
Using a Functional Language as

Embedding Modeling Language for

Web-Based Workflow Applications

Rinus Plasmeijer1, Jan Martin Jansen2, Pieter Koopman1, Peter Achten1

1 Institute for Computing and Information Sciences (ICIS),
Radboud University Nijmegen, the Netherlands,

2 Faculty of Military Sciences,
Netherlands Defence Academy, Den Helder, the Netherlands

jm.jansen.04@nlda.nl, {rinus, pieter, peter88}@cs.ru.nl

Abstract. Workflow management systems guide and monitor tasks per-
formed by humans and computers. Workflow specifications are usually
expressed in special purpose (graphical) formalisms. These models are
concise and made rapidly. These formalisms commonly have as disadvan-
tage that they have limited expressive power, handle only rather static
workflows, do not handle intricate data dependencies, and cannot easily
adapt to the current situation. Furthermore, workflow specification tools
mostly generate a software infrastructure that needs to be extended with
custom crafted code. To overcome these problems, we entirely embed a
workflow modeling language in a modern general purpose functional lan-
guage, and generate a complete workflow application. We have developed
the iTask prototype system in the pure and lazy language Clean. An iTask

workflow specification can use the expressive power and strong type fa-
cilities of Clean. Workflows can be higher-order and adapt their behavior
based on the available data. The generated application is web-based and
runs on both server and clients.

1 Introduction

Workflow Management Systems (WFMS) are computer applications that coordi-
nate, generate, and monitor tasks performed by human workers and computers.
Workflow models play a dominant role in WFMSs: the work that needs to be
done to achieve a certain goal is specified in such a model as a structured and
ordered collection of tasks that are assigned to available resources at run-time.
In most WFMSs, a workflow model is used as input to generate a framework,
i.e. a partial workflow application. Substantial coding is required to complete
the workflow application. For example, most workflow models only deal with
the flow of control of the application. All code with respect to manipulating the
data in the workflow application has to be implemented separately. In this pa-
per we advocate that a workflow model actually can be a computer program: an
entire workflow application can and should be generated from a workflow model.

2

Contemporary WFMSs use special purpose (mostly graphical) modeling lan-
guages. Graphical formalisms are easier to communicate to domain experts than
textual ones. Domain experts are knowledgeable about the work to be mod-
eled, but often lack programming experience or formal training. Special purpose
modeling languages provide workflow engineers with a concise formalism that
enables the rapid development of a workflow framework. Unfortunately, these
formalisms suffer from a number of disadvantages when compared with textual
ones. First, recursive definitions are commonly inexpressible, and there are only
limited ways to make abstractions. Second, workflow models usually only de-
scribe the flow of control. Data involved in the workflow is mostly maintained in
databases and is extracted or inserted when needed (see the ‘Data Interaction –
Task to Task’ workflow data pattern (8) by Russell et al [17]). As a consequence,
workflow models cannot easily use this data to parameterize the flow of work.
The workflow is more or less pre-described and cannot be dynamically adapted.
Third, these dedicated languages usually offer a fixed set of workflow patterns

[1]. However, in the real world work can be arranged in many ways. If it does
not fit in a (combination of) pattern(s), then the workflow modeling language
probably cannot cope with it either. Fourth, and related, is the fact that special
purpose languages cannot express functionality that is not directly related to the
main purpose of the language. To overcome this limitation, one either extends
the special language or interfaces with code written in other formalisms. In both
cases one is better off with a well designed general purpose language.

For the above reasons, we advocate to use a textual programming language

as a workflow modeling language. This allows us to address all computational
concerns in a workflow model and provides us with general recursion. We use
a functional language, because they offer a lot of expressive power in terms
of modeling domains, use of powerful types, and functional abstraction. We use
the pure and lazy functional programming language Clean, which is a state-of-art
language that offers fast compiler technology and generic programming features

[2] which are paramount for generating systems from models in a type-safe way.
Clean is freely available at http://clean.cs.ru.nl/.

To verify our claim, we have developed a prototype workflow modeling lan-
guage called iTask [13, 14]. The iTask system is a combinator library. In the
functional programming community, combinators are a proven method to em-
bed domain specific languages within a functional host language: application
patterns are captured with combinator functions, and the application domain
is defined by means of the expressive type system, using algebraic, record, and
function types. Workflows modeled in iTask result in complete workflow appli-
cations that run on the web distributed over server and client side [16].

The remainder of this paper is organized as follows. We present iTask in Sect.
2, and demonstrate the advantages of using a functional programming language
as workflow modeling language. We continue with a larger example in Sect. 3.
We discuss the major design decisions in Sect. 4. Related work is discussed in
Sect. 5. We conclude in Sect. 6.

3

2 Overview of the iTask system

In this section we give an overview of the iTask system. We start with basic
iTasks in Sect. 2.1. We present only a small subset of the available combinators
in Sect. 2.2. In Sect. 2.3 we show how embedding iTasks in a general purpose
language makes the system extensible and adaptable.

2.1 Basic iTasks

An iTask is a unit of work to be performed by a worker or computer. An iTask can
be in different states. It can be: non-active (does not exist yet), active (someone
is still working on it), or finished. Clean is a statically typed language, everything
has a type. A type can be regarded as a model and a value of that type as an
instance of that model. An iTask has the following opaque, parameterized type:

:: Task a

The type parameter a is the type of the value that is delivered by a task. The
Clean compiler infers and checks the concrete type of any specified task.

The iTask library offers several functions for creating basic units of work: a
basic task. For instance, the function editTask takes a label of type String and an
initial value of some type a and creates a Task a: a form in a web page in which
the worker can edit this initial value. Its type is:

editTask :: String a→Task a | iData a

The function editTask is very powerful. It creates an editor for any first-order
concrete type and handles all changes. A worker can change the value as often
as she likes but she cannot alter its type. When the label button is pressed, the
editTask is finished and the final value is delivered as result.

EditTask is not a polymorphic function (i.e. one function which works for any

type), but it is overloaded. For each type it is applied on, a special version is
constructed. One can regard editTask as a kind of type driven or model driven

function. The precise working of the function depends on the concrete type
(model) on which it is applied. This is statically determined. The type depen-
dent behavior is inductively defined on a small number of generic, type driven
functions [2], which is reflected in the type context restriction (| iData a) in the
type definition of editTask. A small, but complete iTask workflow application is:

module SmallButCompleteExample 1.

import iTasks 2.

Start :: *World→*World 3.

Start world = startEngine [addFlow ("simple" , simpleEditor)] world 4.

simpleEditor :: Task Int 5.

simpleEditor = editTask "Done" createDefault 6.

The application imports the iTask library (line 2). Execution begins with the
Start function. It calls the iTask engine, and adds the workflow simpleEditor to the

4

workflow list that can be invoked by workers. SimpleEditor (line 6) only consists
of one invocation of editTask. Eventually, it produces an Int value, indicated by
the type definition (line 5). The button labeled Done finishes the task. The library
function createDefault is used as initial value. It creates a default value for any

type (hence it is also a generic function). The default value for type Int is 0.

Fig. 1. Generated webpage for the simpleEditor example.

The generated web application is shown in Fig. 1. After logging in, the ap-
plication resembles a regular e-mail application. The names of the tasks that
the worker needs to perform are presented in the task list displayed in the right
upper pane. This pane can be compared with the list of incoming e-mails. When
the worker clicks on a task in the task list, the current state of it is displayed in
the right lower task pane. Tasks can be selected from the task list in any order.
The iTask toolkit automatically keeps track of all progress, even if the user quits
the system. When a task is finished, it is removed from the task list. Workers
can start new workflows, by selecting them in the left workflow pane. In our
example there is only one option. In general arbitrarily many workflows can be
started, one can assign different workflow options for different types of workers,
and the options to choose from can be controlled dynamically. The task list is
updated when new tasks are generated, either on her own initiative, or because
they have been delegated to her. The entire interface is generated completely
and automatically from the sole specification shown above.

In the above example the worker can only enter Integer values. Suppose we
want a similar workflow for a custom model type, say person. We define the
necessary domain types (Person and Gender), derive framework code for these
model types, and change the type of simpleEditor to Task Person (Fig. 2).

Hence, the form that is created depends on the type of the value that the
editor should return. For any (user defined) type a standard form can be auto-
matically generated in this way. The details of how a form is actually represented
can be fine-tuned in a separate CSS file. A programmer can specialize the form
generation for a certain type if a completely different view is wanted. One is

5

:: Person = { firstName :: String

, surName :: String

, dateOfBirth :: HtmlDate

, gender :: Gender

}
:: Gender = Male | Female

derive iData Person, Gender

Fig. 2. A standard form editor generated for type Person.

not restricted to use standard browser forms. It is e.g. possible to use a drawing
plug-in as editor for making values of type, say Picture [8].

The function editTask is one of several basic tasks. Examples of other basic
task functions are: obtaining all users of the system (if necessary grouped by
their role); tasks that return at a predefined moment in time or after an amount
of time; tasks that can store information in or read information from a database.

2.2 Basic iTask Combinators

New tasks can be composed out of (basic) tasks by using combinator functions.
As said before, work can be organized in many ways. The expressive power of
the host language allows us to cover all common workflow patterns listed in [1],
and many more, using only relatively few combinators. Here we discuss a few of
them and show their usage.

Sequential composition of tasks can be realized using monadic [20] combina-
tor functions for binding (>>=), called bind, and emitting (return) values:

(>>=) infixl 1 :: (Task a) (a→Task b)→Task b | iData b

return :: a →Task a | iData a

In contrast to most workflow specification languages, in the iTask system
information is passed explicitly from one task to another. The first task (of type
Task a) is activated first and when it finishes, >>= takes care that its result (of
type a) is passed to the second argument (a function of type a→Task b). This
function can inspect the result produced by the previous task and react on it.
When the second task is finished it produces a value of type b. The result of bind
is a task of type Task b. Note that t >>= f integrates computation and sequential

ordering in a single pattern. This is hard to specify in a graphical modeling
language. The return combinator lifts any value (of some type a) to a (Task a)
that yields that value. Before we give an example of sequential composition, we
introduce one of the choice operators: chooseTask.

chooseTask :: [HtmlTag] [(String,Task a)] →Task a | iData a

A worker is offered a choice out of a list of tasks with chooseTask. Each task is
identified with a label (of type String) which is used to display the options to the
worker. When one of the options is chosen, the corresponding task is selected

6

and performed. The additional prompt argument (of type [HtmlTag]) can be used
to explain to the worker what the intention is. Any Html-code can be used.

chooseUser :: Task (UserId,String) 1.

chooseUser 2.

= getUsers 3.

>>= λusers→chooseTask [Text "Select worker who has to do the job:"] 4.

[(name,return user) \\ user=:(_,name) ←users] 5.

The example task chooseUser uses several of the basic tasks and combinators
introduced so far. The basic task getUsers returns the list of known users. These
are passed to chooseTask to allow the worker to select one known user. The list

comprehension in line 5 is well known functional idiom for manipulating lists.
Tasks can be assigned to workers. This is done with the @: combinator:

(@:) infix 3 :: UserId (String, Task a)→Task a | iData a

delegateTask :: String (a→Task a) a→Task a | iData a

delegateTask taskname taskf val

= chooseUser >>= λ(user,_) →user@:(taskname, taskf val)

The @: operator is a basic combinator with which any task can be assigned
to a worker (type UserId). The label (of type String) gives a name to the task
(displayed in the task list of this specific user). DelegateTask shows its usage: first
a worker is chosen with chooseUser and this worker is assigned the given task.

Workers can be prompted about their progress with ?>>:

(?>>) infixr 5 :: [HtmlTag] (Task a) →Task a | iData a

taskToDelegate :: a→Task a | iData a

taskToDelegate value

= [Text "Would you be so kind to fill in the following form:"]
?>> editTask "TaskDone" value

The ?>> combinator can be used to add a prompt to any task. The prompt (any
Html-code can be used here again) is displayed as long as the task is not finished.
This facility is used in taskToDelegate to make a polite version of editTask.

Notice that all definitions above can be applied for any task of any type
(read: model). In concreteDelegate below we apply delegateTask to a general task
for filling a form (taskToDelegate) given some initial value (createDefault). As was
the case with a simple form editor, the type specified here completely determines
the actual form to be filled in by the chosen worker:

concreteDelegate :: Task Person

concreteDelegate = delegateTask "person" taskToDelegate createDefault

Finally, iTask specifications can use all features of Clean including recursion.

recursiveDelegate:: String (a→Task a) a→ Task a | iData a 1.

recursiveDelegate taskname taskf val 2.

= delegateTask taskname taskf val 3.

>>= λresult→chooseTask [Text "Result:" , toHtml result, Text "Approved ?"] 4.

7

[("Yes" ,return result) 5.

, ("No" , recursiveDelegate taskname taskf result) 6.

] 7.

concreteRecDelegate :: Task Person 8.

concreteRecDelegate = recursiveDelegate "person" taskToDelegate createDefault 9.

A variant of delegateTask is given in recursiveDelegate. The worker who delegates
the task receives the result back (in result) for examination. It is shown in the
prompt of chooseTask: toHtml (line 4) displays any result of any type. If the worker
chooses not to approve the result, recursiveDelegate is called recursively and the
delegation of the work starts all over, but now with the latest result as starting
point (line 6). Again this recursive version can be used for any task and any
type: it is turned into a Person workflow by concreteRecDelegate (line 8).

2.3 The Expressive Power of the Combinators

In [1] an inventory is made of the workflow patterns offered by commercial
WFMSs. This collection is rather large. The reason for this is that the underly-
ing workflow languages generally do not offer the right abstraction mechanism
for defining new patterns. In this section we show how iTask makes use of the
functional host language to capture new patterns concisely.

Two commonly available workflow patterns are orTasks and andTasks. Both
work on a collection of tasks but have different termination conditions: orTasks
finishes as soon as one of its subtasks finishes, andTasks finishes as soon as all
subtasks are finished. We can capture this common behavior with a more general
combinator, parallel, that can be used to define orTasks and andTasks:

parallel :: String ([a] →Bool) (Bool→ [a] →b) [(String, Task a)] →Task b

| iData a & iData b

orTasks = parallel "orTasks" (not o isEmpty) (const hd)
andTasks = parallel "andTasks" (const False) (const id)

The parallel combinator is given a predicate (of type [a] →Bool) which deter-
mines when to stop. The predicate is applied on the list of values of all completed
subtasks. As soon as the predicate holds, all unfinished subtasks are stopped
(even if other workers are working on it) and the results of the finished tasks
are collected and converted (by the function of type Bool→ [a] →b) to the type
b demanded by the application. The Bool argument is true iff the predicate was
satisfied. Parallel also terminates when all subtasks have terminated, but the
predicate is still invalid. With parallel, orTasks and andTasks are easily expressed,
as shown above. (The const function ignores the boolean argument and applies
its argument function to the list of results.) Many other imaginable and useful
patterns can be defined in a similar way, e.g. when one wants to stop as soon as
enough information has been produced by the finished tasks (see also Sec. 3),
or as soon as someone has given up. Such user defined stop criteria cannot be
defined in most commercial workflow languages.

8

Another useful pattern is the ability to cancel a task (even when performed
by someone else), which can concisely be expressed with orTasks as shown in the
function cancelable.

:: Maybe a = Just a | Nothing

cancelable :: (Task a) →Task (Maybe a) | iData a

cancelable task

= orTasks [("Cancel" ,editTask "Cancel" Void >>= λ_→return Nothing)
,("Normal" ,task >>= λresult→return (Just result))
]

cancelableDelegate = cancelable concreteRecDelegate

The Void type has no visualization, hence editTask only shows a button labeled
Cancel. Nothing is returned when Cancel is pressed.

The iTask library has several of these general purpose combinators, but there
is no room here to discuss them all. There are combinators for workflow process
creation and handling, thread handling, exception handling, and combinators
which enable the change of work under execution. Compared to the set of well-
known workflow patterns, we have far less combinators yet we can express a lot
more different work situations. The reason is that with Swiss-army-knife com-
binators such as parallel and the expressive power of the host language we can
construct not only many well-known workflow patterns, but also new variants,
as explained above. Furthermore, the system is open ended: the programmer can
add new combinators when the basic collection is insufficient.

3 Order Booking Example

To demonstrate the expressive power of iTask, we present an order booking ex-
ample. The code presented below is a complete, executable, iTask workflow. The
workflow has a recursive structure and monitors intermediate results in a paral-
lel and-task. This case study is hard to express in traditional workflow systems.
The overall structure contains the following steps (see getSupplies below): first,
an inventory is made to determine the required amount of goods (getAmount)
(e.g. vaccines for a new influenza virus); second, suppliers are asked in parallel
how much they can supply (inviteOffers); third, as soon as sufficient goods can
be ordered, these orders are booked at the respective suppliers (placeOrders). A
Supplier is a pair (UserId,String), and Amount is a non-negative Int.

getSupplies :: Task [Void] 1.

getSupplies = getAmount >>= inviteOffers >>= placeOrders 2.

Determining the required amount of goods also proceeds in two steps: first,
the institute enquires other institutes recursively in parallel (using the andTasks

combinator) how many goods they need (lines 6-9). This means that each of
these institutes can ask other institutes for the same thing, and so on. Note that
an institute can decide to select no other institutes. In that case the recursion

9

stops. Second, given this amount, the institute can alter this number (line 11).
Also, chooseUsers (line 6) is a variant of chooseUser (Sect. 2.2) that uses multiple

choice and yields a list of workers. The operator <+ converts its second argument
to String and concatenates it to its first argument.

getAmount :: Task Amount 3.

getAmount = [Text "Ask other institutes"] ?>> chooseUsers 4.

>>= λinsts → andTasks [("Request for " <+ name 5.

, uid @: ("Amount request" , getAmount) 6.

) \\ (uid,name)←insts] 7.

>>= λothers→ [Text "Enter the required amount"] 8.

?>> editTask "Done" (sum others) 9.

Once the amount of goods is established, the workflow can continue by inviting
offers from a collection of candidate suppliers. This collection is determined first
(line 14). Each supplier can provide an amount (line 18). This is again done in
parallel (line 15-20). The termination criterium is the enough predicate which is
satisfied as soon as the sum of provided offers exceeds the requested amount
(line 22). The canonization function maximum is discussed below. Hence, the result
of this workflow task is a list of offers. Each offer is a pair of a supplier and the
amount of goods that it offers to deliver.

inviteOffers :: Amount→Task [(Supplier,Amount)] 10.

inviteOffers needed 11.

= [Text "Choose candidate suppliers"] ?>> chooseUsers 12.

>>= λsups→parallel "Supplier_requests" enough (maximum needed) 13.

[("Request for " <+ name 14.

,uid @: ("Order request" 15.

,prompt ?>> editTask "Done" needed >>= λa→return (sup,a) 16.

)) 17.

\\ sup=:(uid,name)←sups 18.

] 19.

where enough as = sum (map snd as) >= needed 20.

prompt = [Text "Request for delivery, how much can you deliver?"] 21.

The total number of offered goods can differ from the required number of goods.
The function maximum makes sure that not too many goods are ordered. This is
an easy exercise in functional programming:

maximum :: Amount Bool [(Supplier,Amount)] → [(Supplier,Amount)] 22.

maximum needed enough offers 23.

| not enough = offers 24.

| otherwise = [(supplier,exact) : less] 25.

where [(supplier,_) : less] = sortBy (λ(_,a1) (_,a2) →a1 > a2) offers 26.

exact = needed - sum (map snd less) 27.

With the correct list of offerings, we can place an order for each supplier. This
can be expressed directly with andTasks:

placeOrders :: [(Supplier,Amount)] →Task [Void] 28.

placeOrders offers 29.

= andTasks [("Order for " <+ name, 30.

10

uid @: ("Order request for " <+ name 31.

, [Text ("Please deliver " <+ a)] ?>> editTask "Done" Void) 32.

) 33.

\\ ((uid,name) ,a) ←offers] 34.

4 Modeling by Abstracting from Details

An iTask workflow specification is modeled in a functional language. This means
that the host language needs to support abstraction from (almost) all annoying
details. On the other hand, all information has to be provided somehow because
from this single source specification a complete real working distributed web
application has to be generated. How has this been realized?
Defining General Workflow Schemes. By using polymorphic, overloaded,
and generic (type driven) functions, one can specify custom workflow schemes
for any frequently occurring work situation that works for any concrete task
of any type. The type system ensures that everything is type correct. To get a
working application, a scheme somewhere has to be applied to a concrete model
(i.e. type). This is used by the compiler to generate specialized functions that
handle the low level details.
Abstracting from Form Views and Form Handling. One does not have
to worry about the user interface as a whole. It is defined separately, handled
by the client and it can be fine-tuned if desired without affecting the workflow
specification. Using generic programming techniques, an editor can be generated
for any concrete type specified by the programmer, the information is displayed
in a web page and can be interactively modified. Any change made in the form is
handled automatically by the application. The input given interactively is type
checked; it is impossible to create ill-typed values. It is also possible to specify
user-defined predicates over the input which consistency is checked at run-time.
Abstracting from specific Html Output. Sometimes it is necessary to show
additional information to the worker, e.g. for prompting and feedback. Abstract-
ing from this is not always completely possible. However, with the function toHtml

any value of any type can be converted to Html-code (Sec. 2). Furthermore, it
is possible to abstract from a concrete prompt or feedback by defining functions
for it, which can be given as argument to ?>> (Sec. 2).
Abstracting from Layout. Lay-out details of the output generated can be
specified separately as is common in web applications. The dynamic behavior of
the iTask system requires additional run-time facilities for controlling the lay-out.

:: TaskCombination

= TTSplit [HtmlTag] | TTVertical| TTHorizontal | TTCustom ([[HtmlTag]] → [HtmlTag])

myCancelable task = cancelable task <<@ TTVertical

To influence the layout of Html-code generated by subtasks, one can use the
(overloaded) tuning operator <<@. One can place the Html-code of each sub-
task in a separate worktab (TTSplit), below each other(TTVertical), next to each

11

other (TTHorizontal), or give a user defined recipe how to combine it (TTCustum).
MyCancelable gives an example of its usage. <<@ can be used to fine tune a system,
but the application also works without it.
Abstracting from Storage. In the iTask system information is passed explic-
itly from one task to another. This may involve different workers. Between the
events all information has to be stored somewhere. For a web-application there
are many possibilities, e.g. in a file, in a database, on the client. Furthermore,
we need to remember the progress of every worker. Again, by using generic pro-
gramming techniques, all this information is stored fully automatically. With the
overloaded tuning operator <<@ the workflow programmer can decide where and
in what format the information is stored (text, binary).

An iTask application also needs access to information stored in standard in-
formation systems. We do not have to bother workflow programmers with some-
thing low level as SQL queries. We can systematically convert an information
model defined in e.g. ORM to Clean data type definitions. This enables the au-
tomatic conversion between values of these types and the corresponding values
stored in a relational database [10].
Abstracting from the Web Architecture. The architecture (Fig. 3) of iTask

applications is representative for Ajax [5] based web applications. Initially a web
page is generated as shown in Fig. 1. Whenever a worker clicks on something, an

Fig. 3. The architecture of an iTask application

asynchronous Ajax request is sent to the iTask application to handle it. It reacts
by sending an update of those parts of the page that have to be changed. All
web handling is done automatically. Although one is defining a multi-user web
application, one does not need any knowledge about the underlying architecture.

One of the most interesting aspects of the architecture is that it is possible
to execute, in principle, any iTask on either the server or on a client [16]. For
example, a function like concreteDelegate (Sect. 2.2) is executed on the server by
default. It can be executed on the client by using the tuning operator <<@ and the

12

OnClient pragma: concreteDelegate <<@ OnClient. The <<@ operator accepts any task.
However, not all tasks can be executed (completely) on the client (e.g. tasks that
access a database). This is detected at run-time and the system automatically
migrates such a task back to the server.

To implement this, the Clean compiler generates two executable instances
from a single source. An executable iTask system runs on the server, while an
interpreted version runs on every client. Both implementations are efficient. The
Clean compiler is well-known for the excellent code it generates which is com-
parable to C. In the browser we use the Sapl-interpreter [7] which is currently
one of the fastest interpreters for a functional language. One JavaScript function
decides for each user action whether it is handled on the client or on the server.
Abstracting from the Evaluation Order. The iTask combinators define the
order in which tasks can be executed: tasks can be performed sequentially, in
parallel, distributively (on clients), and there even is strong support for exception
handling. Notice that iTasks are just plain Clean applications (there is no special
interpreter for iTask applications or something like that). A functional language
like Clean evaluates expressions in a fixed way: lazily (normal order). Clean does
not support parallel evaluation, distributed evaluation, nor exception handling.
It is very remarkable that the wild scala of evaluation orders offered by the
iTask library can nevertheless be embedded in the host language. This has been
achieved by making clever use of generic techniques for the automatic storage of
the state of the iTask application in combination with re-evaluation of (part of)
the application [13]. This allows us to mimic any evaluation strategy without
the need to make any change or extension in the host language.

5 Related Work

The WebWorkFlow project [6] shares our point of view that a workflow spec-
ification is regarded as a web application. WebWorkFlow is an object oriented
workflow modeling language that is embedded in WebDSL [19], a domain spe-
cific language for developing web applications. In WebWorkFlow, workflow objects

accumulate the progress made in a workflow. Workflow procedures define the ac-
tual workflow. Their specification is broken down into clauses that individually
control who can perform when, what the view is, what should be done when
the workflow procedure is applied, and what further workflow procedures should
be processed afterwards. Like in iTask, one can derive a GUI from a workflow
object. The main difference is that iTask is embedded in a functional language,
but this has significant consequences: iTask supports higher-order functions in
both the data models and the workflow specifications; arbitrary recursive work-
flows can be defined (WebWorkFlow is restricted to tail recursion and recursion
on simpler structures); reasoning about the evaluation of an iTask program is
reasoning about the combinators instead of the collection of clauses.

Brambilla et al [4] enrich a domain model (specified as UML entities) with
a workflow model (specified as BPMN) by modeling the workflow activities as
additional UML entities and use OCL to capture the constraints imposed by the

13

workflow. The similarity with iTask is to model the problem domain separately.
However, in iTask a workflow is a function that can manipulate the model values
in a natural way, which enables us to express functional properties seamlessly
(Sect. 3). This connection is ignored in [4] and can only be done ad-hoc.

Pešić and van der Aalst [12] base an entire formalism, ConDec, on linear
temporal logic (LTL) constraints. Frequently occurring constraint patterns are
represented graphically. This approach has resulted in the declare tool [11]. In
iTask a workflow can use the rich facilities of the host language for computations
and data declarations – such facilities are currently absent in declare.

Andersson et al [3] distinguish high level business models (value transfers be-
tween agents), low level process models (workflows in BPMN), and medium level
activity dependency models (activities for value transfers of business models).
Activities are value transfer, assigning an agent to a value transfer, value pro-

duction, and coordination of mutual value transfers and activities. Activities are
modeled as nodes in a directed graph. The edges relate activities in a way simi-
lar to [4] and [12]: they capture the workflow, but now at a conceptual level. A
conformance relation is specified between a process model and an activity depen-
dency model. Currently, there is no tool support for their approach. The activity
dependency models provide a declarative foundation to bridge the gap between
business models and process models. One of the goals of the iTask project is to
provide a formalism that has sufficient abstraction to accomodate both business
models and process models.

Vanderfeesten et al [18] have been inspired by the Bill-of-Material concept
from manufacturing, recasted as Product Data Model (PDM). A PDM is a di-
rected graph. Nodes are product data items, and arcs connect at least one node
to one target node, using a functional style computation to determine the value
of the target. A tool can inspect which product data items are available, and
hence, which arcs can be computed to produce next candidate nodes. This allows
for flexible scheduling of tasks. Similarities with the iTask approach are the focus
on tasks that yield a data item and the functional connection from source nodes
to target node. We expect that we can handle PDM in a similar way in iTask.
iTask adds to such an approach strong typing of product data items (and hence
type correct assembly) as well as the functions that connect these data items.

6 Conclusions and Future Work

The iTask system demonstrates that a high level general purpose functional
language such as Clean (or Haskell which is also supported by the Clean compiler)
is very suited to embed a special purpose modeling language. A library provides
the domain specific constructs and the specification language inherits the power
and advantages of the embedding language. Because only pure functions can
be used, one is forced to model in a mathematical way. Strong typing prevents
modeling mistakes. The use of generic (type driven) functions enable the use
of types as models. Powerful abstraction mechanisms allow to abstract from
annoying details such that one can concentrate on modeling. With relatively

14

few combinators all common workflow patterns are supported, but many more
complex workflow situations can be expressed. iTask workflows are dynamic: the
flow can depend on the outcome of other tasks. From the specification we are
able to generate a real working, distributed evaluated, web enabled, multi-user
workflow system. Any task can be shifted from the server to the client. The
whole system is generated from one source: a concise iTask specification defined
in Clean. Reasoning about the behavior of the system is relatively easy. The
semantics of the iTask system and the properties it has are treated in [9].

We have tested the system with larger examples, such as a Conference Man-
agement System [15]. We are extending our prototype to a full system which
can be applied in industrial environments. In collaboration with the Nether-
lands Ministry of Defense we are investigating the suitability of the iTask system
for handling operational planning and crisis management scenarios. To support
these kind of complex dynamic applications we are currently adding the ability
to adapt and/or extend running workflows on the fly.

References

1. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. QUT technical report, FIT-TR-2002-02, Queensland University of Tech-
nology, Brisbane, Australia, 2002.

2. A. Alimarine and R. Plasmeijer. A generic programming extension for Clean.
In T. Arts and M. Mohnen, editors, Selected Papers of the 13th International

Symposium on the Implementation of Functional Languages, IFL’01, volume 2312
of LNCS, pages 168–186. Springer-Verlag, Sept. 2002.

3. B. Andersson, M. Bergholtz, and A. Edirisuriya. A Declarative Foundation of
Process Models. In O. Pastor and J. Cunha, editors, Proceedings 17 Int’l Confer-

ence on Advanced Information Systems Engineering, CAiSE 2005, volume 3520 of
LNCS, pages 233–247. Springer-Verlag, 2005.

4. M. Brambilla, J. Cabot, and S. Cornai. Automatic Generation of Workflow-
Extended Domain Models. In G. Engels, B. Opdyke, D. Schmidt, and F. Weil,
editors, Proceedings Model Driven Engineering Languages and Systems, 10th Intl’

Symposium, MoDELS 2007, volume 4735 of LNCS, pages 375–389. Springer-Verlag,
2007.

5. J. Garrett. Ajax: a new approach to web applications, 18, Feb. 2005.
6. Z. Hemel, R. Verhaaf, and E. Visser. WebWorkFlow: an object-oriented workflow

modeling language for web applications. In K. Czarnecki, I. Ober, J. Bruel, A. Uhl,
and M. Völter, editors, Proceedings of the 11th International Conference on Model

Driven Engineering Languages and Systems, MoDELS’08, volume 5301 of LNCS,
pages 113–127. Springer-Verlag, 2008.

7. J. Jansen, P. Koopman, and R. Plasmeijer. Efficient interpretation by transforming
data types and patterns to functions. In H. Nilsson, editor, Selected Papers of the

7th Symposium on Trends in Functional Programming, TFP’06, volume 7, pages
73–90, Nottingham, UK, 2006. Intellect Books.

8. J. Jansen, P. Koopman, and R. Plasmeijer. iEditors: extending iTask with inter-
active plug-ins. In S.-B. Scholz, editor, Proceedings of the 20th International Sym-

posium on the Implementation and Application of Functional Languages, IFL’08,
pages 170–186, Hertfordshire, UK, 10-12, Sept. 2008. University of Hertfordshire.

15

9. P. Koopman, R. Plasmeijer, and P. Achten. An executable and testable semantics
for iTasks. In S.-B. Scholz, editor, Proceedings of the 20th International Symposium

on the Implementation and Application of Functional Languages, IFL’08, pages
53–64, Hertfordshire, UK, 10-12, Sept. 2008. University of Hertfordshire.

10. B. Lijnse. Between types and tables - Generic mapping between relational
databases and data structures in Clean. Master’s thesis, Institute for Comput-
ing and Information Sciences, Radboud University Nijmegen, The Netherlands,
July 2008. Number 590.

11. M. Pešić. Constraint-based workflow management systems: shifting control to users.
PhD thesis, Technical University Eindhoven, 8, Oct. 2008.

12. M. Pešić and W. van der Aalst. A declarative approach for flexible business pro-
cesses management. In J. Eder and S. Dustdar, editors, Proceedings of the 1st Busi-

ness Process Management Workshop on Dynamic Process Management, DPM’06,
volume 4103 of LNCS, pages 169–180. Springer-Verlag, 2006.

13. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable specifications of
interactive work flow systems for the web. In Proceedings of the 12th Interna-

tional Conference on Functional Programming, ICFP’07, pages 141–152, Freiburg,
Germany, 1-3, Oct. 2007. ACM Press.

14. R. Plasmeijer, P. Achten, and P. Koopman. An introduction to iTasks: defining
interactive work flows for the web. In Selected Lectures of the 2nd Central European

Functional Programming School, CEFP’07, volume 5161 of LNCS, pages 1–40,
Cluj-Napoca, Romania, 2008. Springer-Verlag.

15. R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse, and T. van Noort. An iTask case
study: a conference management system. In Selected Lectures of the 6th Interna-

tional Summer School on Advanced Functional Programming, AFP’08, LNCS, Cen-
ter Parcs “Het Heijderbos”, The Netherlands, 19-24, May 2008. Springer-Verlag.

16. R. Plasmeijer, J. Jansen, P. Koopman, and P. Achten. Declarative Ajax and
client side evaluation of workflows using iTasks. In Proceedings of the 10th In-

ternational Conference on Principles and Practice of Declarative Programming,

PPDP’08, pages 56–66, Valencia, Spain, 15-17, July 2008.
17. N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst. Workflow resource

patterns: identification, representation and tool support. Technical report, FIT-
TR-2004-01, Queensland University of Technology, Brisbane, Australia, 2004.

18. I. Vanderfeesten, H. Reijers, and W. van der Aalst. Product based workflow sup-
port: dynamic workflow execution. In Z. Bellahsène and M. Léonard, editors,
Proceedings of the 20th International Conference on Advanced Information Sys-

tems Engineering, CAiSE’08, volume 5074 of LNCS, pages 571–574, Montpellier,
France, 2008. Springer-Verlag.

19. E. Visser. WebDSL: a case study in domain-specific language engineering. In
R. Lämmel, J. Visser, and J. a. Saraiva, editors, Selected Lectures of the 2nd

International Summer School on Generative and Transformational Techniques in

Software Engineering, GTTSE’07, volume 5235 of LNCS, pages 291–373, Braga,
Portugal, 2-7, July 2007.

20. P. Wadler. Comprehending monads. In Proceedings of the 6th Conference on Lisp

and Functional Programming, LFP’90, pages 61–77, Nice, France, 1990.

An effective methodology for defining

consistent semantics of complex systems

Pieter Koopman, Rinus Plasmeijer, and Peter Achten

Nijmegen Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands
{pieter, rinus, p.achten}@cs.ru.nl

Abstract. The semantics of a complex system is a formal description
of the required behavior of that system. Although the formal semantics
is usually a much simpler system than the original system described, the
semantics itself can become quite difficult as well. Often the semantics
itself is error prone just like any other large formal system (e.g. a pro-
gram). There are several kinds of potential problems with such a formal
system: 1) the system is incomplete, e.g. not all notions used are defined
properly; 2) the system is inconsistent, e.g. functions are used with the
wrong number of arguments; 3) the system does not possess the required
properties, e.g. addition is not associative, commutative and distributive;
4) the system does not prescribe the right semantic, e.g. the semantics
of multiplication accidentally specifies addition. In this lecture we show
an effective way to tackle these problems and illustrate our method by a
nontrivial example.
Problems 1) and 2) are avoided by using a high level functional program-
ming language as carrier of the formal semantics. The burden of using
such a language as formalism instead of ordinary mathematics appears
to be very limited. The advantage is obvious; the compiler checks con-
sistency and well-definedness of the semantics. Problem 4) can now be
handled by simulating the specified semantics. In our experience such
a validation is very effective. In this lecture we show how problem 3)
can be treated by stating desired properties of the semantics and test
these properties automatically with the model-based test system G∀st.
During the development of the semantics one does not want the burden
of formal proofs of properties for intermediate versions of the semantics;
a test system yields a solid approximation of correctness within seconds.
In a next step one can use this semantics to test the real implementation
of the specified system with G∀st.
As an example of a complex system we will take the iTask workflow
system as currently being developed in Nijmegen. Workflow systems are
automated systems which coordinate the tasks that have to be done
to achieve a certain goal. These tasks are executed by human beings
and computers. In Clean we have defined the iTask combinator library
with which dynamic workflows can be defined: the kinds of tasks to do,
the assignment of tasks to workers and the order in which the tasks
are executed is not fixed, but may depend on the outcome of previous
tasks. The system generated is a multi-user distributed web application
in which the tasks to be done are offered to the intended workers. Due

to the architecture of the web and the fact that tasks can be executed
both on the server and on the client, the iTask system is becoming quite
an intriguing system.

Describing the semantics of and properties of such a system and proving
its correctness is therefore not an easy job. The system is complex on
its own and it is on forehand not clear which properties it exactly has.
Furthermore, the iTask system is still under development, such that is too
early to use heavy and time consuming equipment like a proof system.
Yet we would like to be sure that the system we have defined so far
behaves well even though we are not sure yet in all detail what that
means.

1 Introduction

The iTask system [11] is an experimental toolkit to specify data dependent dy-
namic workflows in a flexible and concise way by a set of combinators. The iTask

system supports workers executing the specified tasks by a web-based interface.
Typical elementary user tasks in this system are filling in forms and pressing
buttons to make choices. The elementary tasks are implemented on top of the
iData system [10]. Based on an input the iTask system determines the new task
that has to be done and updates the interface in the browser. Arbitrary complex
tasks are created by combining (elementary) tasks. The real power of data de-
pendent tasks is provided by the monadic bind operator that contains a function

to generate the next task based on the value produced by the previous task.

The iTask implementation executes the tasks, but has to cope with many
other things at the same time: e.g. i/o to files and database, generation of the
multi-user web interface, client/server evaluation of tasks, and exception han-
dling. The iTask system uses generic programming to derive interfaces to files,
databases and web-browsers for data types. The combination of these things
makes the implementation of iTasks much too complicated to grasp the seman-
tics. To overcome these problems we develop a high level operational semantics
for iTasks in this paper. The semantics in this paper is an extended version of our
earlier work published in [6]. This semantics is used to explain the behavior of
the iTask system, and to reason about the desired behavior of the system. In the
future we will use this semantics as model to test the real iTask implementation
with our model-based test tool G∀st. A prerequisite for model-based testing is
an accurate model of the desired behavior. Making a model with the desired
properties is not easy. Such a model is developed, validated, and its properties
are tested in this paper.

In this paper we provide a basic rewrite semantics for iTasks as well as a num-
ber of useful notions to reason about tasks, such as needed events and equivalence

of tasks. The semantics of many other workflow systems is based on Petri-nets
[12], actor-oriented directed graphs (including some simple higher order con-
structs) [8], or abstract state machines (ASM) [7]. Neither of these alternatives
is capable to express the flexibility covered by the dynamic generation of tasks

2

of the monadic bind operation of the iTask system. As usual we omit many de-
tails in the semantics to express the meaning of the basic iTask combinators as
clearly as possible. The semantics is expressed in the functional programming
language Clean instead of the more common Scott Brackets, denotational se-
mantics, or horizontal bar style, structural operational semantics a la Plotkin.
The close correspondence between semantics and functional programs goes back
at least to [9]. Expressing the operational semantics in a FPL is as concise as
in Scott Brackets style. Using a functional programming language as carrier of
the specification of the semantics has a number of advantages: 1) the type sys-
tem performs basic consistency checks on the semantics; 2) the semantics is
executable; 3) using the iTask system it is easy to validate the semantics by in-
teractive simulation; 4) using the model-based test tool G∀st [5] it is possible to
express properties about the semantics and equivalence of task concisely, and to
test these properties fully automatically. Although the semantics is executable,
it is not an iTask system itself. The semantics is a model of the real system, it
lacks for instance a frontend (user interface) as well as a backend (e.g. interface
to a database).

Especially the ability to express properties of the specified semantics and to
test them automatically appears to be extremely convenient in the development
of the semantics and associated notions described in this paper. An alternative,
more traditional, approach would be to define a semantics in a common math-
ematical style, state properties in logic, and formally prove these properties. It
would be wise to use a proof assistant like COQ [14] or SPARKLE [3] in prov-
ing the properties, this would require a transformation of the semantics to the
language of the proof assistant. In the past we have used this approach for the
iData system [1]. In such a mathematically based approach it is much harder to
experiment with different formulations of the semantics and to get the system
consistent after a change. Proving a property of a new version of the seman-
tics typical takes some days of human effort where testing the same property is
done in seconds by a computer. When we have a final version of the semantics
obtained in this way, we can decide to prove (some of) the tested properties in
order to obtain absolute confidence in their correctness.

Section 2 gives a short introduction to the various kind of semantics that
exists and shows how this can be expressed concisely in a functional language.
In section 3 we show how we model iTasks and the effect of applying an input
to a task. In this section we also define useful notions about subtasks, such as
when they are enabled or needed. In section 4 we define the equivalence of tasks
and how the equivalence of tasks can be determined in two different ways. Some
important properties of the semantics of iTasks are given in section 5, we also
show how these properties can be tested fully automatically. Testing properties
of the semantics increases the confidence that we have specified the semantics of
iTasks right. In the future we will use this semantics for model-based testing of
the real iTask implementation, this will increase the confidence that the system
obeys the semantics. Finally there is a discussion.

3

2 Formal Semantics

The semantics [9] of a programming language defines the meaning of programs.
In order to reason about the semantics we usually need a formal definition of
the semantics, rather than an informal textual description. There is a consider-
able amount of research done in this field. As a result there are many different
ways to describe the semantics of some programming language. The three main
approaches are:

Operational semantics This approach assigns a meaning to the syntactical
constructs in a programming language. The meaning of each language con-
struct is specified by the computations it induces when the construct is exe-
cuted. This approach focusses on how the effect of each language construct
is build in some kind of mathematical interpretation of the programming
language.
Within the operational semantics we distinguish two approaches. The struc-

tural operational semantics (or small-step semantics) focusses on details of
individual execution steps. The semantics is a mathematical interpreter of
the programming language that hides details like storage allocation, but
otherwise specifies the effect of each language construct in detail. The nat-

ural semantics (or big-step semantics) hides even more details. There is no
emphasis on specifying the meaning of individual execution steps, but one
specifies the meaning of a language constructs in larger steps than in the
structural operational semantics.

Denotational semantics The focus in this approach is on the value that a lan-
guage construct denotes, rather than how this value is obtained. For simple
language constructs the denotational description resembles the operational
semantics. For more complicated constructs like loops and recursive function
applications one often uses a fixed point description. For instance, for a loop
the denotational semantics specifies the state of the program after termina-
tion of the loop, while the operational semantics describes the state change
by executing the loop once.

Axiomatic semantics In this approach specific properties of executing lan-
guage constructs are expressed as assertions. These properties specify the
effect of language constructs, but there can be aspects of the execution that
are ignored in an axiomatic semantics.

2.1 The Imperative Language While

In order to illustrate these approaches to specify the semantics and our own
approach based on functional programming, we specify the semantics of a very
simple imperative language called While in this section. We will start with the
classical formal semantical description. Since this approach assigns a meaning to
the syntactical constructs in a programming language, we need a specification
of the syntax. For the language While we use the following meta-variables and
catagories:

4

n ranges over integer numbers;
v ranges over variables;
a ranges over arithmetical expressions;
b ranges over Boolean expressions;
S ranges over statements.

These meta-variables can be primed or subscripted if we need more than one
instance, e.g. v and v1 are also variables. We do not need to known the syntactical
details of numbers and variables. The syntax for the other constructs is:

a ::= v | n | a+ a | a− a | a ∗ a
b ::= TRUE | FALSE | a= a | a <a | ¬ b | b && b
S ::= x := a | skip | S ; S | if b S else S | while b S

2.2 The Semantics of Expressions in While

In order to specify the semantics we need a state that relates variables and their
values. Usually this state is modeled as a function from variables to their values:
State = Var → Int. Here we have to make our first semantic choice: do variables
that did not occur on the left-hand side of an assignment have a value (and they
have a value, what is that value), or is the value of these variables undefined
(and is the state a partial function Var →֒ Int). For simplicity we assume that
the value of all variables is initialized to 0. In figure 1 we define the semantics of
arithmetic expressions by a function from the expression and a state to an integer
value. In this function we use the Scott brackets [[]] to denote a match on syntax
using the syntactical categories defined above. This function specifies that the
semantics of a number denotation n is the value of that denotation generated
by N [[n]]. For brevity we ignore the definition of N . The value of a variable v is
obtained by looking it up in the state s. For operators we determine the values
of the operands recursively and apply the mathematical operator corresponding
to the operator indicated in the syntax.

A :: A → State → Int

A [[n]] s = N [[n]]
A [[v]] s = s v

A [[a1 + a2]] s = A [[a1]] s +A [[a2]] s

A [[a1 − a2]] s = A [[a1]] s−A [[a2]] s

A [[a1 ∗ a2]] s = A [[a1]] s ∗ A [[a2]] s

Fig. 1. Classical definition of the semantics of arithmetics expressions

The function A is a mathematical entity that assigns a value to syntax.
In [9] the Nielsons already indicate that there is a direct mapping from this
mathematical function to a function in a functional programming language. In a
modern functional programming language like Clean this can be further improved

5

for instance by user defined infix operators and constructors. The advantages of
using a functional language instead of a mathematics are 1) the compiler of
the functional language can be used for statics checks of the specification (e.g.
that all identifiers are defined and the specification is correctly typed); 2) the
specification can be executed. The execution of the semantics can for instance be
used to validate the definition by interactive simulation, or to test properties of
the semantics automatically. Possible drawbacks of using a functional language
instead of mathematics are 1) that there are many constructs in mathematics
that cannot be used expressed directly in a functional programming language; 2)
in general it is easier to add ad-hoc notation and new constructs to mathematics
than in a functional language; 3) in mathematics is is very well possible to reason
about undefinedness and nontermination, if we are not careful this might cause
runtime errors on nonterminating computations in a functional language. In this
section we show that the a modern functional language is very suited to express
the semantics in a concise way.

As a first example we restate the semantics of arithmetic expressions in Clean.
In order to mimic the syntactic match we model the arithmetic expressions by the
datatype AExpr. This data type directly mimics the syntax of allowed expressions
given above. In this datatype we add a dot to the names infix operators (like +)
that are defined with a different purpose in Clean. The priority of the operators
is chosen such that expressions like Var "x" +. Int 2 *. Var "y" have the usual
binding of operators (here Var "x" +. (Int 2 *. Var "y")).

:: AExpr

= Int Int

| Var Var

| (+.) infixl 6 IExpr IExpr

| (-.) infixl 6 IExpr IExpr

| (*.) infixl 7 IExpr IExpr

:: Var :== String

The environment used in the semantics is a function from variables (Var) to
integers.

:: Env :== Var → Int

emptyEnv :: Env

emptyEnv = λx → 0

The equivalent of the mathematical semantic function A from 1 is the function
A given in figure 2. Note that these functions have exactly the same length and
structure. In the function A we are not bound to the naming conventions of A.

In exactly the same way we define a data type for Boolean expressions and
the associated semantics in figure 3. This data type directly follows the syntax
for B given above. Just like above we added priorities to the infix operators in
order to assign the usual binding to Boolean expressions without parentheses.

According to these definitions the semantics of integers and Booleans in While

inherits the semantics of Int and Bool in Clean. If this would be not what is desired
we define tailor made data types and operations to mimic the desired semantics.

6

1A :: AExpr Env → Int

2A (Int i) env = i

3A (Var v) env = env v

4A (x +. y) env = A x env + A y env

5A (x -. y) env = A x env - A y env

6A (x *. y) env = A x env * A y env

Fig. 2. Semantics of arithmetics expressions in Clean

1:: BExpr

2= TRUE

3| FALSE

4| (=.) infix 4 AExpr AExpr

5| (<.) infix 4 AExpr AExpr

6| ¬. BExpr

7| (&&.) infixr 3 BExpr BExpr

8

9B :: BExpr Env → Bool

10B TRUE env = True

11B FALSE env = False

12B (x =. y) env = A x env == A y env

13B (x <. y) env = A x env ≤ A y env

14B (¬. exp) env = not (B exp env)
15B (x &&. y) env = B x env && B y env

Fig. 3. Boolean expressions and their semantics

2.3 Denotational Semantics

The goal of denotational semantics is to show the effect of executing a program.
In the traditional formulation this is done by a function DS :: S → State →֒
State using a syntactic pattern match on statements. The state of a program
is just its environment. The effect of an assignment is a change in the state or
environment:

DS [[v := a]] s = s [x 7→ A [[a]] s]

The updated state function s [x 7→ i] associates the same value to every argument
as s except the argument x is mapped to i:

(s [x 7→ i]) x = i

(s [x 7→ i]) y = s y, if x 6= y

In Clean we define the operator 7→ (written in plain text as |->) to achieve this
effect, e.g. ("x" 7→ 1) emptyEnv.

(7→) infix :: Var Int → Env → Env

(7→) v i = λenv x.if (x==v) i (env x)

7

Note that the environment to be changed is here written after the new mapping
and we use ordinary parentheses instead of square parentheses.

We use the functional language approach where the statements are repre-
sented by a data structure and an associated interpretation function as specified
in figure 4.

1:: Stmt

2= (:=.) infix 2 Var AExpr

3| (:.) infixl 1 Stmt Stmt

4| Skip

5| IF BExpr Stmt Stmt

6| While BExpr Stmt

7

8ds :: Stmt Env → Env

9ds (v :=. a) s = (v 7→ A a s) s

10ds Skip s = s

11ds (s1 :. s2) s = ds s2 (ds s1 s)
12ds (IF c t e) env

13| B c env

14= ds t env

15= ds e env

16ds (While c stmt) env = fix f env

17where
18f ff env

19| B c env

20= ff (ds stmt env)
21= env

22

23fix :: (a → a) → a

24fix f = f (fix f)

Fig. 4. Statements and their denotational semantics

The denotational semantics focusses on the meaning of programs and not on
their detailed execution. For this reason the while-statement is not evaluated step
by step in the semantics. The semantics simply states that the state produced
by the semantics of the while statement (if any) is the fixed point of the given
function. Of course there are statements (like While TRUE Skip) that have no fixed
point. Technically the semantics is a partial function that assigns a meaning,
state transformation, to correct terminating statements.

2.4 Natural Semantics

The natural semantics is a big-step semantic that focuses on the effect of the in-
dividual language constructs. Since this is a big-step semantics it constructs the

8

final state in one go by applying the semantic function recursively to intermedi-
ate results, just like the denotational semantics. For the while-statement it will
evaluate the body once if the condition holds and continue with the semantics
of the same loop in the new state. For all other statements the formulation of
the semantics is identical to the denotational semantics.

1ns :: Stmt Env → Env

2ns (v :=. e) env = (v 7→ A e env) env

3ns (s1 :. s2) env = ns s2 (ns s1 env)
4ns Skip env = env

5ns (IF c t e) env | B c env = ns t env

6ns (IF c t e) env | ¬(B c env) = ns e env

7ns (While c s) env | B c env = ns (While c s) (ns s env)
8ns (While c s) env | ¬(B c env) = env

Fig. 5. The natural semantics of statements

In the traditional representation of the operational semantics the semantics is
often specified by transition system. This system has two kind of configurations:
a tuple < S, s > connecting a statement S and a state s, or a final state s.
Transitions are given in the form of axioms. If the premisses above the line and
the condition to the right of the line holds, the conclusion below the line holds.
For instance the natural semantics for the while-statement if the condition of
the statement holds is expressed as:

[whileTRUE]
< S, s >→ s1, < while b S, s1 >→ s2

< while b S, s >→ s2

if B [[b]] s

The advantage of this approach is that it is not necessary to give an order in
the reduction rules, nor to be complete (as in an axiomatic semantics). However,
in order to obtain a deterministic semantics we have to prove that the result of
semantics is independent of the order of applying these axioms, or we have to
show that there is only on order. It is easy to see that the alternatives of the
function ns all cover different cases and hence these alternatives can be written
in any order.

If necessary the natural semantics of While in Clean can be formulated in
closer correspondence to the axiom by writing:

ns (While b s) env | B b env = env2

where env1 = ns s env ; env2 = ns (While b s) env1

for this alternative. We prefer the equivalent formulation in figure 5 since it is
shorter and shows the difference and similarity with the denotational semantics
clearer.

9

2.5 Structural Operational Semantics

The structural operational semantics is a small-step semantics. It specifies the
result of individual reduction steps. Hence the semantics does not always yield
the final state, it can also yield an intermediate configuration consisting of a
statement and the associated environment:

:: Config = Final Env | Inter Stmt Env

The structural operations semantics of our example language While is given in
figure 6.

1sosStep :: Stmt Env → Config

2sosStep (v :=. e) s = Final ((v 7→ A e s) s)
3sosStep Skip s = Final s

4sosStep (s1 :. s2) s

5= case sosStep s1 s of
6Final s ‘ = Inter s2 s ‘
7Inter s1 ‘ s ‘ = Inter (s1 ‘ :. s2) s ‘
8sosStep (IF c t e) s | B c s = Inter t s

9sosStep (IF c t e) s | ¬(B c s) = Inter e s

10sosStep (While c body) s = Inter (IF c (body :. While c body) Skip) s

Fig. 6. The structural operational semantics of statements

By applying this function repeatedly until we reach a Final configuration we
obtain a trace of the reduction. For non terminating programs this trace will be
an infinite list of configurations.

sosTrace :: Config → [Config]
sosTrace c=:(Final _) = [c]
sosTrace c=:(Inter ss s) = [c: sosTrace (sosStep ss s)]

Using this trace we can construct a function sos with the same type as the other
functions specifying the semantics. This function yields the state in the final
state that can be found in the last configuration of the trace.

sos :: Stmt Env → Env

sos s env = env1 where (Final env1) = last (sosTrace (Inter s env))

There is much more to be said about semantics. For instance the language While

can be extended by language constructs like pure functions and procedures.
In a similar style we can also define the semantics of functional programming
languages. Due to space limitations we will not elaborate on this here.

2.6 Testing Properties of the Semantics

Having the statements available as a data type and semantics available as func-
tions in Clean we can use the fact that the semantics is executable. For instance

10

we can make an editor for statements using iTasks and show the trace of the
reduction of such a program using the structural operational semantics defined
by sos.

Another possibility is to test properties of the semantics using our model
based test system G∀st. We show some examples.

Consider the factorial function in While:

facStmt

= y :=. one :.

While (one <. vx)
(

y :=. vy *. vx :.

x :=. vx -. one

)
where

x = "x" ; vx = Var x

y = "y" ; vy = Var y

Given any semantics sem, the semantics of the factorial function used with an
environment that assigns 4 to the variable "x", should produce an environment
that associates 24 to the variable "y".

propFac :: (Stmt Env → Env) → Bool

propFac sem = sem facStmt (("x" 7→ 4) emptyEnv) "y" == 24

The argument of this property is the universal quantified variable

We can test this property for our three versions of the semantics (ds, ns, and
sos) by executing:

Start = test (propFac For [ds ,ns ,sos])

Fortunately the test system produces Proof as test result which gives us some
confidence in the correctness of the various semantics.

More general, the semantics of any statement should be equal for the natural
semantics (ns) and the denotational semantics (ds). In order to guarantee that
the test terminates we want only to consider statements that are known to
terminate. We ensure this by generating only while-statements that correspond
to for-loops with a limited number of iterations. The details will be included in
the final version of this paper.

The semantic functions yield the final environment which is a function. In
general it is very hard to compare functions. Here it is sufficient to check that
the environment produces the same value for all variables that occur in the
statement. For this purpose we introduce the function allvars that yields all
variables that occur on the left-hand side of an assignment in a program in the
language While.

allvars :: Stmt → [Var]
allvars (x :=. e) = [x]

11

allvars (s :. t) = allvars s + allvars t

allvars Skip = []
allvars (IF c t e) = allvars t + allvars e

allvars (While c b) = allvars b

instance + [x] | Eq x where (+) x y = removeDup (x++y)

The function that determines the equivalence of environments is straightforward.

eqEnv :: Env Env [Var] → Bool

eqEnv f g vars = and [f v == g v \\ v←vars]

After these preparations the property to test equivalent of natural semantics and
denotational semantics becomes:

prop1 :: (Stmt Env → Env) Stmt → Bool

prop1 stmt = eqEnv (ns stmt emptyEnv) (ds stmt emptyEnv) (allvars stmt)

Similar properties can be state for other combinations of the various versions
of the semantics. Executing these tests yield Pass, which further increases the
confidence in our definitions.

Our next property says that for all semantics and statements stmt, the se-
mantics of that statement is equal to the semantics of Skip :. stmt.

propSkip :: (Stmt Env → Env) Stmt → Bool

propSkip sem stmt

= eqEnv (sem stmt emptyEnv) (sem (Skip :. stmt) emptyEnv) (allvars stmt)

Another property used in the test is that the semantics for all terminating
while-statements While b s is equivalent to the semantics of IF b (s :. While b s)

Skip. This property needs some tweaking to generate terminating while state-
ments corresponding to for loops.

propWhile :: (Stmt Env → Env) (Maybe GBExpr) Gvar GNat Gstmt → Bool

propWhile sem b v n s

= eqEnv (sem stmt emptyEnv)
(sem (decl :. IF cond loop Skip) emptyEnv) (allvars stmt)

where stmt = conv (GWhile b v n s) ; (decl :. loop=:(While cond body)) = stmt

Also this property passes the tests.
This completes our introduction to semantics and testing properties of such

a semantics. In the next section we apply these techniques to give a semantics
of iTasks.

3 A Semantics for iTasks

In the original iTask system a task is a state transformer of the strict and unique
Task State TSt. The required uniqueness of the task state (to guarantee single
threaded use of the state in a pure functional language) is in Clean indicated by
the type annotation *. The type parameter a indicates the type of the result.
This result is returned by the task when it is completely finished.

12

:: Task a :== *TSt → *(a ,*TSt) // an iTask is state transition of type TSt

Hence, a Task of type a is a function that takes a unique task state TSt as
argument and produces a unique tuple with a value of type a and a new unique
task state. In this paper we consider only one basic task: the edit task.

editTask :: String a → Task a | iData a

The function editTask takes a string and a value of type a as arguments and
produces a task a under the context restriction that the type a is in the type
class iData. The class iData is used to create a web based editor for values of
this type. Here we assume that the desired instances are defined.

The editTask function creates a task editor to modify a value of the given
type, and adds a button with the given name to finish the task. A user can
change the value as often as she wants. The task is not finished until the button
is pressed. There are predefined editors for all basic data types. For other data
types an editor can be derived using Clean’s generic programming mechanism
[2], or a tailor-made editor can be defined for that type.

In this paper we focus on the following basic iTask combinators to compose
tasks.

return :: a → Task a | iData a

(>>=) infixl 1 :: (Task a) (a→Task b) → Task b | iData b

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iData a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a ,b) | iData a & iData b

The combinators return and >>= are the usual monadic return and bind. The
return combinator transforms a value in a task yielding that value immediately.
The bind combinator is used to indicate a sequence of tasks. The expression
t >>= u indicates that first task t must be done completely. When this is done,
its result is given to u in order to create a new task that is executed subsequently.

The expression t -||- u indicates that both iTasks can be executed in any

order and interleaved, the combined task is completed as soon as any subtask is
done. The result is the result of the task that completes first, the other task is
removed from the system. The expression t -&&- u states that both iTasks must
be done in any order (interleaved), the combined task is completed when both

tasks are done. The result is a tuple containing the results of both tasks.
All these combinators are higher order functions manipulating the complex

task state TSt. This higher order function based approach is excellent for con-
structing such a library in a flexible and type safe way. However, if we want to
construct a program with which we can reason about iTasks, higher order func-
tions are rather inconvenient. In a functional programming language like Haskell

or Clean it is not possible to inspect which function is given as argument to a
higher order function. The only thing we can do with such a function given as
argument is applying it to arguments. In a programming context this is exactly
what one wants to do with such a function. In order to specify the semantics
of the various iTask combinators however, we need to know which operator we
are currently dealing with. This implies that we need to replace the higher order
functions by a representation that can be handled instead. We replace the higher

13

order functions and the task state TSt by the algebraic data type ITask. We use
infix constructors for the or-combinator, .||., and the and-combinator, .&&., in
order to make the representation similar to the corresponding infix combinators
-||- and -&&- from the original iTask library.

:: ITask

= EditTask ID String BVal // an editor
| .||. infixr 3 ITask ITask // OR-combinator
| .&&. infixr 4 ITask ITask // AND-combinator
| Bind ID ITask (Val→ITask) // sequencing-combinator
| Return Val // return the value

:: Val = Pair Val Val | BVal BVal

:: BVal = String String | Int Int | VOID

Instances of this type ITask are called task trees. Without loss of generality we
assume here that all editors return a value of a basic type (BVal). In the real
iTask system editors can be used with every (user defined) data type. Using only
these basic values in the semantics makes it easier to construct a type preserver
simulator (see section 6). Since the right-hand side of the sequencing operator
Bind is a normal function, this model has here the same rich expressibility as the
real iTask system.

In order to write ITasks conveniently we introduce two abbreviations. For the
monadic Bind operator we define an infix version. This operator takes a task and
a function producing a new task as arguments and adds a default id to the Bind

constructor.

(⇛) infixl 1 :: ITask (Val→ITask) → ITask

(⇛) t f = Bind id1 t f

For convenience we introduce also the notion of a button task. It executes the
given iTask after the button with the given label is pressed. A button task is
composed of a VOID editor and a Bind operator ignoring the result of this editor.

ButtonTask i s t = EditTask i s VOID ⇛ λ_ → t

Any executable form of iTasks will show only the button of a VOID editor. Since
the Type of the edited value must be preserved, it cannot be changed.

3.1 Task Identification

The task to be executed is composed of elementary subtasks. These subtasks
can be changed by events in the generated web-interface, like entering a value
in a text-box or pushing a button. In order to link these events to the correct
subtask we need an identification mechanism for subtasks. We use an automatic
system for the identification of subtasks. Neither the worker, nor the developer
of task specification has to worry about these identifications. The fact that the
iTask system is in principle a multi-user system implies that there are multiple
views on the task. Each worker can generate events independently of the other

14

workers. The update of the task tree can generate new subtasks as well as re-
move subtasks of other workers. This implies that the id’s of subtasks must be
persistent and that newly generated subtasks cannot reuse old id’s. For these
reasons the numbering system has to be more advanced than just a numbering
of the nodes. The semantics in this paper ignores the multi-user aspect of the
semantics, but the numbering system is able to handle this (just as the real iTask

system).
Tasks are identified by a list of integers. These task identifications are used

similar to the sections in a book. On top level the tasks are assigned integer
numbers starting at 0. In contrast to sections, the least significant numbers are
on the head of the list rather than on the tail. The data type used to represent
these task identifiers, ID, is just a list of integers.

:: ID = ID [Int]

next :: ID → ID

next (ID [a:x]) = ID [a+1:x]

Whenever a task is replaced by its successor the id is incremented by the function
next. For every id, i, we have that next i 6= i. In this way we distinguish inputs
for a task from inputs to its successor. The function splitID generates a list of
task identifiers for subtasks of a task with the given id. This function adds two
numbers to the identifier, one number for the subtask and one number for the
version of this subtask. If we would use the same number for both purposes, one
application of the function next would incorrectly transform the identification of
the current subtask to that of the next subtask.

splitID :: ID → [ID]
splitID (ID i) = [ID [0 ,j:i] \\ j ← [0..]]

These identifiers of subtasks are used to relate inputs to the subtasks they belong
to. The function nmbr is used to assign fresh and unique identifiers to a task tree.

nmbr :: ID ITask → ITask

nmbr i (EditTask _ s v) = EditTask i s v

nmbr i (t .||. u) = nmbr j t .||. nmbr k u where [j ,k:_] = splitID i

nmbr i (t .&&. u) = nmbr j t .&&. nmbr k u where [j ,k:_] = splitID i

nmbr i (Bind _ t f) = Bind k (nmbr j t) f where [j ,k:_] = splitID i

nmbr i t=:(Return _) = t

By convention we start numbering with id1 = ID [0] in this paper.

3.2 Events

The inputs for a task are called events. This implies that the values of input
devices are not considered as values that change in time, as in FRP (Functional
Reactive Programming). Instead changing the value of an input device generates
an event that is passed as an argument to the event handling function. This
function will generate a new state and a new user interface.

15

An event is either altering the current value of an editor task or pressing
the button of such an editor. At every stage of running an iTask application,
several editor tasks can be available. Hence many inputs are possible. Each event
contains the id of the task to which it belongs as well as additional information
about the event, the EventKind.

:: Event = Event ID EventKind | Refresh

:: EventKind = EE BVal | BE

The event kind EE (Editor Event) indicates a new basic value for an editor. A
Button Event BE signals pressing the button in an editor indicating that the
user finished editing.

Apart from these events there is a Refresh event. In the actual system it is
generated by each refresh of the user-interface. In the real iTask system this event
has two effects: 1) the task is normalized; and 2) an interface corresponding
to the normalized task is generated. In the semantics we only care about the
normalization effect. Normalization of a task is done by applying the Refresh

event to the task. Although this event is ignored by all elementary subtasks it
has effects on subtasks that can be rewritten without user events. For instance,
the task editTask "ok" 1 -||- return 5 is replaced by return 5. Similarly the
task return 7 >>= editTask "ok" is replaced by editTask "ok" 7 We elaborate
on normalization in the next section.

3.3 Rewriting Tasks given an Event

In this section we define a rewrite semantics for iTasks by defining how a task
tree changes if we apply an event to the task. Because we want an executable
semantics rewriting is defined by an operator @., pronounced as apply. We define
a class for @. in order to be able to overload it, for instance with the application
of a list of events to a task.

class (@.) infixl 9 a b :: a b → a

Given a task tree and an event, we can compute the new task tree representing
the task after handling the current input. This is handled by the most important
instance of the operator @. for ITask and Event listed in figure 7. It is assumed
that the task is properly numbered and normalized, and that the edit events
have the correct type for the editor.

This semantics shows that the ids play a dominant role in the rewriting of
task trees. An event only has an effect on a task with the same id. Edit tasks
can react on button events (line 4) as well as edit events (line 3). Line 14 shows
why the Bind operator has an id. Events are never addressed to this operator,
but the id is used to normalize (and hence number) the new subtask that is
dynamically generated by f v if the left-hand side task is finished. All events
that are not enabled are ignored (line 16). All other constructs pass the events
to their subtasks and check if the root of the task tree can be rewritten after the
reduction of the subtasks. The recursive call with @. e on line 13 can only have

16

1instance @. ITask Event

2where
3(@.) (EditTask i n v) (Event j (EE w)) | i==j = EditTask (next i) n w

4(@.) (EditTask i n v) (Event j BE) | i==j = Return (BVal v)
5(@.) (t .||. u) e = case t @. e of
6t=:(Return _) = t

7t = case u @. e of
8u=:(Return _) = u

9u = t .||. u

10(@.) (t .&&. u) e = case (t @. e , u @. e) of
11(Return v , Return w) = Return (Pair v w)
12(t , u) = t .&&. u

13(@.) (Bind i t f) e = case t @. e of
14Return v = normalize i (f v)
15t = Bind i t f

16(@.) t e = t

Fig. 7. The basic semantics of iTasks.

an effect when the task was not yet normalized, in all other situations applying
the event has no effect.

A properly numbered task tree remains correctly numbered after reduction.
Editors that receive a new value get a new number by applying the function
next to the task identification number. The numbering scheme used guarantees
that this number cannot occur in any other subtask. If the left left-hand task of
the bind-operator is rewritten to a normal form a new task tree is generated by
f v. The application of normalize (next i) to this tree guarantees that this tree
is well formed and properly numbered within the surrounding tree. This implies
that applying an event repeatedly to a task has at most once an effect.

The handling of events for a task tree is somewhat similar to reduction of
combinator systems or in the λ-calculus. An essential difference of such a reduc-
tion system with the task trees considered here is that all needed information is
available inside a λ-expression. The evaluation of task trees needs the event as
additional information.

Event sequences are handled by the following instance of the apply operator:

instance @. t [e] | @. t e where (@.) t es = foldl (@.) t es

Normalization A task t is normalized (or well formed) iff t @. Refresh =
t. The idea is that all reductions in the task tree that can be done without a
new input should have been done. In addition we require that each task tree
considered is properly numbered (using the algorithm nmbr in section 3.1). In
the definition of the operator @. we assume that the task tree given as argument
is already normalized. Each task can be normalized and properly numbered by
applying the function normalize1 to that task.

normalize :: ID ITask → ITask

17

normalize i t = nmbr i (t @. Refresh)

normalize1 :: ITask → ITask

normalize1 t = normalize id1 t

Enabled Subtasks All editor tasks that are currently part of the task tree are
enabled, which implies that they can be rewritten if the right events are supplied.
The subtasks that are generated by the function on the right-hand side of a Bind

construct are not enabled, even if we can predict exactly what subtasks will be
generated. Events accepted by the enabled subtasks are called enabled events,
this is the set of events that have an effect on the task when it is applied to such
an event. Consider the following tasks:

t1 = EditTask id1 "b" (Int 1) .&&. EditTask id2 "c" (Int 2)
t2 = EditTask id1 "b" (Int 1) .||. EditTask id2 "c" (Int 2)
t3 = ButtonTask id1 "b" (EditTask id2 "c" (Int 3))
t4 = ButtonTask id1 "b" t4

t5 = EditTask id1 "b" (Int 5) ⇛ λv.ButtonTask id2 "c" (Return (Pair v v))
t6 = EditTask id1 "b" (Int 6) ⇛ λv.t6

t7 v p = EditTask id1 "ok" v ⇛ λr=:(BVal w).if (p w) (Return r) (t7 w p)

In t1 and t2 all integer and button events with identifier id1 and id2 are enabled.
In t3 and t4 only the event Event id1 BE is enabled. In t5, t6 and t7 all integer
and button events with identifier id1 are enabled. All other events can only be
processed after the button event for the task with id1 on the left-hand side of
the bind operator.

Task t4 rewrites to itself after a button event. In t6 the same effect is reached
by a bind operator. The automatic numbering system guarantees that the tasks
obtain another id after applying the enabled button events. Task t7 is parame-
terized with a basic value and a predicate on such a value, and terminates only
when the worker enters a value satisfying the predicate. This simple example
shows that the bind operator is more powerful than just sequencing fixed tasks.
In fact any function of type Val→ITask can be used there.

Normal Form A task is in normal form if it has the form Return v for some
value v. A task in normal form is not changed by applying any event. The
function isNF :: ITask → Bool checks if a task is in normal form. In general
a task tree does not have a unique normal form. The normal form obtained
depends on the events applied to that task. For task t2 above the normal form
of t2 @. Event id1 BE is Return (BVal (Int 1)) while t2 @. Event id2 BE is Return
(BVal (Int 2)). The recursive tasks t4 and t6 do not have a normal form at all.

Needed Events An event is needed in task t if the subtask to which the event
belongs is enabled and the top node of the task tree t cannot be rewritten
without that event.

18

In task t1 above the events Event id1 BE and Event id2 BE are needed. Task
t2 has no needed event. This task can evaluate to a normal form by applying
either Event id1 BE or Event id2 BE. As soon as one of these events is applied, the
other task disappears. In t3 only Event id1 BE is needed, the event Event id2 BE

is not enabled. Similarly, in t4, t5 and t6 (only) the event Event id1 BE is needed.

For an edit-task the button-event is needed. Any number of edit-events can
be applied to an edit-task, but they are not needed. For the task t1 .&&. t2

the needed events is the sum of the needed events of t1 and the needed events
of t2. For a monadic bind the only needed events are the needed events of the
left hand task. The needed events of a task t are obtained by collectNeeded. To
ensure that needed events are collected in a normalized task we apply normalize1

before scanning the task tree. In the actual iTask system the task is normalized
by the initial refresh event and needs no new normalization ever after. In the
task t1 .||. t2 non of the events is needed, the task can is finished as soon as
the task t1 or the task t2 is finished. Normalization is only include here to ensure
that the task is normalized in every application of this function.

collectNeeded :: ITask → [Event]
collectNeeded t = col (normalize1 t)
where

col (EditTask id n v) = [Event id BE]
col (t1 .&&. t2) = col t1 ++ col t2

col (Bind id t f) = col t // no events from f
col _ = [] // Return and the OR-combinator

In exactly the same spirit collectButtons collects all enabled button events
in a task tree, and collect yields all enabled button events plus the enabled edit
events containing the current value of the editors. The list of events is needed
for the simulation of the task discussed in section 6.

An event is accepted if it causes a rewrite in the task tree, i.e. the corre-
sponding subtask is enabled. A sequence of events is accepted if each of the
events causes a rewrite when the events are applied in the given order. This im-
plies that an accepted sequence of events can contain events that are not needed,
or even not enabled in the original tree. In task t2 the button event with id1

and id2 are accepted, also the editor event Event id1 (EE (Int 42)) is accepted.
All these events are enabled, but neither of them is needed. The task t5 accepts
the sequence [Event id1 BE , Event id2 BE] . The second event is not enabled in
t5, but applying Event id1 BE to t5 enables it.

Value The value of a task is the value returned by the task if we repeatedly press
the left most button in the task until it returns a value. This implies that the
value of task t1 is Pair (Int 1) (Int 2), the value of t2 is Int 1 since buttons
are pressed from left to right. The value of t3 is Int 3 and the value of t5 is
Pair (Int 5) (Int 5). The value of t4 and t6 is undefined. Since a task cannot
produce a value before all needed events are supplied, we can apply all needed
events in one go (there is no need to do this from left to right).

19

For terminating tasks the value can be computed by inspection of the task
tree, there is no need to do the actual rewrite steps as defined by the @. operator.
For nonterminating tasks the value is undefined, these tasks will never return a
value. The class val determines the value by inspection of the data structure.

class val a :: a → Val

instance val BVal where val v = BVal v

instance val Val where val v = v

instance val ITask

where
val (EditTask i n e) = val e

val (Return v) = val v

val (t .||. u) = val t // priority for the left subtask
val (t .&&. u) = Pair (val t) (val u)
val (Bind i t f) = val (f (val t))

The value produced is always equal to the value returned by the task if the
user presses all needed buttons and the leftmost button if there is no needed
button. The property pVal in section 5 states this and testing does not reveal
any problems with this property.

The value of a task can change after applying an edit event. For instance the
value of task EditTask id1 "ok" (BVal (Int 2)) is BVal (Int 2). After applying
Event id1 (BVal (Int 7)) to this task the value is changed to BVal (Int 7).

Type Although all values that can be returned by a task are represented by the
type Val, we occasionally want to distinguish several families of values within
this type. This type is not the data type Val used in the representation of tasks,
but the type that the corresponding tasks in the real iTask system would have.
We assign the type Int to all values of the form Int i. All values of the form
String s have type String . If value v has type v and value w has type w then the
value Pair v w has type Pair v w. The types allowed are:

Type = Int | String | VOID | Pair Type Type

To prevent the introduction of yet another data type we represent the types
yielded by tasks in this paper as instance of Val. The type Int is represented by
Int 0 and the type String is represented as String "". We define a class type to
determine types of tasks.

:: Type :== Val

class type a :: a → Type

Instances of this class for Val and ITask are identical to the instances of val

defined in section 3.3. Only the instance for BVal is slightly different:

instance type BVal

where
type (Int i) = BVal (Int 0)
type (String s) = BVal (String "")
type VOID = BVal VOID

20

4 Equivalence of Tasks

Given the semantics of iTasks we can define equivalence of tasks. Informally we
want to consider two tasks equivalent if they have the same semantics. Since we
can apply infinitely many update events to each task that contains an editor we
cannot determine equivalence by applying all possible input sequences. Moreover,
tasks containing a bind operator also contain a function and the equivalence of
functions is in general undecidable. iTasks are obviously Turing complete and
hence equivalence is also for this reason known to be undecidable. It is even
possible to use more general notions of equivalence, like tasks are equivalent
if they can be used to do the same job. Hence, developing a useful notion of
equivalence for tasks is nontrivial.

In this paper we will develop a rather strict notion of equivalence of tasks:
tasks t and u are equivalent if they have an equal value after all possible sequences
of events and at each intermediate state the same events are enabled. Since the
identifications of events are invisible for the workers using the iTask system, we
allow that the lists of events applied to t and u differ in the event identifications.
The strings that label the buttons in t and u do not occur in the events, hence
it is allowed that these labels are different for equivalent tasks.

First we introduce the notion of simulation. Informally a task u can simulate
a task t if a worker can do everything with u that can be done with t. It is very
well possible that a worker can do more with u than with t. The notation t 4 u
denotes that u can simulate t. Technically we require that: 1) for each sequence
of accepted events of t there is a corresponding sequence of events accepted by
u; 2) the values of the tasks after applying these events is equal; and 3) after
applying the events, all enabled events of t have a matching event in u. Two
events are equivalent, e1

∼= e2, if they differ at most in their identification.

t 4 u ≡ ∀ i ∈ accept(t).∃j ∈ accept(u).i ∼= j ∧ val(t @. i) = val(u @. j)

∧collect(t @. i) ⊆ collect(u @. j)

The notion t 4 u is not symmetrical, it is very well possible that u can do
much more than t. As an example we have that for all tasks t and u that are
not in normal form t 4 t .||. u, and t 4 u .||. t. If one of the tasks is in normal
form it has shape Return v, after normalization the task tree u .||. t will have the
value Return v too. Any task can simulate itself t 4 t, and an edit task of any
basic value v can simulate a button task that returns that value: ButtonTask id1

"b" (Return (BVal v)) 4 EditTask id2 "ok" v. In general we have t .||. t 4/ t: for
instance if t is an edit task, in t .||. t we can put a new value in one of the editors
and produce the original result by pressing the ok button in the other editor,
the task t cannot simulate this. The third requirement in the definition above
is included to ensure that t .||. t 4/ t also holds for tasks with only one button
ButtonTask id1 "b1" (BVal (Int 36)).

Two tasks t and u are considered to be equivalent iff t simulates u and u
simulates t.

t ∼= u ≡ t 4 u ∧ u 4 t

21

This notion of equivalence is weaker then the usual definition of bisimulation
[13] since we do not require equality of events, but just equivalency. Two editors
containing a different value are not equivalent. There exist infinitely many event
sequences such that these editors produce the same value. But for the input
sequence consisting only of the button event, they produce a different value.

Since each task can simulate itself (t 4 t), any task is equivalent to itself:
t ∼= t. If t and u are tasks that are not in normal form we have t .||. u ∼= u .||. t.
Consider the following tasks:

u1 = ButtonTask id1 "b1" (Return (BVal (Int 1)))
u2 = EditTask id2 "b2" (Int 1)
u3 = EditTask id2 "b3" (Int 2)
u4 = EditTask id2 "b4" (String "Hi")
u5 = u1 .||. u2

u6 = u2 .||. u1

u7 = u2 .&&. u4

u8 = u4 .&&. u2

u9 = u2 ⇛ λv.Return (BVal (Int 1))
u10 = u2 ⇛ λx.u4 ⇛ λy.Return (Pair x y)

The trivial relations between these tasks are ui 4 ui and ui
∼= ui for all ui. The

nontrivial relations between these tasks are: u1 4 u2, u1 4 u5, u1 4 u6, u1 4 u9,
u2 4 u5, u2 4 u6, u5 4 u6, u6 4 u5, u10 4 u7, u10 4 u8, and u2 ∼= u9, u5 ∼= u6.
Note that u7 ≇ u8 since the tasks yield another value.

Due to the presence of functions in the task expressions it is in general unde-
cidable if one task simulates another or if they are equivalent. However, in many
situations we can decide these relations between tasks by inspection of the task
trees that determine the behavior of the tasks.

4.1 Determining the Equivalence of Task Trees

The equivalence of tasks requires an equal result for all possible sequences of
accepted events. Even for a simple integer edit task there are infinitely many
sequences of events. This implies that checking equivalence of tasks by applying
all possible sequences of events is in general impossible.

In this section we introduce two algorithms to approximate the equivalence
of tasks. The first algorithm, section 4.2, is rather straightforward and uses only
the enabled events of a task tree and the application of some of these events to
approximate equivalence. The second algorithm, section 4.3 is somewhat more
advanced and uses the structure of the task trees to determine equivalence when-
ever possible.

We will use a four valued logic as for the result:

:: Result = Proof | Pass | CE | Undef

The result Proof corresponds to True and indicates that the relation is known
to hold. The result CE (for CounterExample) is equivalent to False, the relation
does not hold. The result Pass indicates that functions are encountered during
the scanning of the trees. For the values tried the properties holds. The property

22

might hold for all other values, but it is also possible that there exists inputs
to the tasks such that the property does not hold. The value Undef is used as
result of an existential quantified property (∃w.P x) where no proof is found in
the given number of test cases; the value of this property is undefined [5]. This
type Result is a subset of the possible test results handled by the test system
G∀st. For these results we define disjunction (‘or’, ∨·), conjunction (‘and’, ∧.), and
negation (‘not’, ¬) with the usual binding power and associativity. In addition
we define the type conversion from Boolean to results and the weakening of a
result which turns Proof in Pass and leaves the other values unchanged.

class (∨·) infixr 2 a b :: a b → Result // a OR b
class (∧.) infixr 3 a b :: a b → Result // a AND b

instance ¬ Result // negation

toResult :: Bool → Result // type conversion
toResult b = i f b Proof CE

pass :: Result → Result // weakens result to at most Pass
pass r = r ∧. Pass

For ∨· and ∧. we define instances for all combinations of Bool and Result as a
straightforward extension of the corresponding operation on Booleans.

4.2 Determining Equivalence by Applying Events

In order to compare ITasks we first ensure that they are normalized and supply an
integer argument to indicate the maximum number of reduction steps. The value
of this argument N is usually not very critical. In our tests 100 and 1000 steps
usually gives identical (and correct) results. The function equivalent first checks
if the tasks are returning currently the same value. If both tasks need inputs we
first check 1) if the tasks have the same type, 2) if the tasks currently offer the
same number of buttons to the worker, 3) if the tasks have the same number
of needed buttons, and 4) if the tasks offer equivalent editors. Whenever either
of these conditions does not hold the tasks t and u cannot be equivalent. When
these conditions hold we check equivalence recursively after applying events. If
there are needed events we apply them all in one go, without these events the
tasks cannot produce a normal form. If the tasks have no needed events we apply
all combinations of button events and check if one of these combinations makes
the tasks equivalent. We need to apply all combinations of events since all button
events are equivalent. All needed events can be applied in one go since they are
needed in order to reach a normal form and the order of applying needed events
is always irrelevant. If there are edit tasks enabled, length et>0, in the task the
result is at most Pass. This is achieved by applying the functions pass or id.

equivOper :: ITask ITask → Result

equivOper t u = equivalent N (normalize1 t) (normalize1 u)

23

equivalent :: Int ITask ITask → Result

equivalent n (Return v) (Return w) = v == w

equivalent n (Return v) _ = CE

equivalent n _ (Return w) = CE

equivalent n t u

| n≤0
= Pass

= i f (length et>0) pass id

(type t == type u ∧. lbt == lbu ∧. lnt == lnu ∧. sort et == sort eu

∧. i f (lnt>0)
(equivalent (n-lnt) (t @. nt) (u @. nu))
(exists N [equivalent n (t @. i) (u @. j)\\(i ,j)←diag2 bt bu]))

where
bt = collectButtons t ; nt = collectNeeded t

bu = collectButtons u ; nu = collectNeeded u

et = collectEdit t ; eu = collectEdit u

lnt = length nt ; lnu = length nu ; lbt = length bt ; lbu = length bu

The function exists checks if one of the first N values is Pass or Proof.

exists :: Int [Result] → Result

exists n [] = CE

exists 0 l = Undef

exists n [a:x] = a ∨· exists (n-1) x

In this approach we do not apply any edit events. It is easy to design examples of
tasks where the current approximation yields Pass, but applying some edit events
reveals that the tasks are actually not equivalent (e.g. t = EditTask id1 (BVal

(Int 5)) and t ⇛ Return (BVal (Int 5))). We obtain a better approximation of
the equivalence relation by including some edit events in the function equivalent.
Due to space limitations and to keep the presentation as simple as possible we
have not done this here.

4.3 Determining Equivalence of Tasks by Comparing Task Trees

Since the shape of the task tree determines the behavior of the task corresponding
to that task tree, it is tempting to try to determine properties like t 4 u and
t ∼= u by comparing the shapes of the trees for u and t. For most constructs
in the trees this works very well. For instance it is much easier to look at the
structure of the tasks EditTask id1 "ok" (BVal (Int 5)) and EditTask id2 "done"

(BVal (Int 5)) to see that they are equivalent, than approximating equivalence of
these tasks by applying events to these tasks and comparing the returned values.
In this section we use the comparison of task trees to determine equivalence of
tasks. The function eqStruct implements this algorithm.

There are a number of constructions that allow different task trees for equiv-
alent tasks. These constructs require special attention in the structural compar-
ison of task trees:

1. The tasks ButtonTask id1 "b" (Return v) .&&. Return w and ButtonTask id1

"b" (Return (Pair v w)) are equivalent for all basic values v and w. This kind

24

of equivalent tasks with a different task tree can only occur if one of the
branches of .&&. is in normal form and the other is not. On lines 9, 16 and
17 of the function eqStruct there are special cases handling this. The problem
is handled by switching to a comparison by applying events, very similar to
the equivalent algorithm in the previous section. The function equ takes care
of applying events and further comparison.

2. The choice operator .||. should be commutative, (t.||.u ≃ u.||.t), and
associative ((t.||.u).||.v ≃ t.||.(u.||.v)). In order to guarantee this,
eqStruct collects all adjacent or-tasks in a list and checks if there is a unique
mapping between the elements of those list such that the corresponding sub-
tasks are equivalent (using eqStruct recursively). The implementation of the
auxiliary functions is straightforward.

3. The Bind construct contains real functions, hence there are many ways to
construct equivalent tasks with a different structure. For instance, we have
that any task t is equivalent to the task t ⇛ Return, or slightly more ad-
vanced: s.&&.t is equivalent (t .&&. s) ⇛ λ(Pair x y)→Return (Pair y x)

for all tasks s and t.
The function eqStruct checks if the left-hand sides and the obtained right-
hand sides of two bind operators are equivalent. If they are not equivalent
the tasks are checked for equivalence by applying inputs, see line 13-15.

The eqStruct algorithm expects normalized task trees. The operator ≃ takes
care of this normalisation.

class (≃) infix 4 a :: a a → Result // is arg1 equivalent to arg2?

instance ≃ ITask where (≃) t u = eqStruc N (normalize1 t) (normalize1 u)

If the structures are not equal, but the task might be event equal we switch
to applying inputs using the function equ. This function is very similar to the
function equivalent in the previous section. The main difference is that the
function equ always switches to eqStruct instead of using a recursive call. If
a structural comparison is not possible after applying an event, the function
eqStruct will switch to equ again.

1eqStruc :: Int ITask ITask → Result

2eqStruc 0 t u = Pass

3eqStruc n (Return v) (Return w) = v ≃ w

4eqStruc n (Return v) _ = CE

5eqStruc n _ (Return w) = CE

6eqStruc n (EditTask _ _ e) (EditTask _ _ f) = e≃f
7eqStruc n s=:(a .&&. b) t=:(x .&&. y)
8= eqStruc (n-1) a x ∧. eqStruc (n-1) b y ∨·
9((inNF a || inNF b || inNF x || inNF y) ∧. equ n s t)
10eqStruc n s=:(a .||. b) t=:(x .||. y)
11= eqORn n (collectOR s) (collectOR t)
12eqStruc n s=:(Bind i a f) t=:(Bind j b g)
13= eqStruc (n-1) a b ∧. eqStruc (n-2) (f (val a)) (g (val b)) ∨· equ n s t

14eqStruc n s=:(Bind _ _ _) t = equ n s t

25

15eqStruc n s t=:(Bind _ _ _) = equ n s t

16eqStruc n s=:(a .&&. b) t = (inNF a||inNF b) ∧. equ n s t

17eqStruc n s t=:(x .&&. y) = (inNF x||inNF y) ∧. equ n s t

18eqStruc n s t = CE

This uses instances of ≃ for basic values (BVal) and values (Val). For these
instances no approximations are needed. The line 10 and 11 implements the
commutativity of the operator .||.: collectOR produces a list of all subtasks
glued together with this operator, and eqORn determines if these lists of subtasks
are equivalent in some permutation. The definitions are a direct generalization
of the ordinary equality ==.

A similar approach can be used to approximate the simulation relation 4.
Property pEquiv in the next section states that both notions of equivalence

yield equivalent results, even if we include edit events. Executing the associated
tests indicate no problems with this property. This test result increases the
confidence in the correct implementation of the operator ≃ . Since ≃ uses the
structure of the tasks whenever possible, it is more efficient than equivOper that
applies events until the tasks are in normal form. The efficiency gain is completely
determined by the size and contents of the task tree, but can be significant. It
is easy to construct examples with an efficiency gain of one order of magnitude
or more.

5 Testing Properties of iTasks

Above we mentioned a number of properties of iTasks and their equivalency like
∀ s, t ∈ iTask . s.||.t≃t.||.s. Although we designed the system such that these
properties should hold, it is good to verify that the properties do hold indeed.
Especially during the development of the system many versions are created in
order to find a concise formulation of the semantics and an effective check for
equivalence.

Creating formal proofs for all properties for all those versions of the seman-
tics during its development is completely infeasible. Assuming that all well-typed
versions of the semantics are correct is much to optimistic. We used the auto-
matic test system G∀st to check the semantic functions presented here with a set
of desirable properties. For instance the above property can be stated in G∀st as:

pOr :: GITask GITask → Property

pOr x y = normalize1 (t.||.u) ≃ normalize1 (u.||.t)
where t = toITask x ; u = toITaskT (type t) y

The arguments of such a property are treated by the test system as universal
quantified variables over the given types. The test system generates test values
of these types using the generic class ggen. Since some ITask constructs con-
tain a function, we use an additional data type, GITask, to generate the desired
instances. We follow exactly the approach as outlined in [4]. The type GITask

contains cases corresponding to the constructors in ITask, for button tasks, for
tasks of the form t ⇛ Return, and for some simple recursive terminating tasks.

26

For pOr we need to make sure the tasks t and u have the same type since we com-
bine them with an or-operator. The conversion by toITask from the additional
type GITasks used for the generation to ITasks takes care of that.

After executing 23 tests G∀st produces the first counterexample that shows
that this property does not hold for t = Return (BVal (Int 0)) and u = Return

(Pair (BVal (Int 0)) (BVal (Int 0))). Using the semantics from figure 7 it is
clear that G∀st is right, our property is too general. A correct property imposes
the condition that t and u are not in normal form:

pOr2 x y = notNF [t ,u] ==> normalize1 (t.||.u) ≃ normalize1 (u.||.t)
where t = toITask x ; u = toITaskT (type t) y

In the same way we can show that t.||.t ≇ t for tasks that are not in normal
form (p2) and test the associativity of the .||. or operator (p3).

p2 :: GITask GITask → Property

p2 x y = notNF [s ,t] ==> (s.||.t) ≇t

where s = toITask x ; t = toITaskT (type s) y

p3 :: GITask GITask GITask → Property

p3 x y z = (s .||. (t .||. u))≃ ((s .||. t) .||. u)
where s = toITask x ; t = toITaskT (type s) y ; u = toITaskT (type s) z

In total we have defined over 70 properties to test the consistency of the defini-
tions given in this paper. We list some representative properties here. The first
property states that needed events can be applied in any order. Since there are
no type restrictions on the type t we can quantify over ITasks directly.

pNeeded :: ITask → Property

pNeeded t = (λj. t @. i ≃ t @. j) For perms i where i = collectNeeded t

In this test the fragment For perms i indicates an additional quantification over
all j in perms i. The function perms :: [x] → [[x]] generates all permutations
of the given list. In logic this property would have been written as ∀t ∈ ITask,
∀j ∈ perms (collectNeeded t). t @. (collectNeeded t) ≃ t @. j.

The next property states that both approximations of equivalence discussed
in the previous section produce equivalent results.

pEquiv :: ITask ITask → Property

pEquiv t u = (equivOper t u) ≃ (t≃u)

The type of a task should be preserved under reduction. In the property pType

also events that are not well typed will be tested. Since we assume that all events
are well typed (the edit events have the same type as the edit task they belong
to), it is better to use pType2 where the events are derived from the task t.

pType :: ITask → Property

pType t = (λi.type t == type (t @. i)) For collect t

pType2 :: ITask → Property

pType2 t = pType t For collect t

27

The phrase For collect t indicates that for testing these properties the events
are collect from the task tree rather then generated systematically by G∀st. How-
ever the tasks to be used in the test are generated systematically by G∀st.

The property pVal states that the value of a task obtained by the optimized
function val is equal to the value of the task obtained by applying events obtained
by collectVal until it returns a value. The function collectVal returns all needed
events and the leftmost events if these are no needed events.

pVal :: ITask → Property

pVal t = val t == nf t

where
nf (Return v) = v

nf t = nf (t @. collectVal t)

The definitions presented in this paper pass all stated properties. On a normal
laptop (Intel core2 Duo (using only one of the cores), 1.8 GHz) it takes about
7 seconds to check all defined properties with 1000 test cases for each property.
This is orders of magnitude faster and more reliable then human inspection,
which is on its turn much faster than a formal proof (even if it is supported by
a state of the art tool). Most of these properties are very general properties, like
the properties shown here. Some properties however check specific test cases that
are known to be tricky, or revealed problems in the past. If there are problems
with one of the properties, they are usually spotted within the first 50 test cases
generated. It appears to be extremely hard to introduce flaws in the system that
are not revealed by executing these tests. For instance omitting one of the special
cases in the function eqStruct is spotted quickly. Hence testing the consistency of
the system in this way is an effective and efficient way to improve the confidence
in its consistency.

6 Discussion

In this paper we give a rewrite semantics for iTasks. Such a semantics is necessary
to reason about iTasks and their properties, it is also well suited to explain their
behavior. In addition we defined useful notions about iTasks and stated properties
related to them. The most important notion is the equivalence of tasks.

Usually the semantics of workflow systems is based on Petri nets, abstract
state machines, or actor-oriented directed graphs. Since the iTask system al-
lows arbitrary functions to generate the continuation in a sequence of tasks (the
monadic bind operator), such an approach is not flexible enough. To cope with
the rich possibilities of iTasks our semantics incorporates also a function to de-
termine the continuation of the task after a Bind operator.

We use the functional programming language Clean as carrier for the seman-
tical definitions. The tasks are represented by a data structure. The effect of
supplying an input to such a task is given by an operator modifying the task
tree. Since we have the tasks available as data structure we can easily extract
information from the task, like the events needed or accepted by the task. A
typical case of the operator @. (apply) that specifies the semantics is:

28

(@.) (EditTask i n e) (Event j BE) | i==j = Return (BVal e)

In the more traditional Scott Brackets style this alternative is written as:

A [[EditTask i n e]] (Event j BE) = Return (BVal e), if i = j

Our representation has the same level of abstraction and has as advantages that
it can be checked by the type system and executed (and hence simulated and
tested).

Having the task as a data structure it is easy to create an editor and simulator
for tasks using the iTask library. Editing and simulating tasks is helpful to validate
the semantics. Although simulating iTasks provides a way to interpret the given
task, the executable semantics is not intended as an interpreter for iTasks. In an
interpreter we would have focused on a nice interface and efficiency, the semantics
focusses on clearness and simplicity.

Compared with the real iTask system there are a number of important sim-
plifications in our ITask representation. 1) Instead of arbitrary types, the ITasks
can only yield elements of type Val. The type system of the host language is
not able to prevent type errors within the ITasks. For instance it is possible to
combine a task that yields an integer, BVal (Int i), with a task yielding a string,
BVal (String s), using an .||. operator. In ordinary iTasks it is type technically
not possible (and semantically not desirable) to combine tasks of type Task Int

with Task String using a -||- operator. Probably GADTs would have helped us
to enforce this condition in our semantical representation. 2) The application of
a task to an event does not yield an HTML-page that can be used as GUI for
the iTask system. In fact there is no notion at all of HTML output in the ITask

system. 3) There is no way to access files or databases in the ITask system.
4) There is no notion of workers and assigning subtasks to them. 5) There is
no difference between client site and server site evaluation of tasks. 6) There is
only one workflow process which is implicit. In the real iTask system additional
processes can be created dynamically. 7) The exception handling from the real
iTask system is missing in this semantics.

Adding these aspects would make the semantics more complicated. We have
deliberately chosen to define a concise system that is as clear as possible.

Using the model-based test system it is possible to test the stated properties
fully automatically. We maintain a collection of over 70 properties and test them
with one push of a button. Within seconds we do known if the current version
of the system obeys all properties stated. This is extremely useful during the
development and changes of the system. Although the defined notions of equiv-
alence are in general undecidable, the given approximation works very well in
practice. Issues in the semantics or properties are found very quickly (usually
within the first 100 test cases). We attempted to insert deliberately small errors
in the semantics that are not detected by the automatic tests, but we failed
miserably.

In the near future we want to test with G∀st if the real iTask system obeys the
semantics given in this paper. In addition we want to extend the semantics in
order to cover some of the important notions omitted in the current semantics, for

29

instance task execution in a multi-user workflow system. When we are convinced
about the quality and suitability of the extended system we plan to prove some of
the tested properties. Although proving properties gives more confidence in the
correctness, it is much more work then testing. Testing with a large number of
properties has shown to be an extremely powerful way to reveal inconsistencies
in the system.

References

1. P. Achten, M. van Eekelen, M. de Mol, and R. Plasmeijer. An Arrow based seman-
tics for interactive applications. In M. Morazán, editor, Preliminary Proceedings
of the 8th Symposium on Trends in Functional Programming, TFP’07, New York,
NY, USA, 2-4, Apr. 2007.

2. A. Alimarine and R. Plasmeijer. A generic programming extension for Clean.
In T. Arts and M. Mohnen, editors, Selected Papers of the 13th International
Symposium on the Implementation of Functional Languages, IFL’01, volume 2312
of LNCS, pages 168–186. Springer-Verlag, Sept. 2002.

3. M. de Mol, M. van Eekelen, and R. Plasmeijer. The mathematical foundation of the
proof assistant Sparkle. Technical Report ICIS-R07025, Institute for Computing
and Information Sciences, Radboud University Nijmegen, The Netherlands, Nov.
2007.

4. P. Koopman and R. Plasmeijer. Automatic testing of higher order functions. In
N. Kobayashi, editor, Proceedings of the 4th Asian Symposium on Programming
Languages and Systems, APLAS’06, volume 4279 of LNCS, pages 148–164, Sydney,
Australia, 8-10, Nov. 2006. Springer-Verlag.

5. P. Koopman and R. Plasmeijer. Fully automatic testing with functions as specifi-
cations, volume 4164 of LNCS, pages 35–61. Springer-Verlag, Budapest, Hungary,
4-16, July 2006.

6. P. Koopman, R. Plasmeijer, and P. Achten. An executable and testable semantics
for iTasks. In S.-B. Scholz, editor, Proceedings of the 20th International Symposium
on the Implementation and Application of Functional Languages, IFL’08, pages
53–64, Hertfordshire, UK, 10-12, Sept. 2008. University of Hertfordshire.

7. S.-Y. Lee, Y.-H. Lee, J.-G. Kim, and D. C. Lee. Workflow system modeling in the
mobile healthcare B2B using semantic information. In Proceedings of the 5th’05,
pages 762–770. LNCS, 2005.

8. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience, 18:2006, 2005.

9. H. R. Nielson and F. Nielson. Semantics with applications: a formal introduction.
John Wiley & Sons, Inc., 1992.

10. R. Plasmeijer and P. Achten. iData for the world wide web - Programming in-
terconnected web forms. In Proceedings of the 8th International Symposium on
Functional and Logic Programming, FLOPS’06, volume 3945 of LNCS, Fuji Su-
sone, Japan, 24-26, Apr. 2006.

11. R. Plasmeijer, P. Achten, and P. Koopman. iTasks: executable specifications of
interactive work flow systems for the web. In Proceedings of the 12th Interna-
tional Conference on Functional Programming, ICFP’07, pages 141–152, Freiburg,
Germany, 1-3, Oct. 2007. ACM Press.

30

12. N. Russell, A. ter Hofstede, and W. van der Aalst. newYAWL: specifying a workflow
reference language using coloured Petri nets. In Proceedings of the 8th’07, 2007.

13. C. Stirling. The joys of bisimulation. In MFCS ’98: Proceedings of the 23rd In-
ternational Symposium on Mathematical Foundations of Computer Science, pages
142–151, London, UK, 1998. Springer-Verlag.

14. T. C. D. Team. The Coq proof assistant reference manual (version 7.0), 1998.
http://pauillac.inria.fr/coq/doc/main.html.

31

