−bxm/x1c

m * b
−by1/x1c
1 * · · · * b−byn/x1c

n }
S2 = UnifyOne(S1(u))

Fig. 5. Unification algorithm for units-of-measure

size of the minimum exponent in the normal form (the ‘else’ clause) until it
reaches an equation containing at most one variable. Consider each subcase in
turn:

– If there are no variables (m = 0) then either we have 1 (n = 0), and so we’re
done, or we have just base units (n 6= 0), and so there is no unifier.

– If there is exactly one variable (m = 1) then we check to see if its exponent
divides all of the exponents of the base units. If not, then there is no unifier:
an example would be the unification problem α2 =U kg3. If it does divide,
then the unifier is immediate: an example would be the problme α2 =U m2 *
s−4 with unifier {α := m * s−2}.

– Otherwise, we recurse, after applying a substitution S1, whose effect is to
transform the unit expression to

αx1
1 * αx2 mod x1

2 * · · · * αxm mod x1
m * by1 mod x1

1 * · · · * byn mod x1
n .

Termination is ensured as the size of the smallest exponent, which was x1,
has been reduced, as each of the mod x1 is smaller than x1.

The following theorem characterizes the result of Unify as the most general
unifier.

Theorem 1 (Soundness and completeness of Unify).
(Soundness) If Unify(u, v) = S then S(u) =U S(v).
(Completeness) If S(u) =U S(v) then Unify(u, v) �U S.

Proof. See [7].

Exercise 8. Compute the most general unifier to the equation

α2 * β =U m6
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TUnify(α, α) = id

TUnify(α, τ) = TUnify(τ, α) =

{
fail if α in τ
{α := τ} otherwise.

TUnify(float<u>, float<v>) = Unify(u, v)

TUnify(τ1 -> τ2, τ3 -> τ4) = S2 ◦ S1

where S1 = TUnify(τ1, τ3)
and S2 = TUnify(S1(τ2), S1(τ4))

Fig. 6. Unification algorithm for types

3.6 Types

As we saw in Section 2.10, type constructors in F# can take both types and units-
of-measure as parameters. The distinction is enforced by a trivial kind system,
in which type parameters are one of two kinds, type, the default, and measure,
as indicated by the attribute [<Measure>]. We won’t formalize this kind system
here, instead focusing on parameterization by units-of-measure alone. But for the
purposes of describing the inference algorithm, we do need to include a notion
of type variable, which we will write as α, β, etc. There will always be enough
context to distinguish type and units-of-measure variables.

Let’s suppose that the grammar of types is really simple, consisting just of
type variables, floating-point types parameterized by units and functions:

τ ::= α | float<u> | τ -> τ

This will be enough to illustrate the process of type inference.
The relation =U extends in an obvious way to types, the important point

being that float<u> =U float<v> if and only if u =U v. A simple but inefficient
unification algorithm for types with respect to =U makes use of our existing
unification algorithm for units in the case for float. This is shown in Figure 6.
The most general unifier property for units of measure extends to types.

Theorem 2 (Soundness and completeness of TUnify).
(Soundness) If TUnify(τ1, τ2) = S then S(τ1) =U S(τ2).
(Completeness) If S(τ1) =U S(τ2) then TUnify(τ1, τ2) �U S.

Proof. See [7].

3.7 Type schemes

Polymorphic types as displayed in F# are in fact shorthand for type schemes of
the form

σ ::= ∀α1, . . . , αn.τ

Top-level type schemes as presented to the programmer are always closed, mean-
ing that all variables in the type τ are bound by the ∀ quantifier: the variables
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are implicitly quantified. But internally, the type system and inference algorithm
will make use of open schemes such as ∀α.float<α> -> float<β> in which β is
free.

Type schemes can be instantiated to types by replacing occurrences of unit
variables by unit expressions. Formally, we write σ � τ if σ = ∀α1, . . . , αn.τ

′

instantiates to τ , that is τ = {α1 := u1, . . . , αn := un}τ ′ for some unit expres-
sions u1, . . . , un. We write σ �U τ if σ �U τ ′ and τ ′ =U τ for some τ ′.

Exercise 9. Show that ∀α.float<α * kg> -> float<α * kg> �U float<1> ->
float<1>.

3.8 The type system and inference algorithm

We are finally ready to present a small subset of the F# type system! Suppose
we have expressions with syntax

e ::= x | λx.e|e e|let x = e in e

with constants and primitive operations assumed to be declared in some ‘perva-
sive’ environment. Figure 7 presents a polymorphic type system for this language.
Here the typing judgment takes the form V ;Γ ` e : τ , with a map Γ from vari-
ables to type schemes whose free unit variables are drawn from the set V , and
a type τ (not a scheme) with unit variables also drawn from V .

(var)
V ;Γ, x:σ ` x : τ

σ � τ (app)
V ;Γ ` e1 : τ1 -> τ2 V ;Γ ` e2 : τ1

V ;Γ ` e1 e2 : τ2

(let)
V, α;Γ ` e1 : τ1 V ;Γ, x:∀α.τ1 ` e2 : τ2

V ;Γ ` let x = e1 in e2 : τ2
(abs)

V ;Γ, x:τ1 ` e : τ2

V ;Γ ` λx.e : τ1 -> τ2

(eq)
V ;Γ ` e : τ1

V ;Γ ` e : τ2
τ1 =U τ2

Fig. 7. Typing rules

In essence, it is a very modest extension to the usual ML type system, such
as that presented in Pierce’s book on types and programming languages [15].
Apart from the use of unit variables in place of type variables in schemes, the
main addition is the rule (eq), that incorporates the equational theory =U into
the type system. (Compare the subsumption rule from systems that support
subtyping.)

It would be tempting to think that ML’s inference algorithm can be adapted
as easily, simply by replacing the use of syntactic unification by our equational
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unification algorithm TUnify . This is almost the case: the algorithm constructed
this way is sound (types that it infers are correct) but unfortunately not com-
plete (there may be typeable programs that it rejects). The problem lies in the
technique used to ‘generalize’ unit variables when type-checking let expressions.
As we shall see in the next section, even the notion of ‘free unit variables in a
scheme’ is not well-defined, and so the usual method of generalizing over all vari-
ables present in the type of the let-bound variable but not in the environment,
does not work. There is not sufficient space in these notes to discuss the solution;
the interested reader should consult [7].

3.9 Type scheme equivalence

A type scheme represents an infinite family of types, and we define

InstsU (σ) = {τ | σ �U τ}.

This provides a natural notion of type scheme equivalence, namely that two
schemes are equivalent if they instantiate to the same set of types. We write

σ1
∼=U σ2 iff InstsU (σ1) = InstsU (σ2)

For vanilla ML types, type scheme equivalence is trivial: the only way that
schemes can differ is in naming and redundancy of type variables. For example,
writing ∼= for equivalence, we have

∀αβγ.α -> β -> α ∼= ∀αβ.β -> α -> β.

For units-of-measure, in addition to naming, we have the underlying equiva-
lence =U on types, but it goes further than that. For example, consider the
following three equivalent type schemes for the division operation:

∀αβ.float<α> -> float<β> -> float<α * β^-1>
∀αβ.float<α * β> -> float<β> -> float<β>
∀αβ.float<α> -> float<β^-1> -> float<α * β>

The bodies of these type schemes differ even with respect to =U , yet they in-
stantiate under �U to the same set of types.

The number of quantified variables can differ, and additional ‘free’ variables
may occur. Consider the following three type schemes for the reciprocal function
fun (x:float<_>) -> 1.0/x:

∀α.float<α> -> float<α^-1>
∀αβ.float<α * β> -> float<α^-1 * β^-1>
∀α.float<α * β^-1> -> float<α^-1 * β>

It’s apparent from this example that the usual notion of ‘free variable’ is not
respected with type scheme equivalence, even after applying the normal form
with respect to =U . This is one reason why the usual generalization procedure
in type inference does not work.

However, it is easy to show the following.
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Lemma 1. Let σ1 = ∀α.τ1 and σ2 = ∀α.τ2. Then σ1
∼=U σ2 iff σ1 �U τ2 and

σ2 �U τ1.

In other words, we must merely find substitutions both ways to show that type
schemes are equivalent.

Exercise 10. Demonstrate the equivalence of the types for reciprocal just pre-
sented.

3.10 A normal form for type schemes

As far as the theory of units is concerned, the form of type schemes doesn’t much
matter. But for the programmer, it could be confusing to be presented with
seemingly-different schemes that are in fact equivalent. Partly for this reason,
F# presents type schemes to the programmer in a consistent way, putting them
in a normal form. This normal form has pleasant properties (e.g. it minimizes
the number of quantified and ‘free’ variables) and corresponds to a well-known
form (the Hermite Normal Form) from algebra [7].

24



4 Semantics of units

In his original paper on polymorphic type inference, Milner defined a denota-
tional semantics for a small ML-like language [13]. This semantics incorporated
a value wrong to correspond to the detection of a failure at run-time, such as
applying a non-functional value as the operator of an application. It was then
proved that “well-typed programs don’t go wrong”, meaning that if a program
passes the type-checker, then no run-time failure occurs.

When working with a small-step operational semantics, as has become pop-
ular more recently, one instead proves syntactic type soundness, stating that

1. reduction preserves types, namely that if e : τ and e→ e′ then e′ : τ ; and
2. reduction makes progress: if e is not a final value then there always exists

some e′ such that e→ e′.

Both the idea of wrong values and the notion that programs make ‘reductions’
until reaching a final value are convenient fictions that don’t really correspond to
the actual execution of real programs. Nevertheless, for a language with, say, just
integers and function values, it can be argued that the attempted ‘application’
of an integer really does constitute a run-time failure (and might be manifested
as a memory violation), and hence syntactic type soundness is saying something
about program safety.

4.1 Units going wrong

For units-of-measure, though, this argument makes no sense. What “goes wrong”
if a program contains a unit error? If run-time values do not carry their units, as
is the case with F# and other systems [18], then syntactic type soundness tells us
precisely nothing. Of course, we could incorporate units into the semantics and
ensure that operations with mismatched units evaluate to wrong (denotation-
ally), or get stuck (in a small step operational semantics). But in a sense, that’s
cheating: we have instrumented the semantics and thereby changed it to match
some refinement of the type system, when in fact the behaviour of programs
with and without unit annotations should be the same.

Instead, let’s use nature as our guide – after all, we are talking about units of
measure! In nature, physical laws are independent of the units used, i.e. they are
invariant under changes to the unit system. This, then, is the real essence of unit
correctness: the ability to change the unit system without affecting behaviour.

Consider the following ‘correct’ function and sample data that an airline
might use as part of its check-in procedure:

let checkin(baggage:float<lb>, allowance:float<lb>) =

if baggage > allowance then printf "Bags exceed limit"

checkin(88.0<lb>, 44.0<lb>)

Now suppose that we metricate the program by replacing lb with kg and con-
verting all constants from pounds to kilograms.
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let checkin(baggage:float<kg>, allowance:float<kg>) =

if baggage > allowance then printf "Bags exceed limit"

checkin(40.0<kg>, 20.0<kg>)

The behaviour remains the same, namely, the passenger is turned away.4

Now consider an ‘incorrect’ program that breaks the rules of units, confusing
the weight limit with the length limit:

let checkin(baggage:float<lb>, allowance:float<cm>) =

if baggage > allowance then printf "Bags exceed limit"

checkin(88.0<lb>, 55.0<cm>)

No run-time errors occur, and the passenger is turned away – but clearly the
business logic used to arrive at this conclusion is faulty. Again, let’s metricate:

let checkin(baggage:float<kg>, allowance:float<cm>) =

if baggage > allowance then printf "Bags exceed limit"

checkin(40.0<kg>, 55.0<cm>)

This time, after metrication, the passenger can fly!
The fact that this program was not invariant under change-of-units revealed

an underlying units error. This is the essence of unit correctness. Notice that it
is inherently a relational property: it does not say anything about the behaviour
of a single program, but instead tells us about the relationship between one
program and a transformed one.

4.2 Polymorphic functions going wrong

Suppose we have a polymorphic function such as

val f : float<’u> -> float<’u^2>

How do we characterize ‘going wrong’ for such a function? We certainly know it
when we see it: if we were told that f was implemented by

let f (x:float<’u>) = x*x*x

then we would rightly be suspicious of its type! But it’s clearly not enough to
consider just changes to the base units, as none are used here.

Furthermore, f might not even be implemented in F#. Suppose that f were
implemented in assembly code, or by dedicated hardware. What test applied to f

would refute its type? The answer is: it should be invariant under scaling in ’u,
in the following sense: if its argument is scaled by some factor k (corresponding to
the units ’u) then its result should scale by k2 (corresponding to the units ’u^2).
That is:

∀k > 0, f(k*x) = k2*f(x)

So if we fed f the value 2, and it responded with 8, and we then fed it 4, and it
responded with 64, we would know that its type ‘lied’.
4 Depending on airline!
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4.3 Parametricity

We’ve now seen how the semantics of base units and of unit polymorphism can
be explained in terms of invariance under scaling. This is reminiscent of the idea
of representation independence in programs: that the behaviour of a program
can be independent of the representation of its data types. For example, we
can choose to represent booleans as a zero/non-zero distinction on integers, or
we could use a string "F" for false and "T" for true. As long as the underlying
representation can’t be ‘broken’ by a client of the boolean type, then it should
not be possible to observe the difference.

The similarity goes deep, in fact, as one popular characterization of rep-
resentation independence, namely relational parametricity, can be applied very
fruitfully to units-of-measure. We first define a map ψ from unit variables to pos-
itive ‘scale factors’, which we call a ‘scaling environment’. This can be extended
to full unit expressions in an obvious way:

ψ(1) = 1
ψ(u * v) = ψ(u) · ψ(v)
ψ(u^-1) = 1/ψ(u)

So if ψ = {α 7→ 2, β 7→ 3} then ψ(α * β2) = 18.
We then define a binary relation ∼ψτ , indexed by types, and parameterized

by ψ, whose interpretation is roughly “has the same behaviour when scaled
using ψ”.

x ∼ψfloat<u> y ⇔ y = ψ(u) * x
f ∼ψτ1->τ2 g ⇔ ∀xy, x ∼ψτ1 y ⇒ f(x) ∼ψτ2 g(y)

The interpretation of a type scheme ∀α.τ is then “related for all possible scalings
for unit variables α”. Formally:

x ∼∀α.τ y ⇔ ∀k, x ∼{α 7→k}τ y

It’s then possible to prove a ‘fundamental theorem’ that states that an ex-
pression with closed type is related to itself at that type, i.e. if e : σ, then e ∼σ e.
From this, many consequences follow.

4.4 Theorems for free

For first-order types, we immediately get what Wadler describes as ‘theorems
for free’ [21], namely theorems that hold simply due to the type of an ex-
pression, irrespective of the details of the code. For example, if f has type
∀αβ.float<α> -> float<β> -> float<α * β^-1> then we know that for any
positive k1 and k2, we have

f (k1 * x) (k2 * x) = (k1/k2) * f x y

We can even prove such theorems for higher-order types, such as the type of
diff from Section 2.9:

diff h f x =
k2

k1
∗ diff

(
h

k1

)(
λx.

f(x ∗ k1)
k2

)(
x

k1

)
.
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4.5 Zero

We can now explain semantically why zero is polymorphic in its units (i.e. it has
type ∀α.float<α>) whilst all other values are dimensionless (i.e. they have type
float<1>). It’s easy: zero is invariant under scaling (because k * 0.0 = 0.0 for
any scale factor k) whilst other values are not.

4.6 Definability

Another well-known application of parametricity is to prove that certain func-
tions cannot be defined with a particular type – and even, to show that there
are no functions with a particular type, i.e. the type is uninhabited, or at least
that there are no interesting functions with that type.

Exercise 11. In a statically-typed pure functional language with only total func-
tions, what functions can you write with type ∀α.α -> α -> α. What happens if
you add general recursion to the language?

Exercise 12. Do any functions have the type ∀αβ.α -> β? Can you explain?

For units-of-measure, it’s possible to use parametricity to show similar de-
finability results. For example, in a pure functional language with only total
functions we can tell that the only function f with type type ∀α.float<1> ->
float<α> is the constant zero function, because by invariance under scaling we
must have f(x) = k * f(x) for any k.

Exercise 13. Can you think of any functions with the type ∀αβ.float<α * β> ->
float<α>∗float<β>? Can you think of any interesting ones? Why not? Can you
give a formal argument based on parametricity?

Most interestly of all, if the relation ∼ψτ is beefed up a bit, it’s possible to
show that in a language with only basic arithmetic (i.e. +, -, * and /), there are
no interesting functions with type ∀α.float<α2> -> float<α>. In other words,
square root is not definable.

Exercise 14. Can you think why? Hint: try using Newton’s method from Sec-
tion 2.9 to construct such a function.

4.7 Type isomorphisms

Two types τ and τ ′ are said to be isomorphic, written τ ∼= τ ′, if there are
functions i : τ → τ ′ and j : τ ′ → τ such that j ◦ i = idτ and i ◦ j = idτ ′

where idτ and idτ ′ are respective identity functions on τ and τ ′. We need to
be a bit more precise about what we mean by function (should it be definable
in the programming language?) and = (is this observational equivalence?). For
simple isomorphisms, the distinction doesn’t matter. For example, it’s obvious
that int*bool ∼= bool*int by the (definable) functions
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let i (p:int*bool) = (snd p, fst p)

let j (q:bool*int) = (snd q, fst q)

Exercise 15. Show that the types int*bool -> unit*int and bool*int -> int

are isomorphic.

More subtle isomorphisms make use of parametricity. For example:

τ ∼= ∀α.(α -> τ) -> τ
∀α.(τ1 -> τ2 -> α) -> α ∼= τ1 * τ2

These latter isomorphisms are not definable in ML (or F#), because they require
functions that take polymorphic arguments.

Exercise 16. For each isomorphism above, write down maps i and j that exhibit
the isomorphisms, supposing that you had a language with ‘first-class’ polymor-
phism à la System F.

For units-of-measure, some rather surprising isomorphisms hold. Suppose for
a moment that all values of float type are positive, and that operations on floats
preserve this invariant (this rules out ordinary subtraction, for example). Then
the following isomorphism between types

∀α.float<α> -> float<α> ∼= float<1>

holds, i.e. the set of unary polymorphic functions that simply preserve their
units is isomorphic to the set of dimensionless values! This isomorphism can be
demonstrated by the maps i : (∀α.float<α> -> float<α>) → float<1> and
j : float<1>→ (∀α.float<α> -> float<α>) below:

i(f) = f(1.0)
j(x) = λy.y * x

We now prove that these maps compose to give the identity. First, i ◦ j = id , by
simple equational reasoning:

i ◦ j
= λx.i(j(x)) (definition of composition)
= λx.i(λy.y * x) (applying j)
= λx.1.0 * x (applying i)
= λx.x (arithmetic identity)

Now, j ◦ i = id , by scaling invariance:

j ◦ i
= λf.j(i(f)) (definition of composition)
= λf.j(f(1.0)) (applying i)
= λf.λy.y ∗ f(1.0) (applying j)
= λf.λy.fy (instance of scaling invariance)
= λf.f (eta)
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This is a semi-formal argument. Alternatively, consider the inhabitants of the
type ∀α.float<α>→ float<α>. What can they do with an argument x of type
float<α>? They cannot add x to anything except for zero or x itself, as there
are no other values of type float<α> available. They can multiply or divide by
a dimensionless value, as this results in a value with the appropriate type. But
that’s it: in fact, the function must be observably equivalent to one having the
form λx.k * x for some k. In other words, a value k of type float<1> completely
determines the function.

Exercise 17. Prove the following isomorphism:

∀α.float<α> -> float<α> -> float<α> ∼= float<1> -> float<1>

4.8 Dimensional analysis

The invariance of physical laws under changes to the units not only provides
a simple check on the correctness of formulae, it also makes it possible to de-
rive laws simply through consideration of the units. This is called dimensional
analysis and its origins go back at least a century.

The idea is simple: when investigating some physical phenomenon, if the
equations governing the phenomenon are not known but the parameters are
known, one can use the dimensions of the parameters to narrow down the possi-
ble form the equations may take. For example, consider investigating the equa-
tion which determines the period of oscillation t of a simple pendulum. Possible
parameters are the length of the pendulum l, the mass m, the initial angle from
the vertical θ and the acceleration due to gravity g. After performing dimen-
sional analysis it is possible to assert that the equation must be of the form
t =

√
l/g φ(θ) for some function φ of the angle θ. Of course it turns out that

for small angles φ(θ) ≈ 2π, but dimensional analysis got us a long way – in
particular, the period of oscillation turned out to be independent of the mass m.
In general, any dimensionally consistent equation over several variables can be
reduced to an equation over a smaller number of dimensionless terms which are
products of powers of the original variables. This is known as the Pi Theorem [5].

Theorem 3 (Pi Theorem). Fix a set of m base dimensions and let x1, . . . , xn
be positive variables with the dimensions of xi given by the i’th column of an
m × n matrix A of dimension exponents. Then any scale-invariant relation of
the form

f(x1, . . . , xn) = 0

is equivalent to a relation

f ′(Π1, . . . ,Πn−r) = 0

where r is the rank of the matrix A and Π1, . . . ,Πn−r are dimensionless power-
products of x1, . . . , xn.

Proof. See Birkhoff [5].
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As before, we suppose that float values are positive, and we can prove the
following analogous result concerning type isomorphisms for first-order types in
a programming language with units-of-measure.

Theorem 4 (Pi Theorem for programming). Let τ be a closed type of the
form

∀α1, . . . , αm.float<u1> -> · · · -> float<un> -> float<u0>.

Let A be the m × n matrix of unit variable exponents in u1, . . . , un, and B the
m-vector of unit variable exponents in u0. If the equation AX = B is solvable
for integer variables in X, then

τ ∼= float<1>
n−r

-> · · · -> float<1>→ float<1>

where r is the rank of A.

Proof. See [8].

We can now apply this theorem to the pendulum example, recast in type-
theoretic terms. Suppose that the square of the period of a pendulum is deter-
mined by a function

p : ∀M.∀L.∀T.float<M> -> float<L>
-> float<L * T−2> -> float<1> -> float<T2>

whose arguments represent the mass and length of the pendulum, the acceler-
ation due to gravity and the angle of swing. Then for positive argument values
float<1> -> float<1> is an isomorphic type.
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