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Goals

I to have programs that are proved correct
I verification
I correctness by construction

I both for imperative and functional programs
I to be able to construct proofs in a flexible way
I similar (but different) systems: B-method, Agda, ...
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Refinement rules

I Sequence
I Selection (case distinction)

I Introduction and elimination of parameters
I Induction
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Example: Peano numbers

data Nat = Z | S Nat

add :: Nat -> Nat -> Nat
add Z n = n
add (S n) m = S (add n m)

I From the datatype declaration:

true ⇒ n = Z ∨ ∃n′ . n = S n′

I From the definition of addition:

true ⇒ add Z n = n

true ⇒ add (S n)m = S (add nm)
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Equality axioms

I Reflexivity:

true ⇒ n = n

I Replacement:

n = m ∧ f n ⇒ f m



Verification example

I property to verify: true ⇒ add a Z = a

I using the datatype axiom: a = Z ∨ ∃a′ . a = S a′

I splitting the two cases:
I a = Z

I using the first axiom of add : add Z Z = Z
I using a replacement: add a Z = a

I ∃a′ . a = S a′

I introducing the parameter a′: a = S a′

I using the second axiom of add : add (S a′) Z = S (add a′ Z)
I using the inductive hypothesis: add a′ Z = a′

I using two replacements: add a Z = a
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Function definition axiom

I Definition of function with two arguments:

true ⇒ f arg1 arg2 = expr

I Whenever it is used, it generates a new equation into the
program

I The system has to check:
I Are we allowed to define f in the program?
I Are the arguments valid patterns?
I ...



Constructing the subtraction function

I Specification: a = add b c ⇒ sub a b = c

I The proof structure is similar to the previous one.
I Two instantiations of the function definition axiom were used

to complete the proof:
I true ⇒ sub a Z = a
I true ⇒ sub (S a′) (S b′) = sub a′ b′

I These yield the following definition:

sub a Z = a
sub (S a’) (S b’) = sub a’ b’
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Embedding in Haskell

I Haskell datatypes for: expressions, formulas, proofs, ...
I The compiler (proof checker) works on these Haskell

datatypes.
I A set of Haskell functions are defined to have handy syntax.

I Advantages:
I no scanner and parser needed
I easier to modify language definition while experimenting
I all the power of Haskell is there to create tricky functions

(tactics, proof strategies) that generate proofs

I Disadvantages:
I syntax is slightly limited
I error reporting is problematic (no line number info, etc.)
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Example: Proof strategy

I Let’s have the following axiom about the functions f and g :

¬f ⇒ g

I How to prove ¬g ⇒ f ?
I Case distinction on f :

I if f holds then we are ready.
I if ¬f holds then we use the axiom above, and get g ∧ ¬g
I from false we can prove everything, including f

I Every indirect proof can be done this way in this system:
I We can create a function capturing this scheme!



Example: Proof strategy

I Let’s have the following axiom about the functions f and g :

¬f ⇒ g

I How to prove ¬g ⇒ f ?

I Case distinction on f :
I if f holds then we are ready.
I if ¬f holds then we use the axiom above, and get g ∧ ¬g
I from false we can prove everything, including f

I Every indirect proof can be done this way in this system:
I We can create a function capturing this scheme!



Example: Proof strategy

I Let’s have the following axiom about the functions f and g :

¬f ⇒ g

I How to prove ¬g ⇒ f ?
I Case distinction on f :

I if f holds then we are ready.
I if ¬f holds then we use the axiom above, and get g ∧ ¬g
I from false we can prove everything, including f

I Every indirect proof can be done this way in this system:
I We can create a function capturing this scheme!



Status & future work

I Previously a (standalone) language was implemented for
imperative programs.

I simple programs using pointers and C++ STL were proved

I Currently: a proof of concept implementation embedded in
Haskell.

I Next tasks:
I merge the features of the two implementations in the

embedded version
I clearly define the semantics for the construction of functional

code
I see how to use Haskell features in proof construction



Thank you for your attention!


