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Abstract. Template metaprogramming is an emerging new direction
of generative programming: with the clever definitions of templates we
can enforce the C++ compiler to execute algorithms at compilation
time. Among the application areas of template metaprograms are the
expression templates, static interface checking, code optimization with
adaption, language embedding and active libraries. However, as this ca-
pability of C++ was not a primary design goal, the language is not
capable of clean expression of template metaprograms. The complicated
syntax leads to the creation of code that is hard to write, understand
and maintain. Despite that template metaprogramming has a strong re-
lationship with functional programming paradigm, existing libraries do
not follow these requirements. In this paper we give a short and in-
complete introduction to C++ template mechanism and the basics of
template metaprogramming. We want to enlight the role of template
metaprograms, some important and widely used idioms and techniques.

1 Introduction

Templates are key elements of the C++ programming language [3, 25]. They
enable data structures and algorithms be parameterized by types thus capturing
commonalities of abstractions at compilation time without performance penal-
ties at runtime [29]. Generic programming [23, 22, 15], is recently a popular pro-
gramming paradigm, which enables the developer to implement reusable codes
easily. Reusable components – in most cases data structures and algorithms –
are implemented in C++ with the heavy use of templates. The most notable
example is the Standard Template Library [15] is now an unavoidable part of
professional C++ programs.

In C++, in order to use a template with some specific type, an instantiation
is required. This process can be initiated either implicitly by the compiler when a
template with a new type argument is referred, or explicitly by the programmer.
During instantiation the template parameters are substituted with the concrete
arguments, and the generated new code is compiled.

This instantiation mechanism enables us to write smart template codes that
execute algorithms at compilation time. In 1994 Erwin Unruh wrote a program



[28] in C++ which didn’t compile, however, the error messages emitted by the
compiler during the compilation process displayed a list of prime numbers. Unruh
used C++ templates and the template instantiation rules to write a program
that is “executed” as a side effect of compilation. It turned out that a cleverly
designed C++ code is able to utilize the type-system of the language and force
the compiler to execute a desired algorithm [30]. These compile-time programs
are called C++ Template Metaprograms and later has been proved to be form
a Turing-complete sublanguage of C++ [8].

Template metaprogramming is now an emerging new direction in C++ pro-
gramming for executing algorithms at compilation time. The relationship be-
tween C++ template metaprograms and functional programming is well-known:
most properties of template metaprograms are closely related to the principles
of the functional programming paradigm. On the other hand, C++ has a strong
heritage of imperative programming (namely from C and Algol68) influenced by
object-orientation (Simula67). Furthermore the syntax of the C++ templates is
especially ugly. As a result, C++ template metaprograms are often hard to read,
and hopeless to maintain.

The rest of the paper is organized as follows. In Section 2 we give a short in-
formal introduction into C++ template mechanism. In Section 3 C++ template
metaprogramming is presented and compared to runtime functional program-
ming. We discuss the fundamental connections between functional programming
and C++ template metaprogramming in Section 4. We overview of some other
applications in Section 5. Practical metaprogramming is presented in Section 6
on an example. Related works are discussed in Section 7.

2 Informal introduction to templates in C++

Templates are essential part of the C++ language, by enabling data structures
and algorithms to be parameterized by types. This abstraction is frequently
needed when using general algorithms like finding an element in a data struc-
ture, or defining data types like a list or a Matrix of elements of same type. The
mechanism behind a Matrix containing integer or floating point numbers, or even
strings is essentially the same, it is only the type of the contained objects that dif-
fers. With templates we can express this abstraction, thus this generic language
construct aids code reuse, and the introduction of higher abstraction levels. This
method of code reuse often called parametric polymorphism, to emphasize that
here the variability is supported by compile-time template parameter(s).

In the following we give a very informal introduction to templates in the
C++ language. We will often simplify the complex rules of templates for sake
of general understanding of the whole mechanism. Those, who are interested in
the detailed rules a fundamental source is [29]. For language lawyers the best
source is the C++ standard itself [3]. We will be lazy in other syntactical parts
too, often omitting headers like <iostream>, and namespace tags. For the full,
syntactically correct examples see the sample notes.



Let suppose we have to compute the maximum number of two parameters
– a rather trivial task in most programming languages. However, without some
kind of abstraction mechanism over the type of the parameters we soon ended
up in a nasty, unmanageable code duplication:

// a max function for "int" type

int max( int a, int b)

{

if ( a > b )

return a;

else

return b;

}

// a max function for "double" type

double max( double a, double b)

{

if ( a > b )

return a;

else

return b;

}

// and a lot of other overloading for other types..

While overloading allows us to write the correct, type-safe functions, the result
is a number of overloading version of the max() function. Should we modify the
algorithm (in a more realistic case), we have to update all of their instances in
consistent way.

Moreover, what can we do the types we haven’t implemented yet? If some-
body creates a new type with a well-defined less-then operator to compare the
objects, we have to sit down and write a new overloading version. We cannot
implement and compile a max() function on type T before creating T, even if
we know how that function would be look like. Strongly typed programming
languages allows writing programs using only existing types.

We may yield to the temptation to try out non type safe solutions. For a
C/C++ programmer a precompile macro seems to solve the problem:

#define MAX(a,b) a > b ? a : b

As precompile macro functions are typeless, this will work not only the existing
types, but on every type too defined later. Unfortunately, precompiler macros
are not the answer for writing generic algorithms over types. Apart, that precom-
piler macros are replaced before the run of the C++ compiler, therefore we will
encounter a huge number of side-effects and type-safety problems, the attempt
to solve more complex problems with macros is desperate.



To demonstrate this, let suppose to implement a swap function, to change
the values of two parameters. Here is the trivial solution in C++ for parameters
of type int:

void swap( int& x, int& y)

{

int temp = x;

x = y;

y = temp;

}

This is fairly simple. The & symbols in the parameter list denotes that the
parameter passing should happen by reference, therefore x and y inside the
function body yield the original values which we swap via the temporary variable
temp which has the same type as the parameters.

Now we are in a trouble. Since precompiler macros are replaced before the
C++ compiler starts, we cannot use any type inference information from C++
compiler. We are not able to detect the type of the parameters of the swap macro
in an automated way1. What we need is an intelligent macro-like feature working
together with the type system of the C++ language. This language element is
called template.

With templates we are able to write both the max and swap in a fairly generic
way in one code snippet working over different types:

template <typename T>

void swap( T& x, T& y)

{

T temp = x;

x = y;

y = temp;

}

template <class T>

T max( T a, T b)

{

if ( a > b )

return a;

else

return b;

}

The typename and the class keywords are interchangeble in the template defini-
tions and declarations, but we should apply them for all parameters. Interestingly
enough, using the stuct keyword is invalid here.

1 Funny enough, the new C++ standard, C++0x provides us the auto keyword, which
allows to define a variable of the specific type of the initializer. This is a nice feature,
but does not invalidate our message here on the lack of type inference regarding
macros.



First, we have to understand that templated swap and max are not functions
in the traditional sense. They are not compiled and not called under execution.
Templates are rather skeletons, describing manufacturing process of real func-
tions instantiated by the compiler in an automated way under the compilation
process. Thus we called them: function templates rather then template functions.

This automated instantiation process is the most remarkable flavor of the
C++ templates. In the following example we apply this process to the function
template max():

i = 3, j = 4, k;

double x = 3.14, y = 4.14, z;

const int ci = 6;

k = max(i, j); // -> max(int, int)

z = max(x, y); // -> max(double, double)

k = max(i, ci); // -> max(int, int)

In the first step, the compiler have to decide, whether a function template is
applicable at the calling sites of max(). Then, the parameter type(s) should be
decided. Parameter types are normally decided on the bases of actual arguments:
here based on the types of variables i,j,x,y,ci. This process is called template
parameter deduction. In the first and third call of max lead to calling an instance
of max(int,int), while the second indicates to call max(double,double). These
concrete versions of templates are called specializations.

When a specialization is not available, the compiler generates it. Thus one
max function with two int parameters, and one with two double parameters
is created, and will be called. Let recognized, that the first and third call will
refer the same specialization. The concrete implementation process may compiler
dependent, and later we will see, that we should be extremely careful with such
situations.

Which specialization will be called in the following case?

z = max(i, x); // syntax error

Under the parameter deduction process, from the type of the argument i the
compiler suppose the template parameter type T to be int. However, the second
argument x contradict, suggesting a double parameter. Therefore the parameter
deduction process will fail and the compiler raise a syntax error.

How can we fix this problem? As you might expect, templates may be defined
with two or more type parameters. Here we can provide an other templated
max(), accepting two different type parameters:

template <typename T, typename S>

T max( T a, S b)

{

if ( a > b )

return a;



else

return b;

}

int i = 3;

double x = 3.14;

z = max(i, x); // -> max(int, double)

std::cout << z << std::endl;

At the first sight, everything has been solved. The parameter deduction iden-
tifies parameter T as int and parameter S as double based on the types of
actual arguments i and x. The instantiation process creates max(int,double)

specialization, and the right function will be called in run-time.
However, the result printed to the output will be 3 and not 3.14 as we may

expected. This is a consequence of the template mechanism we discussed above.
When parameters have been decided in the deduction process, also the return
value has been determined, yielded by T, it will be int as well as the type of
the first parameter. When the function called in run-time, a > b evaluated as
false, correctly, and 3.14 is about to return. However, as the return type has
been decided in compile time as int, this value is converted to integer, and thus
we got 3 assign to z. It does not help, that this value converted to type double

as 3.0 when stored into z. It is clear, that any attempt to change the role of
parameters T and S could lead the same result.

Can we define a better max(), a template which returns with the type of the
greater value? Unfortunately, not in a strongly typed programming language like
C++. In such languages, types are fully decided in compile time: in run-time we
cannot change them anymore. As templates are totally compile time language
fenomenon, once the template parameter deduction decides template parame-
ters, these decisions are final. In the same time, whether the first or the second
argument of the max(i,x) call is greater, is a completely run-time property.
Compilation time and run-time are fundamentally separated in strongly typed
compiled programming languages.

Even if we understand this, it is a bit asthonishing. Looking at the actual
code it seems trivial that a max function called by an integer and a double
argument is better to return by double type. Why we cannot achieve this?

The problem is, that when speaking about templates, not only two stages –
compile time and run-time – of the full process we have to take into consideration,
but the very first one too: the design time of the template function. When we
had defined templated max(T,S) with two distinct type parameters, T abd S, we
had no idea about it’s usage environment. We had to decide whether the type
T or S or some other value would be the return value. At that point we had no
information whether the actual arguments in a call environment would be type
of int, double or anything else. We still had to make final decisions. In the
second stage, when the compiler compiles the actual code of max(i,x), it sees
the environment of the call, recognises the actual types of i and x, but cannot



overrule the decisions we made in template definition time. Finally, in run-time
the program works with a given set of types and rules, able to decide, whether
i or x is greater, but unable to overrule the type rules.

Design time Compilation time Run-time

Design of algorithm Template instantiation Run of the algorithm

The templated code Types used in the program Program evaluates
has been fixed is being fixed expressions

Return type of Parameter deduction Grater argument value
max(T,S) is decided determines T and S is chosen to return

Table 1. Programming with templates

The two fundamental problem here is (1) the gap between design time and
compilation time: this inhibits to choose the “better” return type from int

and double, and (2) the gap between compilation and run-time: this inhibits to
choose the type of the greater argument to return. Dynamic and script languages
sometimes can help in the second problem.

Template metaprograms will give us the power to bridge the first gap.
Before we proceed with template metaprograms, we have to learn some more

technicalities on templates.
We may attempt to improve our max() template with a third type parameter,

which yields the return type:

template <class R, class T, class S>

R max( T a, S b)

{

if ( a > b )

return a;

else

return b;

}

The parameter deduction here will fail, as there is no information about type R.
There is a number of reasons why template parameters are not deducted from
return values, but to understand risks just consider this example:

int i = 3;

double x = 3.14, z;

z = max(i, x); // (1)

cout << max(i, x); // (2)

As deduction (theoretically) may work in case (1), there is no way to choose the
correct return type in case (2). However, inventive C++ programmers found the
way to smuggle the return type into ordinary arguments, to make it deductible:



template <class R, class T, class S>

R max( T a, S b, R)

{

if ( a > b )

return a;

else

return b;

}

double z = max(i, x, 0.0);

This works, but ugly and possibly misleading. The C++ standard committee
recognized this requirement, and allowed an official, syntactically more readable
notation:

template <class R, class T, class S>

R max( T a, S b, R)

{

if ( a > b )

return a;

else

return b;

}

double z = max<double>(i, x);

long l = max<long, int, long>(i, x);

This syntax is called explicit specialization. In the first case max() will be in-
stantiated with template parameters: R=double given explicitly, and T=int, and
S=double deduced from function arguments. In the second case, all the param-
eters are given explicitly: R=long, S=int, and T=long. Actual parameter x will
be converted to long as well as the return value. The shortage of this solution
is that we have to set the parameters by hand.

We can specialize templates even eliminating all the template parameters.

template <> const char *max( const char *s1, const char *s2)

{

return strcmp( s1, s2) < 0;

}

char *s1 = "Hello";

char *s2 = "world";

cout << max(s1, s3);

It is clear, that the original algorithm of max() will work improper way com-
paring the pointer values, rather than the contents of the char arrays. Here we



provide user specialization for defining an exceptional behavior of the maximum
algorithms for character arrays.

Different template definitions may exist with the same name: overloading of
templates are possible. Hence, we may define the one parameter

template <typename T> T max(T,T);

template <typename R, typename T, typename S> R max(T,S);

template <> const char *max( const char *s1, const char *s2);

in the same time. When instantiating, the compiler will choose the most specific
version of template definitions applicable for the actual call.

The following code snippet defines a class template:

template <typename T>

class matrix

{

public:

matrix(int i, int j);

matrix(const matrix &other);

~matrix();

matrix& operator=(const matrix &other);

int rows() const { return x; }

int cols() const { return y; }

T& at(int i, int j);

T at(int i, int j) const;

matrix& operator+=(const matrix &other);

private:

int x;

int y;

T *v;

void copy(const matrix &other);

};

matrix<T>& matrix<T>::operator+=(const matrix &other);

Please consider, that each method of a class template is a function template itself.
This seems natural for methods explicitly referring the template parameter, but
member functions like rows() and cols() are also templated.

As object constructors’ parameters are say nothing about class template
parameters, objects of class templates are instantiated explicity specifying their
type parameters. Here we define matrix objects with type parameter int, double,
and matrix<double> respectively.

matrix<int> im;

matrix<double> dm;

matrix<matrix<double> > dmm;



A possible implementation of the matrix allocates x*y objects of type T dynam-
ically. This is a fair solution unless T is (logically) very small. Allocating an x*y

length array of type bool is not neccessary gives what you expect. In some im-
plementions bools have size of 4 bytes (for compatibility with int type). Even
if sizeof(bools)==1, we can work out a better implementation storing 8 bools
on every single byte.

Naturally, this economic solution may require a totally different representa-
tion. Additional attributes, methods, different function bodies should be imple-
mented in class specialization.

template <>

class matrix<bool>

{

// a totally different implementation

};

matrix<bool>& matrix<bool>::operator+=(const matrix &other);

The specialization and the original template only share their names, otherwise
they are considered as separate classes. A specialization does not need to pro-
vide the same functionality, interface, or implementation as the original. It is
possible, but generally a very bad idea to change the public interface between
specializations.

With a partial specialization we can record one or more arguments types (like
the int in the full specialization) or their properties (like being pointer types):

template<class T, class U>

class A { ... };

template <class U>

class A<int,U> { ... };

This partial specialization will be selected by the compiler if A is instantiated
with its first argument being int.

3 C++ Template Metaprograms

In 1994 Erwin Unruh wrote and circulated at a C++ standards committee meet-
ing a very interesting C++ program. The program was not even correctly com-
piled, but prime numbers were printed at compile-time as error messages.

// Erwin Unruh, untitled program,

// ANSI X3J16-94-0075/ISO WG21-462, 1994.

template <int i>

struct D

{



D(void *);

operator int();

};

template <int p, int i>

struct is_prime

{

enum { prim = (p%i) && is_prime<(i>2?p:0), i>::prim };

};

template <int i>

struct Prime_print

{

Prime_print<i-1> a;

enum { prim = is_prime<i,i-1>::prim };

void f() { D<i> d = prim; }

};

struct is_prime<0,0> { enum { prim = 1 }; };

struct is_prime<0,1> { enum { prim = 1 }; };

struct Prime_print<2>

{

enum { prim = 1 };

void f() { D<2> d = prim; }

};

void foo()

{

Prime_print<10> a;

}

// output:

// unruh.cpp 30: conversion from enum to D<2> requested in Pri..

// unruh.cpp 30: conversion from enum to D<3> requested in Pri..

// unruh.cpp 30: conversion from enum to D<5> requested in Pri..

// unruh.cpp 30: conversion from enum to D<7> requested in Pri..

// unruh.cpp 30: conversion from enum to D<11> requested in Pri..

// unruh.cpp 30: conversion from enum to D<13> requested in Pri..

// unruh.cpp 30: conversion from enum to D<17> requested in Pri..

// unruh.cpp 30: conversion from enum to D<19> requested in Pri..

Erwin Unruh’s prime number computing template demonstrated that it is pos-
sible to use the C++ template system to write compile-time programs. Such
programs are called template metaprograms. A useful distinction here is that
between programs and metaprograms. A metaprogram is a program that ma-
nipulates other programs; for example, compilers, partial evaluators, parser gen-
erators and so forth are metaprograms. Template metaprograms are special in
the sense that they are self-containing.

The canonical template metaprogram to show basic behaviour is the compile
time evaluation of factorial numbers. Let compare a run-time solution and the
metaprogram version.



The run-time version is straitforward. basically the similar code could be
implemented in various programming languages from FORTRAN to Pascal.

// runtime recursion

int Factorial(int N)

{

if ( 1 == N ) return 1;

return N * Factorial(N-1);

};

int main()

{

int r = Factorial(5);

cout << r << endl;

return 0;

}

There are other possibilities to implement the algorithm: especially we may use
loop instead of recursion.

The template metaprogram solution takes two template definitions: one for
the generic solution of Factorial, and an other for specialization for parameter
value 1.

// compile-time recursion

template <int N>

struct Factorial

{

enum { value = N * Factorial<N-1>::value };

}

template<>

struct Factorial<1>

{

enum { value = 1 };

};

int main()

{

int r = Factorial<5>::value;

cout << r << endl;

return 0;

}

Let understand what happens here. The main() function is used to start the in-
stantiation steps. When the assignment expression refers to Factorial<5>::value
the compiler is forced to instantiate the Factorial template with argument 5.



As we have a correspondent template definition, the compiler starts the instan-
tiation, and reaches the initialisation of enumeration value inside Factorial.
Here we refer to Factorial<5>::value. The instantiation of Factorial<5> is
suspended and the compiler turns to instantiate Factorial<4>::value. This
way we imitate recursion, wich will descent down to the instantiation request
of Factorial<1>. Here the compiler can find a full specialization template for
Factorial with argument value 1, which is “more specialized” than the generic
one. Therefore this full specialization is used be used to generate the requested
class, and instantiation of Factorial<1> completes.

From this point we are coming back from recursion, Factorial<1>::value is
used to finish Factorial<2>, etc... The suspended instantiations continue in the
reverse order. At the end, we result in with five classes; four of them instantiated
from the generic template definition and one from the template specialization.

As the compiler has Factorial<5>::value in hand, it simply replaces the
right hand side of the assignment in main(). In run-time, we will execute only
the output statement. Hence, we “executed” the factorial algorithm – a C++
template metaprogram – in compilation time.

Two important template rules have been silently used here: (1) Templates
wich are not referred wont be instantiated – C++ template mechanism is lazy.
(2) Constant expressions – those can be evaluated in compilation time, like the
initialisation of enumeration value must be evaluated in compilation time.

Lazyness is essential for writing template metaprograms. Let us consider the
following example:

template <bool condition, class Then, class Else>

struct IF

{

typedef Then RET;

};

template <class Then, class Else>

struct IF<false, Then, Else>

{

typedef Else RET;

};

int main()

{

IF< sizeof(int)<sizeof(long), long, int>::RET i;

cout << sizeof(i) << endl;

retrun 0;

}

This seems a bit more criptic than the factorial example. First let’s draw up
an inventory. We have a generic version of a template called IF and a partial
specialization for it. It is partial, since only one, the leftmost argument has been



specialized to false boolean value. It is also interesting, that the first parameter
is a (constant) value, the rest are type parameters.

When we instantiate the IF template we provide a boolean expression as
the first argument. In our example this is sizeof(int)<sizeof(long). The
expression is evaluated in compilation time. If this is true, then the generic
template is instantiated, and hence the typedef Then RET is in effect. With
the actual arguments this defines RET as long. However, when the expression
is evaluated as false, we have a “better” specialization, and typedef Else RET

means RET is defined as int. As a result, based on whether the size of int is
smaller than the size of long, we define i as variable of type of the widest type.

The construct is simmetric – it would be an equally working solution to define
the generic function typedefing the Else branch, and specializing for the true

value as the first parameter.
The IF construct – the generic template and the specialization – works like a

branching metaprogram. Having recursion and branching with pattern matching
we have a full featured programming language – executing programs in compila-
tion time. In 1966 Bohm and Jacopini proved, that Turing machine implemen-
tation is equivalent the exsistence of conditional and looping control structures.
C++ template metaprograms form a Turing complete programming language
executed in compilation time [32].

Now we can revisit the max() function:

template <class T, class S>

IF< sizeof(T)<sizeof(S), S, T>::RET max(T x, S y)

{

if ( x > y )

return x;

else

return y;

}

This version of max() is able tho choose the “widest” of the argument types and
defines it as the return type. When this template is instantiated with arguments
int and double, the return value will be double. Similarly, when the arguments
are short and long, the later will be chosen as the return type.

Before going forward, it is important to understand two things: First, we
cheated a bit. The “widest” type – which has the gretaer sizeof value – is not
neccessary the best return type. Sometimes the size of a class is unrelated the
arithmetical representation – this is true especially for classes allocating extra
space in the heap. But conceptually this is not a problem for us: anyway, we are
in a Turing complete language, so we are able to define as complex algorithms
as we wish.

Second, we still do not able to choose the type of the greater value, we choose
the type which seems better under compilation. It is still possible that double

has been chosen as return type, but the run-time value int argument is greater.
The return type value will be converted to double.



In other words, we are not breaking the rules of strongly typed programming
languages. Types are not selected in run-time. What we added to the earlier
version of max is that we decided the return type not in design time, but in
compilation time, when the template has been instantiated. We delegated an
algorithm written is design time and executed in compilation time which – based
on the actual types of the template arguments – were able to select the better
return type. This has happened in an automated way by the execution of a small
and simple template metaprogram.

Design time Compilation time Run-time

Design of algorithm Template instantiation Run of the algoritm

Template metaprogram IF is “executed” and Greater argument value
IF is written defines return type of max() is chosen to return

Table 2. Programming with template metaprograms

4 Functional programming and C++ template

metaprograms

In our context the notion template metaprogram stands for the collection of
templates, their instantiations, and specializations, whose purpose is to carry out
operations in compile-time. Their expected behavior might be either emitting
messages or generating special constructs for the runtime execution. Henceforth
we will call a runtime program any kind of runnable code, including those which
are the results of template metaprograms.

Executing programs in either way means executing pre-defined actions on
certain entities. It is useful to compare those actions and entities between runtime
and metaprograms. The following table describes the metaprogram, and runtime
program entities in parallel.

C++ template metaprogram actions are defined in the form of template def-
initions and are “executed” when the compiler instantiates them. Templates can
refer to other templates, therefore their instantiation can instruct the compiler
to execute other instantiations. This way we get an instantiation chain very sim-
ilar to a call stack of a runtime program. Recursive instantiations are not only
possible but regular in template metaprograms to model loops.

In metaprograms we use static const and enumeration values to store
quantitative information. Results of computations during the execution of a
metaprogram are stored either in new constants or enumerations. Furthermore,
the execution of a metaprogram may trigger the creation of new types by the
compiler. These types may hold information that influences the further execution
of the metaprogram.



Abrahams and Gurtovoy [1] defined the term template metafunction as a
special template class: the arguments of the metafunction are the template pa-
rameters of the class, the value of the function is a nested type of the tem-
plate called type. Data and even data structures can be expressed in template
metaprograms with constructs like typelist [2].

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree
structures, or sequences. Tree structures are the favorite implementation forms
of expression templates [31]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [13].

There is a clear relationship between a number of entities. C++ template
metaprogram actions are defined in the form of template definitions and are
”executed” when the compiler instantiates them. Templates can refer to other
templates, therefore their instantiation can instruct the compiler to execute other
instantiations. This way we get an instantiation chain very similar to a call stack
of a runtime program. Recursive instantiations are not only possible but regular
in template metaprograms to model loops.

Metaprogram Runtime program

(template) class subprogram (function, procedure)

static const and data
enum class members (constant, literal)

symbolic names variable
(typenames, typedefs)

recursive templates, abstract data structures
typelist

static const initialisation initialisation
enum definition (but no assignment!)
type inference

Table 3. Comparison of runtime and metaprograms

Data is expressed in runtime programs as constant values or literals. In
metaprograms we use static const and enumeration values to store quantitative
information. Results of computations under the execution of a metaprogram
are stored either in new constants or enumerations. Furthermore, execution of
metaprograms can cause new types be created. Types hold information that can
influence the further run of the metaprogram.

Complex data structures are also available for metaprograms. Recursive tem-
plates are able to store information in various forms, most frequently as tree
structures, or sequences. Tree structures are the favourite implementation form
of expression templates [31]. The canonical examples for sequential data struc-
tures are typelist [2] and the elements of the boost::mpl library [38].

In Loki, we define typelist as the following recursive template:



class NullType {};

struct EmptyType {}; // could be instantiated

typedef Typelist< char, Typelist<signed char,

Typelist<unsigned char, NullType> > > Charlist;

We can use helper macro definitions to make the syntax a bit better readable.

#define TYPELIST_1(x) Typelist< x, NullType>

#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>

#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>

#define TYPELIST_4(x, y, z, w) Typelist< x, TYPELIST_3(y,z,w)>

// ...

typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Being a compile time functional language and using a list data structure it is
really easy to define the essential helper algorithms:

/

// Length

//

template <class TList> struct Length;

template <>

struct Length<NullType>

{

enum { value = 0 };

};

template <class T, class U>

struct Length <Typelist<T,U> >

{

enum { value = 1 + Length<U>::value };

};

Length reads the size of the list. The IndexOf takes a parameter and returns
the position of that parameter in the list. If the actual argument is not found it
returns -1.

template <class TList, class T> struct IndexOf;

template <class T>

struct IndexOf< NullType, T>

{

enum { value = -1 };

};

template <class T, class Tail>

struct IndexOf< Typelist<Head, Tail>, T>

{



private:

enum { temp = IndexOf<Tail, T>::value };

public:

enum { value = (temp == -1) ? -1 : 1+temp };

};

Similar data structures and algorithms can be found in boost::mpl.
However, there is a fundamental difference between runtime programs and

C++ template metaprograms: once a certain entity (constant, enumeration
value, type) has been defined, it will be immutable. There is no way to change
its value or meaning. Therefore no such thing as a metaprogram assignment
exists. In this sense metaprograms are similar to pure functional programming
languages, where referential transparency is obtained. That is the reason why we
use recursion and specialization to implement loops: we are not able to change
the value of any loop variable. Immutability – as in functional languages – has
a positive effect too: unwanted side effects do not occur.

Metafunctions – as we can expect in a functional programming language – are
first class citisens in C++ template metaprogramming. In the following example
we define a metaprogram Accumulate which summarize the value of a function
at points in the intervall 0..N. The function will be a metaprogram itself and
can be specified as an argument of Accumulate.

// Accumulate(n,f) := f(0) + f(1) + ... + f(n)

template <int n, template<int> class F>

struct Accumulate

{

enum { RET = Accumulate<n-1,F>::RET + F<n>::RET };

};

template <template<int> class F>

struct Accumulate<0,F>

{

enum { RET = F<0>::RET };

};

template <int n>

struct Square

{

enum { RET = n*n };

};

int main()

{

cout << Accumulate<3,Square>::RET << endl;

return 0;

}



5 Applications of template metaprogramming

5.1 Expression templates

The eraliest applications of template metaprogramming aimed to eliminate the
overhead of object-oriented programming in numerical computations. To under-
stand the root of the problem, consider the foillowing scenario.

We want implement numerical computations with the help of the well-designed
class Array, which encapsulates a vector of floating point numbers, and basic
operations like add and multiply such objects. With the help of the operator
overloading we can write the following code:

class Array;

Array a,b,c,d;

a = b + c + d;

Unfortunatelly, when we execute the operation above, some uneffective events
happen. The operation b + c will produce a temporary Array as the result,
and this temporary will be added to d, which produces an other temporary.
Temporary Arrays will allocate space in the heap – a relatively slow operation,
and will copy a not small number of bytes. Not to forget the destruction, we end
up something similar to the following:

double* _t1 = new double[N]; // b+c

for ( int i=0; i<N; ++i)

_t1[i] = b[i] + c[i];

double* _t2 = new double[N]; // _t1+d

for ( int i=0; i<N; ++i)

_t2[i] = _t1[i] + d[i];

for ( int i=0; i<N; ++i) // a = _t2

a[i] = _t2[i];

delete [] _t2;

delete [] _t1;

Veldhuizen measured 50 – 500 percentage of performance loss due to extra heap
operations, memory operations, etc. Meanwhile, a FORTRAN-like code could
keep the high performance with impolementing the following:

for( int i=0; i<N; ++i)

a[i] = b[i] + c [i] + d[i];

C++ Expression templates [31] are templates that represent an arbitrary expres-
sion, so that they can easily be passed to functions. These expression arguments



can be transformed into inline i within the function body, resulting in faster,
more efficient code compared to the classic C-style callback functions. In the
C language expressions are usually passed as function pointers referring to the
desired callback function. In the standard C library the qsort(), lsarch() func-
tions expect a int (*cmp)(void*, void*) function pointer be passed referring
to a comparison function. Expression templates are a more enhanced substitu-
tion for callback functions.

5.2 Concept checking

C++ has no language-level support for explicitly requiring certain properties,
concepts (e.g. a comparison function for the type, operator<) from template ar-
guments when instantiation of a template is being done. This deliberate language
design decision that any type can be a template’s type argument regardless of
its properties made C++ templates more flexible and applicable, as opposed to
more strict languages, like Ada. However, if a type fails to meet the implicitly
declared requirements of a template, the compilation will fail, and results in
complex and long error messages in the case of a heavily templated code, like
the STL [18, 21]. Because of the lack of compiler support, the problem had to
be remedied on the language level. Complex language constructs were created
to determine in compile-time the characteristics of a type used for instantiation.
This area of research is called concept checking.

A compilation of such language constructs, the Boost Concept Checking
Library (BCCL)[36] uses template mechanisms to provide a wide variety of
compile-time checks, and produce human-readable error messages when a cri-
terion is not met by a type:

// Library function with constraints to T

template <class T>

void generic_library_function(T x)

{

function_requires< EqualityComparableConcept<T> >();

// ...

}

// user code

class foo

{

// ...

};

int main()

{

foo f;

generic_library_function(f);

return 0;

}



In the last ten years lots of effort spent to develop high quality concept libraries.
Unfortunately, it turned out that library-based solutions are significantly weaker
than language-based concepts. Therefore the ANSI C++ committee accepted a
proposal to extend C++ with language-based concepts. With the help of con-
cepts [20] we can define the requirements agains template parameters of classes
and functions.

5.3 DSL-based language extentions

Domain specific languages are dedicated to some special problems, like database
related tasks, or expressing regular expressions in an effective way. They of-
ten incorporate with some general purpose host language. The main problem
is to provide type safety and consistency between the host language and the
embedded language. One way to implement this in C++ is the use of template
metaprograms.

AraRat system [12] is an example to implement a domain specific language
using C++ template metaprograms. AraRat provides a type safe SQL inter-
face for queries. It uses operator overloading over types generated based on the
actual database schema. When expressions violate schema rules or used incon-
sistent way communicating with host C++ environment a compile-time error is
generated.

The boost:xpressive library [37] is used for compile time checking of regular
expressions. In most regex library, the patterns are represented as string literals
or variables and the syntax of the regular expressions (i.e. every parantheses
has a closing symbol, etc.) are checked only in run-time. The boost:xpressive

library allows the creation and compile time checking certain regular expressions.
This way we can detect soem syntactically bogus patterns in compilation time.

6 The matrix example

In Section 3 we shortly discussed a matrix template. As this template uses
a buffer allocated in the heap to store the elements, we have to provide copy
constructor and assignmnet operator to ensure the meaningful copy of matrix

objects. The textbook example for such assignment operators look similar to
this:

template <class T>

matrix<T> matrix<T>::operator=( const matrix &other)

{

if ( this != &other )

{

delete [] v;

copy( other);

}

return *this;



}

template <class T>

void matrix<T>::copy( const matrix &other)

{

x = other.x;

y = other.y;

v = new T[x*y];

for ( int i = 0; i < x*y; ++i )

v[i] = other.v[i];

}

There will be a serious error to replace the loop in copy() function with a
bitwise copy, like the one memcpy() implements. Since type argument T could
be any (copyable) type, in the generic solution we have to call the assignment
operator of type T to copy the content of the matrix. Exactly this happens in
v[i] = other.v[i].

However, with the loop we created a safe copy, in most of the cases we
will store double elements in the matrix, which is completely safe to copy with
memcpy(). Can we somehow accomodate safety with efficiency? Can we use
memcpy() when copying POD types, and apply the loop on other cases?

We can start with the most essential template tool we have: the specialization.
Let specialize copy for some pod types (like long and double) using memcpy()

and leave the generic solution (with loop) for the rest of the types:

template <class T>

void matrix<T>::copy( const matrix &other) // generic version

{

x = other.x;

y = other.y;

v = new T[x*y];

for ( int i = 0; i < x*y; ++i )

v[i] = other.v[i];

}

template <>

void matrix<long>::copy( const matrix &other) // specialization

{

x = other.x;

y = other.y;

v = new long[x*y];

memcpy( v, other.v, sizeof(long)*x*y);

}

// similar copy() for double, ...

This works but quickly leads to unmanagable code. Type specific template spe-
cializations are scattered across the code and we have to repeat this procedure
for all new types we want to copy optimal way.

To modularize type-specific codes we can use traits.



template <typename T>

struct copy_trait

{

static void copy( T* to, const T* from, int n)

{

for( int i = 0; i < n; ++i ) // generic

to[i] = from[i];

}

};

template <>

struct copy_trait<long>

{

static void copy( long* to, const long* from, int n)

{

memcpy( to, from, n*sizeof(long)); // specific

}

};

template <class T, class Cpy = copy_trait<T> >

class matrix

{

//...

};

// ...

template <class T, class Cpy>

void matrix<T,Cpy>::copy( const matrix &other)

{

x = other.x;

y = other.y;

v = new T[x*y];

Cpy::copy( v, other.v, x*y);

}

We added an extra argument to matrix to describe the expected behaviour in
case of copying the object. When the template is about to instantiated with a
certain argument X, the second argument will be copy trait<X>. As the generic
version of copy trait<> using loop-based copy, this will be the default. However,
we may specialize the copy for type X. We still have to repeat specializations,
but at least we can modulize.

We can consider, that the copy we execute on long and double is the same
code. We do not really have to distinguish them. We only have to know that
they are POD types.

template <typename T>

struct is_pod

{

enum { value = false };



};

template <>

struct is_pod<long>

{

enum { value = true };

};

template <>

struct is_pod<double>

{

enum { value = true };

};

// other types...

template <typename T, bool B>

struct copy_trait

{

static void copy( T* to, const T* from, int n)

{

for( int i = 0; i < n; ++i )

to[i] = from[i];

}

};

template <typename T>

struct copy_trait<T, true>

{

static void copy( T* to, const T* from, int n)

{

memcpy( to, from, n*sizeof(T));

}

};

template <class T, class Cpy = copy_trait<T,is_pod<T>::value> >

class matrix

{

// ...

};

Here we impoved the solution separating two policies: copying POD types, and
non-POD types. The is pod<> template declares whether a type is POD or not.
When a type is declared in is pod<> (in either way) the compiler automatically
decides which copy trait<> have to be used.

But we can still improve the solution using typelists. In the following solution
we simply declare the POD types and everything else is made automatically.

typedef TYPELIST_4(char, int, long, double) Pod_types;

template <typename T>

struct is_pod



{

enum { value = ::Loki::TL::IndexOf<Pod_types,T>::value != -1 };

};

struct copy_trait

{

static void copy( T* to, const T* from, int n)

{

for( int i = 0; i < n; ++i )

to[i] = from[i];

}

};

template <typename T>

struct copy_trait<T, true>

{

static void copy( T* to, const T* from, int n)

{

memcpy( to, from, n*sizeof(T));

}

};

template <class T, class Cpy = copy_trait<T,is_pod<T>::value> >

class matrix

{

//...

};

Moreover, using boost::type traits library, we can apply the is pod<> tem-
plate, therefore even the typelist could be omitted.

7 Related work

7.1 FC++

FC++ is a C++ library providing runtime support for functional programming
[17]. Using the tools the library provides functional programs can be written in
C++ from which the expression graph is built and evaluated at runtime. They
don’t require any external tool (such as a translator) they use standard language
features only. The library focuses on runtime execution.

7.2 Boost metaprogramming library

Boost has a template metaprogramming library called boost::mpl which im-
plements several data types and algorithms following the logic of STL [13]. Our
solution is designed to be compatible with it (the lambda expressions produced
by our compiler are designed to be template metafunction classes taking one
argument).



Boost::mpl has lambda expression support: the library provides tools to
create lambda abstractions easily: placeholders ( 1, 2, etc.) are provided and
arguments of metafunctions can be replaced by them. The result of evaluating
a metafunction with one (or more) placeholder argument is not directly usable,
a metafunction called lambda generates a metafunction class from them. Using
these lambda abstractions partial function applications can be implemented, but
since lambda bounds every placeholder lambda abstractions with other lambda
abstractions as their value can’t be defined. For example λx.λy.+xy can’t be
expressed (and neither can be the Y fixpoint operator).

7.3 Boost lambda library

Boost has a library for implementing lambda abstractions in C++ [39]. It’s main
motivation is simplifying the creation of function objects for generic algorithms
(such as STL algorithms). With the library function objects can be built from
expressions (using placeholders). The lambda abstractions built using this library
can be used at runtime.

7.4 Haskell type classes

Zalewski et al. defined a mapping from generic Haskell specifications to C++
with concepts [33]. Haskell multi-parameter type classes with functional depen-
dencies have been translated to ConceptC++, an experimental implementation
of the concept feauture of C++0x. The translation process consists of three
major parts: the division of Haskell class variables i nto ConceptC++ concept
parameters and associated types, the corresponding division of superclasses in
the context of a type class, and the flattening of Haskell AST to the concrete syn-
tax of ConceptC++. The main motivation of the authors was to model software
components in Haskell and implemented in C++ automated the translation.

8 Conclusion

Ideally, the syntax of a programming language should match to the paradigm the
program is written in. Template metaprogramming, a Turing-complete subset of
the C++ language for implementing compile-time algorithms via cleverly placed
templates, is many times regarded as a pure functional language. Unfortunately,
the current way of writing metaprograms is far from the ideal, mainly due to
the complicated template syntax and the different original design goals of C++.

In this paper we gave a brief and noncomplete introduction to C++ templates
and C++ template metaprogramming. We learned the base techniques of writing
metaprograms, and using a motivating example we followed how deeply can we
automatize code adoption using metaprograms.
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