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Background and Motivation

The Manticore Project is our effort to address the
programming needs of commodity applications
running on the commodity hardware of 2014.

hardware supports concurrency and parallelism at multiple levels
software exhibits concurrency and parallelism at multiple levels
to maximize productivity and performance, languages should
support concurrency and parallelism at multiple levels

http://manticore.cs.uchicago.edu

Manticore is a research project.
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Concurrency and Parallelism in Hardware

Hardware supports concurrency and parallelism at multiple levels:

single instruction, multiple data (SIMD) instructions

simultaneous multithreading executions

multicore processors

multiprocessor systems
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Concurrency and Parallelism in Software

Software exhibits concurrency and parallelism at multiple levels.
Consider a networked flight simulator:

User Interface
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Physics Simulation

Particle Systems
(rain, fog, clouds)

Artificial Intelligence

Flight Simulator

Graphics
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data-parallel computations for particle systems
to model natural phenomena (e.g., rain, fog, and clouds)
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Concurrency and Parallelism in Software

Software exhibits concurrency and parallelism at multiple levels.
Consider a networked flight simulator:
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parallel threads for preloading terrain
and computing level-of-detail refinements
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Concurrency and Parallelism in Software
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speculative search for artificial intelligence
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Concurrency and Parallelism in Software

Software exhibits concurrency and parallelism at multiple levels.
Consider a networked flight simulator:

User Interface

sound

keyboard

mouse
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server

player 2

player 3
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Particle Systems
(rain, fog, clouds)

Artificial Intelligence

Flight Simulator

Graphics

concurrent threads for user interface and network components
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Manticore: A Heterogeneous Parallel Language

An effort to design and implement
a new parallel functional programming language
supporting heterogeneous parallelism:

commodity applications with multiple levels of software parallelism
commodity hardware with multiple levels of hardware parallelism

SISALCML
Erlang
Java

Id
pH

NESL
Nepal

OpenMP

high programmer effort
low compiler effort

low programmer effort
high compiler effort

Manticore
Parallel Haskell

Chapel Fortress X10
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Manticore

A long-range project with two major aspects:

Language design for heterogeneous parallel programming.

Language implementation for heterogeneous parallelism.
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Manticore: Language Design

Combination of three distinct, but synergistic, sub-languages:

A mutation-free subset of Standard ML

Language mechanisms for explicitly-threaded concurrency
programmer explicitly spawns threads
coordinate via synchronous message-passing

Language mechanisms for implicitly-threaded parallelism
programmer annotates fine-grained parallel computations
compiler and runtime map onto parallel threads
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Manticore: Language Implementation

Unified runtime framework:

Handle demands of various heterogeneous parallelism
mechanisms exposed by high-level language design

Capable of supporting a diverse mix of scheduling policies

Implemented with compiler and runtime-system features:
small core of primitive scheduling mechanisms
minimal, light-weight representations for computational tasks,
borrowing from past work on continuations
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Manticore: Language Design

Rooted in the family of statically-typed, strict functional languages,
such as OCaml and Standard ML

Functional languages emphasize a value-oriented and
mutation-free programming model

avoids entanglements between separate concurrent computations

Strict languages (rather than lazy or lenient languages) are easier
to implement efficiently and accessible to a larger community of
potential users
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Manticore: Language Design

A mutation-free subset of Standard ML
Strict evaluation
Statically typed: polymorphism, type inference
Higher-order functions
Algebraic datatypes
Exceptions

interesting implications for implicitly-threaded parallelism
mechanisms, but useful for systems programming

Module system (simplified)
omit functors and sophisticated type sharing

No mutable data
omit references cells and (mutable) arrays
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Manticore: Language Design

Language mechanisms for explicitly-threaded concurrency
programmer explicitly spawns threads
coordinate via synchronous message-passing
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Manticore: Language Design

Language mechanisms for explicitly-threaded concurrency
programmer explicitly spawns threads
coordinate via synchronous message-passing

These explicit mechanisms serve two purposes:
support concurrent programming

an important feature for systems programming
support explicit-parallel programming

for additional programmer control

Programming-model based upon first-class synchronous operations
provides a mechanism for building synchronization and
communication abstractions

Introduction and Overview



Manticore: Language Design

Language mechanisms for implicitly-threaded parallelism
programmer annotates fine-grained parallel computations
compiler and runtime map onto parallel threads
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Manticore: Language Design

Language mechanisms for implicitly-threaded parallelism
programmer annotates fine-grained parallel computations
compiler and runtime map onto parallel threads

Manticore provides several light-weight syntactic forms for introducing
implicitly-parallel computations.

These forms are hints to the compiler and runtime that a computation
is a good candidate for parallel execution.

Parallel arrays: fine-grain data-parallel computations over seqs
Parallel tuples: basic fork-join parallel computation
Parallel bindings: data-flow and work-stealing parallelism
Parallel case: non-deterministic speculative parallelism
Cancellation: unused/abandoned subcomputations
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Explicit Concurrency in Manticore
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Introduction

Concurrent programming
programs consisting of multiple independent flows of sequential
control (threads)
execution viewed as an interleaving of the sequential executions
of consitituent threads

Motivations for concurrent programming:
improve performance by exploiting multiprocessors
application domains with naturally concurrent structure:

interactive systems (e.g., graphical-user interfaces)
distributed systems
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Introduction

The explicit-concurrency mechanisms of Manticore
are based on those of Concurrent ML (CML).

dynamic creation of threads and typed channels

rendezvous communication via synchronous message passing

first-class synchronous operations, called events

automatic reclamation of threads and channels

pre-emptive scheduling of explicitly concurrent threads

efficient implementation — both on uni- and multi-processors
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Threads

Create a new independent flow of sequential control

spawn e

e is of type unit

spawn e is of type tid (the type of a thread identifier)
the thread that evaluates spawn e is the parent
the thread that evaluates e is the child

Thread executes until the evaluation of its expression is complete
an uncaught exception completes the evaluation

Threads are preemptively scheduled

Program executes until all threads have terminated or are blocked
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Channels

By themselves, multiple concurrent threads are not very useful

Need mechanisms for communication and synchronization

Synchronous message passing on typed channels

type ’a chan
val channel : unit -> ’a chan
val recv : ’a chan -> ’a
val send : ’a chan * ’a -> unit
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Channels

Synchronous message passing on typed channels
a sender blocks until there is a matching receiver

Thread 1

send (c,5)
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Thread 1
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Thread 2

recv c
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Channels

Synchronous message passing on typed channels
a sender blocks until there is a matching receiver

Thread 1

send (c,5)

continue ()

Thread 2

recv c

continue 5
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Channels

Synchronous message passing on typed channels
a receiver blocks until there is a matching sender

Thread 1

send (c,5)

continue ()

Thread 2

recv c

continue 5
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Channels

Synchronous message passing on typed channels:
channels do not name the sender or receiver
channels do not specify the direction of communication
a channel may pass multiple values between multiple threads
multiple threads may offer to recv or send on the same channel
each recv is matched with exactly one send
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Examples

Three examples

Updatable storage cells

Sieve of Eratosthenes (stream of primes)

Fibonacci Series
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Example: Updatable Storage Cells

Although mutable state make concurrent programming difficult,
it is easy to give an implementation of updatable storage cells using
threads and channels

Implementation is a prototypical example of the client-server style of
concurrent programming

signature CELL =
sig

type ’a cell
val cell : ’a -> ’a cell
val get : ’a cell -> ’a
val put : ’a cell * ’a -> unit

end
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Example: Updatable Storage Cells

structure Cell : CELL =
sig

datatype ’a req = GET of ’a chan | PUT of ’a
datatype ’a cell = CELL of ’a req chan

fun get (CELL reqCh) =
let

val replyCh = channel ()
in
send (reqCh, GET replyCh) ;
recv replyCh

end

fun put (CELL reqCh, y) =
send (reqCh, PUT y)
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Example: Updatable Storage Cells

fun cell z =
let

val reqCh = channel ()
fun loop x =

case recv reqCh of
GET replyCh => (send (replyCh, x) ;

loop x)
| PUT y => loop y

val _ = spawn (loop z)
in

CELL reqCh
end

end
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Example: Sieve of Eratosthenes

Compute a stream of prime numbers

Implementation is a prototypical example of the dataflow style of
concurrent programming

fun firstPrimes (n : int) : int list =
let val primesCh = primes ()

fun loop (i, acc) =
if i = 0

then rev acc
else loop (i - 1, (recv primesCh)::acc)

in loop (n, [])
end
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Example: Sieve of Eratosthenes

fun forever (init : ’a) (f : ’a -> ’a) : unit =
let fun loop s = loop (f s)

val _ = spawn (loop init)
in ()
end

fun succs (i : int) : int chan =
let val succsCh = channel ()

fun succsFn i = (send (succsCh, i) ; i + 1)
val () = forever i succsFn

in succsCh
end
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Example: Sieve of Eratosthenes

fun filter (p: int, inCh : int chan) : int chan =
let val outCh = channel ()

fun filterFn () =
let val i = recv inCh
in if (i mod p) <> 0 then send (outCh, i) else ()
end

val () = forever () filterFn
in outCh
end

fun primes () : int chan =
let val primesCh = channel ()

fun primesFn ch =
let val p = recvCh
in send (primesCh p) ; filter (p, ch)
end

val () = forever (succs 2) primesFn
in primesCh
end
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Example: Fibonacci Series

Compute a stream of Fibonacci numbers

fib1 = 1
fib2 = 1

fibi+2 = fibi+1 + fibi

ch1 copy

copy

adddelay
ch5

ch3

ch4

ch2

fibsCh
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Example: Fibonacci Series

fun addStrms (inCh1, inCh2, outCh) =
forever () (fn () =>

send (outCh, (recv inCh1) + (recv inCh2)))

fun copyStrm (inCh, outCh1, outCh2) =
forever () (fn () =>

let val x = recv inCh
in send (outCh1, x) ; send (outCh2, x)
end)

fun delayStrm first (inCh, outCh) =
forever first (fn x =>

(send (outCh, x) ; recv inCh))
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Example: Fibonacci Series

fun fibs () : int chan =
let val fibsCh = channel ()

val ch1 = channel ()
val ch2 = channel ()
val ch3 = channel ()
val ch4 = channel ()
val ch5 = channel ()

in
copyStrm (ch1, ch2, fibsCh) ;
copyStrm (ch2, ch3, ch4) ;
delayStrm 0 (ch4, ch5) ;
addStrms (ch3, ch5, ch1) ;
send (ch1, 1) ;
fibsCh

end
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Need for Selective Communication

When programming with recv and send exclusively, there are limits to
the kinds of concurrent programs that can be expressed.

fragility in the implementation of concurrency abstractions

ch1 copy

copy

adddelay
ch5

ch3

ch4

ch2

fibsCh

problem: deadlock
solution: eliminate dependency on the order of blocking operations
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Selective Communication

Selective communication
allow a thread to block on a choice of several communications
first communication that becomes enabled is chosen
if two or more communications are simultaneously enabled,
then one is chosen nondeterministically
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Selective Communication vs. Abstraction

Selective communication vs. Abstraction
in most concurrent languages with message passing,
must explicitly list the blocking communications:

select inCh1?x => x + (recv inCh2)
| inCh2?y => (recv inCh1) + y
| outCh!42 => 0

makes it difficult to construct abstract synchronous operations,
because constituent recvs/? and sends/! must be revealed,
breaking abstraction
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Selective Communication vs. Abstraction

Consider a possible interaction between a client and two servers

Server 1 Client Server 2

request
request

reply/ack

nack

reply/ack
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Selective Communication vs. Abstraction

Consider a possible interaction between a client and two servers

Without abstraction, the code is a mess:

let val replCh1 = channel ()
val nackCh1 = channel ()
val replCh2 = channel ()
val nackCh2 = channel ()

in
send (reqCh1, (req1, replyCh1, nackCh1)) ;
send (reqCh2, (req2, replyCh2, nackCh2)) ;
select replCh1?repl1 => (setNack nackCh2 ; act1 repl1)

| replCh2?repl2 => (setNack nackCh1 ; act2 repl2)
end

Want an abstraction mechanism that supports choice
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First-class Synchronous Operations

First-class (abstract) synchronous operations (Events)
decouple the description of a synchronous operation
from the act of synchronizing

Events and synchronization
an event value represents a potential synchronous operations
(analogy: a function value represents a potential computation)

type ’a event

force synchronization on an event value
(analogy: application forces evaluation of a function value)

val sync : ’a event -> ’a
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First-class Synchronous Operations

First-class (abstract) synchronous operations (Events)
decouple the description of a synchronous operation
from the act of synchronizing

Base-event constructors
event values that describe a primitive synchronous operation

channel communication

val recvEvt : ’a chan -> ’a event
val sendEvt : ’a chan * ’a -> unit event

val recv = fn ch => sync (recvEvt ch)
val send = fn (ch, x) => sync (sendEvt (ch, x))
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Base-event Constructors for Channel Communication

Thread 1

sendEvt (c,5)

Thread 2

recvEvt c
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Base-event Constructors for Channel Communication
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Base-event Constructors for Channel Communication

Thread 1

sync

sendEvt (c,5)

Thread 2

sync

recvEvt c

Explicit Concurrency in Manticore



Base-event Constructors for Channel Communication

Thread 1

sync

sendEvt (c,5)

continue ()

Thread 2

sync

recvEvt c

continue 5
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First-class Synchronous Operations

First-class (abstract) synchronous operations (Events)
decouple the description of a synchronous operation
from the act of synchronizing

Event combinators
build more complicated event values from the base-event values
generalized selective communication mechanism

val choose : ’a event * ’a event -> ’a event

event wrapper for post-synchronization actions

val wrap : ’a event * (’a -> ’b) -> ’b event

event generator for pre-synchronization actions

val guard : (unit -> ’a event) -> ’a event
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Event Combinator for Generalized Choice

val choose : ’a event * ’a event -> ’a event

sendEvt (c2,5)

choose

sendEvt (c3,5)
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Event Combinator for Generalized Choice

val choose : ’a event * ’a event -> ’a event

Thread 1

sync

sendEvt (c2,5)

choose

sendEvt (c3,5)
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Event Combinator for Generalized Choice

val choose : ’a event * ’a event -> ’a event

Thread 1

sync

sendEvt (c2,5)

choose

sendEvt (c3,5)
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Event Combinator for Generalized Choice

val choose : ’a event * ’a event -> ’a event

Thread 1

sync

Thread 2

sync

Thread 3

sync

recvEvt c2

recvEvt c3sendEvt (c2,5)

choose

sendEvt (c3,5)
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Event Combinator for Generalized Choice

val choose : ’a event * ’a event -> ’a event

Thread 1

sync

Thread 2

sync

Thread 3

sync

recvEvt c2

recvEvt c3sendEvt (c2,5)

choose

sendEvt (c3,5)
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Event Combinator for Generalized Choice

val choose : ’a event * ’a event -> ’a event

Thread 1

sync

Thread 2

sync

Thread 3

sync

recvEvt c2

recvEvt c3

continue () continue 5

sendEvt (c2,5)

choose

sendEvt (c3,5)
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Event Combinator for Post-synchronization Actions

val wrap : ’a event * (’a -> ’b) -> ’b event

recvEvt c

wrap f
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Event Combinator for Post-synchronization Actions
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sync
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Event Combinator for Post-synchronization Actions

val wrap : ’a event * (’a -> ’b) -> ’b event

Thread 1

sync

recvEvt c

wrap f

Thread 2

sync

sendEvt (c,5)
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Event Combinator for Post-synchronization Actions

val wrap : ’a event * (’a -> ’b) -> ’b event

Thread 1

sync

recvEvt c

wrap f

Thread 2

sync

sendEvt (c,5)

continue () continue (f 5)
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Using Event Combinators

fun addStrms (inCh1, inCh2, outCh) =
forever () (fn () =>

let val (a, b) =
sync (choose (

wrap (recvEvt inCh1, fn a => (a, recv inCh2)),
wrap (recvEvt inCh2, fn b => (recv inCh1, b))

))
in send (a + b)
end)

fun copyStrm (inCh, outCh1, outCh2) =
forever () (fn () =>

let val x = recv inCh
in

sync (choose (
wrap (sendEvt (outCh1, x), fn () => send (outCh2, x)),
wrap (sendEvt (outCh2, x), fn () => send (outCh1, x))

))
end)
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Event Combinator for Pre-synchronization Actions

val guard : (unit -> ’a event) -> ’a event

guard f

fun f () =
let val c = channel ()

val _ = spawn (sync (sendEvt (c, 5)))
in recvEvt c
end
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Event Combinator for Pre-synchronization Actions

val guard : (unit -> ’a event) -> ’a event

sync

guard f

Thread 1

fun f () =
let val c = channel ()

val _ = spawn (sync (sendEvt (c, 5)))
in recvEvt c
end
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Event Combinator for Pre-synchronization Actions

val guard : (unit -> ’a event) -> ’a event

sync

f ()

Thread 1

fun f () =
let val c = channel ()

val _ = spawn (sync (sendEvt (c, 5)))
in recvEvt c
end
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Event Combinator for Pre-synchronization Actions

val guard : (unit -> ’a event) -> ’a event

sync

recvEvt c

sync

sendEvt (c,5)

Thread 1Thread 2

fun f () =
let val c = channel ()

val _ = spawn (sync (sendEvt (c, 5)))
in recvEvt c
end
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Event Combinator for Pre-synchronization Actions

val guard : (unit -> ’a event) -> ’a event

Thread 1

sync

recvEvt c

Thread 2

sync

sendEvt (c,5)

continue () continue 5

fun f () =
let val c = channel ()

val _ = spawn (sync (sendEvt (c, 5)))
in recvEvt c
end
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Example: Swap Channels

Swap Channels
a synchronous abstraction
allows (exactly) two threads to swap values

signature SWAP_CHAN =
sig

type ’a swap_chan
val swapChannel : unit -> ’a swap_chan
val swapEvt : ’a swap_chan * ’a -> ’a event

end
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Example: Swap Channels

structure BadSwapChan : SWAP_CHAN =
struct

datatype ’a swap_chan = SC of ’a chan

fun swapChannel () = SC (channel ())

fun swapEvt (SC ch, msgOut) =
choose (

wrap (recvEvt ch, fn msgIn =>
(send (ch, msgOut) ; msgIn)),

wrap (sendEvt (ch, msgOut), fn () =>
recv ch)

)
end
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Example: Swap Channels

structure SwapChan : SWAP_CHAN =
struct

datatype ’a swap_chan = SC of (’a * ’a chan) chan

fun swapChannel () = SC (channel ())

fun swapEvt (SC ch, msgOut) =
guard (fn () =>
let val inCh = channel ()
in

choose (
wrap (recvEvt ch, fn (msgIn, outCh) =>
(send (outCh, msgOut) ; msgIn)),

wrap (sendEvt (ch, (msgOut, inCh)), fn () =>
recv inCh)

)
end)

end
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Additional First-class Synchronous Operations

Base-event constructors
event values that describe a primitive synchronous operation

base-event constructors for trivial synchronizations

val alwaysEvt : ’a -> ’a event
val neverEvt : ’a event

val chooseList : ’a event list -> ’a event =
fn l => foldl choose neverEvt l
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Additional First-class Synchronous Operations

Event combinators
build more complicated event values from the base-event values

event generator for pre-synchronization actions with cancellation

val withNack : (unit event -> ’a event) -> ’a event
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

choose

sendEvt (c2,5)withNack f

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

choose

sendEvt (c2,5)withNack f

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

choose

sendEvt (c2,5)

f nackEvt3

nackEvt3

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

choose

sendEvt (c2,5)

Thread 3

sync

recvEvt c3

choose

wrap g

sendEvt (c3,5)

nackEvt3

nackEvt3

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

Thread 2

sync

recvEvt c2

choose

sendEvt (c2,5)

Thread 3

sync

recvEvt c3

choose

wrap g

sendEvt (c3,5)

nackEvt3

nackEvt3

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

Thread 2

sync

recvEvt c2

continue ()
continue 5

choose

sendEvt (c2,5)

Thread 3

sync

recvEvt c3

choose

wrap g

sendEvt (c3,5)

nackEvt3

nackEvt3

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

Thread 2

sync

recvEvt c2

continue ()
continue 5

choose

sendEvt (c2,5)

Thread 3

sync

recvEvt c3

choose

wrap g

sendEvt (c3,5)

nackEvt3

nackEvt3

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Event Combinator for Pre-sync Actions w/ Cancellation

val withNack : (unit event -> ’a event) -> ’a event

Thread 1

sync

Thread 2

sync

recvEvt c2

continue ()
continue 5

choose

sendEvt (c2,5)

Thread 3

sync

continue (g ())

recvEvt c3

choose

wrap g

sendEvt (c3,5)

nackEvt3

nackEvt3

fun f nackEvt =
let val _ = spawn (sync (choose (

recvEvt c3, wrap (nackEvt, g))))
in sendEvt (c3, 5)
end
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Selective Communication vs. Abstraction

Consider a possible interaction between a client and two servers

Without abstraction, the code is a mess:

let val replCh1 = channel ()
val nackCh1 = channel ()
val replCh2 = channel ()
val nackCh2 = channel ()

in
send (reqCh1, (req1, replyCh1, nackCh1)) ;
send (reqCh2, (req2, replyCh2, nackCh2)) ;
select replCh1?repl1 => (setNack nackCh2 ;

act1 repl1)
| replCh2?repl2 => (setNack nackCh1 ;

act2 repl2)
end
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Selective Communication vs. Abstraction

Consider a possible interaction between a client and two servers
With abstraction, the code is clean:

structure Server : sig
val rpcEvt : server * req -> repl event

end = struct
fun rpcEvt (srv, req) =
withNack (fn nack =>
let val replyCh = channel
in

... send (reqCh, (req, replyCh, nack)) ... ;
recvEvt replyCh

end)
end

sync (choose (
wrap (Server.rpcEvt server1, fn repl1 => act1 repl1),
wrap (Server.rpcEvt server2, fn repl2 => act2 repl2)

))
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External Synchronous Events

Motivations for concurrent programming:
application domains with naturally concurrent structure:

interactive systems (e.g., graphical-user interfaces)

Interactive systems
multiple (asynchronous) input streams

keyboard, mouse, network
multiple (asynchronous) output streams

display, audio, network

In sequential languages, dealt with through complex event loops
and callback functions

First-class synchronous events can treat these external events
using the same framework as internal synchronization
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External Synchronous Events: Input/Output

For a console application, take standard input, output,
and error streams to be character channels

val stdInCh : char chan
val stdOutCh : char chan
val stdErrCh : char chan

Better interface is to expose the streams as events
should only recv from standard input stream
should only send to standard output and error streams

val stdInEvt : char event
val stdOutEvt : char -> unit event
val stdErrEvt : char -> unit event

In practice, build higher-level I/O library on top
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External Synchronous Events: Timeouts

Mechanisms for “timing out” on a blocking operation

val timeOutEvt : time -> unit event
val atTimeEvt : time -> unit event

Pause for one second

sync (timeOutEvt (timeFromSeconds 1))

Prompt for Y/N with default

choose (
wrap (timeOutEvt (timeFromSeconds 10), fn () => #"N"),
stdInEvt

)
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Examples

Two final examples

Buffered channels

Futures
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Example: Buffered Channels

Sometimes useful to support asynchronous communication
sender does not block, message is buffered in the channel
receiver blocks until there is an available message

signature BUFFERED_CHAN =
sig

type ’a buff_chan
val buffChannel : unit -> ’a buff_chan
val buffSend : ’a buff_chan * ’a -> unit
val buffRecvEvt : ’a buff_chan -> ’a event

end
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Example: Buffered Channels

structure BufferedChan : BUFFERED_CHAN =
struct

datatype ’a buff_chan =
BC of {inCh: ’a chan, outCh: ’a chan}

fun buffSend (BC {outCh, ...}, x) =
send (outCh, x)

fun buffRecvEvt (BC {inCh, ...}) =
recvEvt inCh
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Example: Buffered Channels

fun buffChannel () : ’a buff_chan =
let val (inCh, outCh) = (channel (), channel ())

fun loop ([], []) = loop ([recv inCh], [])
| loop ([], rear) = loop (rev rear, [])
| loop (front as frHd::frTl, rear) =

(loop o sync o choose) (
wrap (recvEvt inCh, fn y =>

(front, y::rear)),
wrap (sendEvt (outCh, frHd), fn () =>

(frTl, rear))
)

val _ = spawn (loop ([], []))
in BC {inCh = inCh, outCh = outCh}
end

end
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Example: Futures

Futures: a common mechanism for specifying parallel computation
future creation: takes a computation, creates a separate thread
and returns a placeholder (future cell)
future touching: read a value from a future cell, blocking until
value is computed

signature FUTURE =
sig

datatype ’a result = VAL of ’a | EXN of exn
val future : (’a -> ’b) -> ’a -> ’b result event

end
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Example: Futures

structure Future : FUTURE =
struct

datatype ’a result = VAL of ’a | EXN of exn
fun future f x =
let val ch = channel ()

let val _ = spawn (
let val r = (VAL (f x)) handle exn => EXN exn
in forever () (fn () => (send (ch, r)))
end)

in recvEvt ch
end
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Conclusion

Explicit-concurrency mechanisms in Manticore
support concurrent programming (systems programming)
unified interface to synchronization
via first-class synchronous operations

More sophisticated applications
graphical-user interface toolkit (eXene)
distributed tuple-space implementation
software build system

Next: Implicit Parallelism in Manticore
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Part III

Implicit Parallelism in Manticore
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Introduction

Language mechanisms for implicitly-threaded parallelism
programmer annotates fine-grained parallel computations
compiler and runtime map onto parallel threads

User Interface

sound

keyboard

mouse

Network

server

player 2

player 3

Physics Simulation

Particle Systems
(rain, fog, clouds)

Artificial Intelligence

Flight Simulator

Graphics
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Introduction

Motivations for implicitly-threaded parallelism:
improve performance by exploiting multiprocessors
ease the burden for both programmer and compiler

programmer able to utilize simple parallel constructs:
efficiently (in terms of program text) express the desired parallelism
compiler able to analyze and optimize simple parallel constructs:
efficiently (in terms of time and computational resources) execute

Implicitly-threaded parallelism is more specific (and less expressive)
than explicitly-threaded concurrency, but

express common idioms of parallel computation
limited expressiveness allows the compiler and runtime
to better manage the parallel computation
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Introduction

Manticore provides several light-weight syntactic forms for introducing
implicitly-parallel computations.

These forms are hints to the compiler and runtime that a computation
is a good candidate for parallel execution.

Parallel arrays: fine-grain data-parallel computations over seqs
Parallel tuples: basic fork-join parallel computation
Parallel bindings: data-flow and work-stealing parallelism
Parallel case: non-deterministic speculative parallelism
Cancellation: unused/abandoned subcomputations
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Introduction

Manticore provides several light-weight syntactic forms for introducing
implicitly-parallel computations.

The semantics of (most of) these constructs is sequential:
provides programmer with a deterministic programming model
formalizes the expected behavior of the compiler/runtime
if subcomputation raises an exception, then delay delivery until a
sequentially prior subcomputations have terminated
if subcomputation performs synchronization (message-passing),
then execute sequentially
compiler/runtime may choose to execute in a single thread
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Parallel Arrays

Support for parallel computations on arrays and matrices
is common in parallel languages.

Operations on arrays and matrices naturally express data parallelism
a single computation is performed in parallel
across a large number of data elements

Manticore adopts the nested parallel array mechanism (NESL)

type ’a parray

immutable sequences that can be computed in parallel
nested data parallelism

arbitrary element types: arrays of floating-point numbers,
arrays of user-defined datatypes, arrays of arrays
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Parallel-Array Introduction

Basic expression forms for creating parallel arrays

Explicit enumeration of expressions

[| e1, ..., en |]

Integer enumeration

[| el to eh by es |]

el: start integer (low)
eh: end integer (high)
es: step integer (optional)
Example [| 1 to 31 by 10 |]
evaluates to [| 1, 11, 21, 31 |]
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Parallel-Array Introduction

Basic expression forms for creating parallel arrays
Parallel-array comprehension

[| e | x1 in ea1, ..., xn in ean where ep |]

e: computes elements of the array
eai : parallel-array expressions that provide inputs
ep: boolean expression that filters input (optional)

zip semantics (not Cartesian-product semantics)
if the input arrays eai have different lengths,
then all are truncated to length of the shortest input
and processed in lock-step
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Parallel-Array Comprehension

Examples

Double each positive integer in a parallal array of integers num

[| 2 * n | n in nums where n > 0 |]

Parallel map and parallel filter combinators

fun mapP f xs = [| f x | x in xs |]
fun filterP p xs = [| x | x in xs where p x |]

Inner loop of ray tracer (nested data parallelism)

[| [| trace (x, y) | x in [| 0 to w-1 |] |]
| y in [| 0 to h-1 |] |]
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Parallel-Array Elimination

Basic expression forms for consuming parallel arrays

Parallel-array comprehension

Subscript operation

ea ! ei

ea: parallel-array expression
ei: integer expression

parallel arrays are indexed by zero
if the index is outside the range of the array
then the Subscript exception is raised
random-access may not be constant time
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Parallel-Array Elimination

Basic expression forms for consuming parallel arrays
Parallel-array reduction

reduceP f b ea

f: binary function, should be associative
b: base value, should be zero of ef
ea: parallel-array expression
similar to folding f over the elements of ea,
using the base value b
function is applied in parallel to elements,
using a tree-like decomposition of array
Example

fun sumP xs = reduceP (fn (x, y) => x + y) 0 a
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Additional Parallel-Array Operations

Additional combinators for manipulating parallel arrays

Size of parallel arrays

val lengthP : ’a parray -> int

Concatenate and flatten parallel arrays

val concatP : ’a parray * ’a parray -> ’a parray
val flattenP : ’a parray parray -> ’a parray

These combinators have direct implementations for efficiency,
but consider implementing them in terms of the previous forms.
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Additional Parallel-Array Operations

Size of parallel arrays

fun lengthP a = sumP (mapP (fn _ => 1) a)

Concatenate and flatten parallel arrays

fun concatP (a1, a2) =
let val l1 = lengthP a1

val l2 = lengthP a2
in

[| if i < l1 then a1 ! i else a2 ! (i - l1)
| i in [| 0 to (l1 + l2 - 1) |] |]

end
fun flattenP a = reduceP concatP [| |] a
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Examples

Three examples

Image manipulation

Sparse-matrix vector multiplication

Quicksort
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Example: Image Manipulation

Parallel arrays are a natural representation for images:

type pixel = int * int * int
type img = pixel parray parray

Image transformations expressed as a computation
that is applied to each pixel of an image

fun xformImg xformPix img =
[| [| xformPix pix | pix in row |] | row in img |]

fun rgbPixToGrayPix ((r, g, b) : pixel) : pixel =
let val m = (r + g + b) / 3
in (m, m, m)
end

fun rgbImgToGrayImg (img : img) : img =
xformImg rgbPixToGrayPix img
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Example: Sparse-matrix Vector Multiplication

Parallel arrays can represent both dense and sparse vectors and
matrices:

type vector = real parray
type sparse_vector = (int * real) parray

type sparse_matrix = sparse_vector parray

To multiply a sparse matrix by a dense vector,
compute the dot product for each row:

fun dotp (sv: sparse_vector) (v: vector) : real =
sumP [| x * (v!i) | (i,x) in sv |]

fun smvm (sm: sparse_matrix) (v: vector) : vector =
[| dotp (row, v) | row in sm |]
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Example: Quicksort

Quicksort an array of integers:

fun quicksort (a: int parray) : int parray =
if lengthP a < 2
then a
else let val pivot = ns ! 0

val ss = [| filterP cmp a
| cmp in [| fn x => x < pivot,

fn x => x = pivot,
fn x => x > pivot |] |]

val rs = [| quicksort a | a in [| ss!0, ss!2 |] |]
val sorted_lt = rs!0
val sorted_eq = ss!1
val sorted_gt = rs!1

in flattenP [| sorted_lt, sorted_eq, sorted_gt |]
end

Some awkwardness in using parallel arrays exclusively

Implicit Parallelism in Manticore



Parallel Tuples

Parallel arrays provide a very regular form of parallelism.

Sometimes more convenient to express irregular forms of parallelism.

Parallel-tuple expression form provides a simple fork/join parallelism:

(| e1, ..., en |)

each of the tuple components is evaluated in parallel
computation of the tuple result blocks
until all of the tuple components are fully evaluated
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Example: Quicksort

Quicksort an array of integers:

fun quicksort (a: int parray) : int parray =
if lengthP a < 2
then a
else let val pivot = ns ! 0

val (sorted_lt, sorted_eq, sorted_gt) =
(| quicksort (filterP (fn x => x < pivot) a),

filterP (fn x => x = pivot) a,
quicksort (filterP (fn x => x > pivot) a) |)

in flattenP [| sorted_lt, sorted_eq, sorted_gt |]
end

More natural using parallel tuples
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Parallel Tuples

Consider adding the leaves of a binary tree.

datatype tree = LF of int | ND of tree * tree
fun treeAdd t =
case t of

LF n => n
| ND(t1, t2) => add (| treeAdd t1, treeAdd t2 |)

0 1 2 3

0 1 2 3

5

6

1
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Parallel Tuples

Very easy to express parallel computations

Express more parallelism than can be effectively utilized
compiler and runtime must determine when the overhead of
starting a parallel execution doe not outweigh the benefits of
parallel execution

Adding all branches of a binary tree in parallel
balanced binary tree of depth N
yields 2N − 2 parallel computations

Realizing each as a separate thread
yields more threads than physical processors
Realizing each as a unit of work for work-stealing threads
incurs overhead
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Parallel Tuples: Future Work

Use compiler to transform to a semantically equivalent program.

datatype tree = Tr of int * tree’
and tree’ = LF of int | ND of tree * tree

fun Lf n = Tr (1, Lf’ n)
fun Br (t1 as Tr (d1, _), t2 as Tr (d2, _)) =
Tr (max (d1, d2) + 1, Br’ (t1, t2))

fun trAdd (Tr (d,t’)) =
if d < 16 orelse numIdleProcs () < 2

then tr’Add_seq t’
else tr’Add_par t’

and trAdd_seq (Tr (_,t’)) = tr’Add_seq t’
and tr’Add_seq’ =

case t’ of
Lf’ n => n

| Br’ (t1, t2) => add ( trAdd_seq t1, trAdd_seq t2 )
and tr’Add_par’ =
case t’ of

Lf’ n => n
| Br’ (t1, t2) => add (| trAdd t1, trAdd t2 |)
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Parallel Bindings

Parallel arrays and parallel tuples provide fork/join parallelism.

Sometimes want more flexible scheduling of computations.

Parallel-binding declaration form provides speculative parallelism:

pval p = e

spawns the evaluation of the expression as a parallel thread
evaluation forced when a variable in the pattern is demanded

exception raised by evaluation is raised at the point of use

evaluation cancelled when no variable will be demanded
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Parallel Bindings

Consider multiplying the leaves of a binary tree.

fun trMul t =
case t of

LF n => n
| ND(t1, t2) =>

let pval p2 = trMul t2
val p1 = trMul t1

in if p1 = 0 then (* cancel p2 *) 0 else p1 * p2
end

1 0 2 3

1 0 2 3

0

0
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Parallel Bindings

Cancellation performed by a simple, syntactic analysis.

A parallel binding expression may inherit other parallel bindings

let
pval x = f 0
pval y = (| g 1, g 2 + x |)

in
if b

then (* cancel y *) x
else (* cannot cancel x *) h y

end
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Parallel Bindings

Behavior of parallel tuples may be encoded using parallel bindings.

Encode

(| e1, ..., en |)

as

let
pval x1 = e1
...
pval xn = en

in
(x1, ..., xn)

end
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Parallel Cases

Pattern matching is a fundamental functional-programming idiom.
Parallel-case expression form provides speculative
and nondeterministic pattern matching

pcase e1 & ... & en of
pp11 & ... & pp1n => e’1

| ...
| ppm1 & ... & ppmn => e’m
| otherwise => eo

expressions ei are evaluated in parallel and cancelled in matches
ppi,j are parallel patterns

a nondeterministic wildcard pattern ?
a handle pattern handle p
a (normal, SML) pattern p

otherwise branch (optional) has lowest precedence
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Parallel Cases:

Parallel patterns

A nondeterministic wildcard pattern ? always matches,
even if the corresponding scruitinee is still evaluating.

A handle pattern handle p matches a computation that raises an
exception; the pattern p is bound to the raised exception.

otherwise => eo branch

If present, equivalent to
(_ | handle _) &... &(_ | handle _) => eo,
but with lowest precedence
If absent, defaults to otherwise => raise Match
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Parallel Cases

Consider picking an arbitrary leaf that satisfies a predicate.

fun trFind (p, t) =
case t of

LF n => if p n then SOME n else NONE
| Br (t1, t2) =>

(pcase trFind (p, t1) & trFind (p, t2) of
SOME n & ? => SOME n

| ? & SOME n => SOME n
| NONE & NONE => NONE)

0 1 2 3

0 1 2 3

11

1
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Parallel Cases

Consider multiplying the leaves of a binary tree.

fun trMul t =
case t of

LF n => n
| Br (t1, t2) =>

(pcase trMul t1 & trMul t2 of
0 & ? => 0

| ? & 0 => 0
| x & y => x * y)
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Parallel Cases

A number of derived forms are desugared to use pcase

e1 |?| e2 ≡ pcase e1 & e2 of
n & ? => n

| ? & n => n

e1 |andalso| e2 ≡ pcase e1 & e2 of
false & ? => false

| ? & false => false
| true & true => true

e1 |orelse| e2 ≡ pcase e1 & e2 of
true & ? => true

| ? & true => true
| false & false => false
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Exceptions

Exceptions follow the sequential semantics.
the exception raised by an expression is precise and well-defined

fun f n = if n = 100 then raise Foo else ...
fun g n = if n = 100 then raise Goo else ...

(| f 100, g 100 |)
handle Foo => ... (* handled Foo *)

| Goo => ... (* unreachable *)

Requires a slightly more restrictive implementation
of the implicitly-threaded parallel constructs,
but the precise semantics is crucial for systems programming.
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Exceptions

Exceptions follow the sequential semantics.

Implementation uses compensation code
to propagate the correct exception.

can simplify compensation code with program analyses

[| ... raise Foo ..., ... raise Foo ... |]

Implementation cancels abandoned computations.
free computational resources devoted to computations

(| ... raise Foo ..., fact(100), fib(100) |)

Implicit Parallelism in Manticore



Exceptions

Exceptions follow the sequential semantics.

Implementation cancels abandoned computations.

fun f n = ... raise Foo ...
fun g n = ... raise Goo ...
fun h n = ... raise Hoo ...

let pval x = add (| f 200, g 200 |)
pval y = mul (| f 300, g 300 |)

in [| if h z then x + z else y * z | z in zs |]
end

Multiple forms of parallelism with cross-cutting concerns motivates
the need for a common, but flexible, runtime scheduling framework.
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Examples

Two final examples

Parallel Type-checking and Evaluation

Parallel Game Search
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Example: Parallel Type-checking and Evaluation

Simple programming language
type-check and evaluate in parallel
parallel type-checking
parallel evaluation
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Example: Parallel Type-checking and Evaluation

Types and expressions

datatype ty = NatTy | BoolTy | ArrowTy of ty * ty

datatype exp = Exp of loc * term
and term = NatTerm of int

| AddTerm of exp * exp
| BoolTerm of bool
| IfTerm of exp * exp * exp
| VarTerm of var
| LetTerm of var * exp * exp
| LamTerm of var * ty * exp
| AppTerm of exp * exp
| ...
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Example: Parallel Type-checking and Evaluation

Comparing types for equality

fun tyEq (ty1, ty2) =
case (ty1, ty2) of

(BoolTy, BoolTy) => true
| (NatTy, NatTy) => true
| (ArrowTy (ty1a, ty1r), ArrowTy (ty2a, ty2r)) =>

(pcase tyEq (ty1a, ty2a) & tyEq (ty1r, ty2r) of
false & ? => false

| ? & false => false
| true & true => true)

| _ => false
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Example: Parallel Type-checking and Evaluation

Comparing types for equality

fun tyEq (ty1, ty2) =
case (ty1, ty2) of

(BoolTy, BoolTy) => true
| (NatTy, NatTy) => true
| (ArrowTy (ty1a, ty1r), ArrowTy (ty2a, ty2r)) =>

tyEq (ty1a, ty2a) |andalso| tyEq (ty1r, ty2r)
| _ => false
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Example: Parallel Type-checking and Evaluation

Parallel type-checker
if well-typed, then report type
if ill-typed, then report one error

datatype ’a res = Ans of ’a | Err of loc
val typeOfExp : env * exp -> ty res
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Example: Parallel Type-checking and Evaluation

Parallel type-checker

fun typeOfExp (G, e as Exp (loc, term)) =
case term of

NatTerm _ => Ans NatTy
| AddTerm (e1, e2) =

let pval rty2 = typeOfExp (G, e2)
in

case typeOfExp (G, e1) of
Ans NatTy =>

(case rty2 of
Ans NatTy => Ans NatTy

| Ans _ => Err (locOf e2)
| Err loc => Err loc)

| Ans _ => Err (locOf e1)
| Err loc => Err loc

end

Implicit Parallelism in Manticore



Example: Parallel Type-checking and Evaluation

Parallel type-checker

| BoolTerm _ => Ans BoolTy
| IfTerm (e1, e2, e3) =

let pval rty2 = typeOfExp (G, e2)
pval rty3 = typeOfExp (G, e3)

in
case typeOfExp (G, e1) of

Ans BoolTy =>
(case (rty2, rty3) of

(Ans ty2, Ans ty3) =>
if tyEq (ty2, ty3)
then Ans ty2
else Err (locOf e)

| (Err loc, _) => Err loc
| (_, Err loc) => Err loc)

| Ans _ => Err (locOf e1)
| Err loc => Err loc

end
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Example: Parallel Type-checking and Evaluation

Parallel type-checker

| ApplyTerm (e1, e2) =
let pval rty2 = typeOfExp (G, e2)
in

case typeOfExp (G, e1) of
Ans (ArrowTy (ty11, ty12)) =>

(case rty2 of
Ans ty2 =>
if tyEq (ty2, ty11)
then Ans ty12
else Err (locOf e2)

| Err loc => Err loc)
| Ans _ => Err (locOf e1)
| Err loc => Err loc

end
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Example: Parallel Type-checking and Evaluation

Parallel type-checker

| VarTerm var =>
(case envLookup (G, var) of

NONE => Err (locOf e)
| SOME ty => Ans ty)

| LamTerm (var, ty, e) =>
(case typeOfExp (envExtend (G, (var, ty)), e) of

Ans ty’ => Ans (ArrowTy (ty, ty’))
| Err loc => Err loc)

No obvious parallelism, but representation of the environment
(e.g., as a balanced binary tree) may enable parallelism
in the envLookup and envExtend functions.
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Example: Parallel Type-checking and Evaluation

Parallel substitution

fun substExp (t, x, e as Exp (p, t’)) =
Exp (p, substTerm (t, x, t’))

and substTerm (t, x, t’) =
case t’ of

NumTerm n => NumTerm n
| AddTerm (e1, e2) =>

AddTerm (| substExp (t, x, e1),
substExp (t, x, e2) |)

| BoolTerm b => BoolTerm b
| IfTerm (e1, e2, e3)

IfTerm (| substExp (t, x, e1),
substExp (t, x, e2),
substExp (t, x, e3) |)

(* ... *)
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Example: Parallel Type-checking and Evaluation

Parallel evaluation

exception EvalError

fun evalExp (p, t) =
case t of

NumTerm n => NumTerm n
| AddTerm (e1, e2) =>

(pcase evalExp e1 & evalExp e2 of
NumTerm n1 & NumTerm n2 => NumTerm (n1 + n2)

| otherwise => raise EvalError)
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Example: Parallel Type-checking and Evaluation

Parallel evaluation

| IfTerm (e1, e2, e3) =>
let pval v2 = evalExp e2

pval v3 = evalExp e3
in

case evalExp e1 of
BoolTerm true => v2

| BoolTerm false => v3
| _ => raise EvalError

end

Abandoned branch is implicitly cancelled, even if it raises EvalError.
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Example: Parallel Type-checking and Evaluation

Parallel type-checking and evaluation

fun typedEval e : term res =
pcase typeOfExp (emptyEnv, e) & evalExp e of

Err loc & ? => Err loc
| Ans _ & v => Ans v

Evaluation is cancelled if type-checking returns Err.
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Example: Parallel Game Search

Construct a tic-tac-toe game tree using minimax

Represent players and boards

datatype player = X | O
type board = player option parray (* 9 elements *)

Represent a game tree as a rose tree

datatype ’a rose_tree = RoseTree of ’a * ’a rose_tree parray

(* 1 iff X has winning position *)
(* 0 iff tie *)
(* ~1 iff O has winning position *)
type ttt_game_tree = (board * int) rose_tree
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Example: Parallel Game Search

Construct a tic-tac-toe game tree using minimax
Generate the next boards

fun availPositions (b: board) : int parray =
[| i | s in b, i in [| 0 to 8 |] where isNone s |]

fun succBoards (b: board, p: player) : board parray =
[| mapP (fn j => if i = j then SOME p else b!j) [| 0 to 8 |]

| i in availPositions b |]

Generate the next boards

(* SOME 1 iff X wins *)
(* SOME 0 iff tie *)
(* SOME ~1 iff O wins *)
(* NONE iff incomplete *)
fun boardScore (b: board) : int option = ...
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Example: Parallel Game Search

Construct a tic-tac-toe game tree using minimax

fun maxP a = reduceP (fn (x, y) => max (x, y)) ~1 a
fun minP a = reduceP (fn (x, y) => min (x, y)) 1 a

fun treeScore (RoseTree (_, s)) = s

fun minimax (b: board, p: player) : ttt_game_tree =
case boardScore b of

SOME s => RoseTree ((b, s), [| |])
| NONE =>

let val ss = succBoards (b, p)
val ch = [| minimax (b, flipPlayer p) | b in ss |]
val chScores = [| treeScore t | t in ch |]

in
case p of

X => RoseTree ((b, maxP chScores), ch)
| O => RoseTree ((b, minP chScores), ch)

end
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Conclusion

Implicit-parallelism mechanisms in Manticore

simple mechanisms — by design!

light-weight syntactic hints of available parallelism
relieves programmer of orchestrating the computation

parallel-tuples, parallel-bindings, and parallel-cases
allow parallelism to be expressed in a familiar style

Next: Implementation of Manticore
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Part IV

Implementation of Manticore

Implementation of Manticore



Overview

Initial implementation of the Manticore system
consisting of a compiler and a runtime system
targetting x86-64 architecture under Linux and MacOS X

most of the parallel features implemented
current implementation efforts focused on testing and bug fixing

Significant aspect of the system is a runtime model designed to
support multiple scheduling policies in a common framework.
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Process Abstractions

Runtime model is based on heap-allocated first-class continuations
creating a continuation is fast and small
continuations are values; avoids race conditions in the scheduler

Runtime model has three distinct notions of process abstraction
Fibers correspond to unadorned flows of sequential control;

a suspended fiber is represented as a unit continuation.
Threads created by spawn and assigned unique thread id;

a thread may consist of multiple fibers
Virtual Processors (VProcs) correspond to a computation resource;

each VProc is hosted by its own pthread and assigned to
a physical core

Runtime maintains a dynamic binding between fibers and fiber-local
storage (FLS).
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Manticore Compiler

Compiler organized as a series of transformations between IRs:

Typed AST explicitly-typed, polymorphic, abstract-syntax tree
BOM direct-style, normalized, λ-calculus
CPS continuation-passing-style λ-calculus
CFG first-order control-flow graph

Front end Typed 
ASTSource Translate BOM Convert

Closure CFGCPS Codegen Asm
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AST Optimizations

AST — explicitly-typed, polymorphic, abstract-syntax tree

Compilation of pattern matching

Introduce compensation code for exceptions

Introduction of futures for implicitly-threaded parallelism

Some flattening of nested-data parallelism (AOS to SOA)
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BOM Intermediate Representation

BOM — direct-style, normalized, λ-calculus

First-class continuations with a binding form that reifies the current
continuation

Simplified datatypes with simple pattern matching
allow BOM code to be independent of datatype represenations

High-level operators, used to abstract over the implementation of
various higher-level operations (thread creation, message
passing, etc.)

rewriting rules for high-level operators to implement various
optimizations

Atomic operations (such as compare-and-swap (cas))
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BOM Continuations

The cont binding

let cont k x = e in body end

binds k to the first-class continuation

fn x => (throw k’ e)

where k’ is the continuation of the whole expression

Scope of k includes both the expression body and the expression e

k may be recursive
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BOM Continuations

Traditional callcc function:

fun callcc f = let cont k x = x in f k end

Create a fiber (unit continuation) from a function:

fun fiber f =
let

cont k () = ( f () ; @stop () )
in

k
end

where @stop returns control to the scheduler.
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BOM Optimizations

BOM — direct-style, normalized, λ-calculus

Standard functional-PL compiler optimizations
uncurrying, inlining, contraction

High-level operator expansion
BOM types and code

embedded in Manticore modules
loaded at compile time
introduced by translations

used to implement concurrency and parallel features
used to import and implement scheduling code
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HLOp Expansion

Manticore source (AST):

spawn e

Translated to (BOM):

let fun f_thnk (z: unit) : unit = e’
val tid : tid = @spawn (f_thnk)

in tid
end

Expanded with (BOM):

fun @spawn (f : unit -> unit) : tid =
let cont fiber () = ( f () ; @stop () )

val tid : tid = @new_tid ()
val _ : unit = @enq_with_tid (tid, fiber)

in tid
end
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Garbage Collection Overview

Goal: minimize synchronization and communication b/w VProcs

GC is a combination of the Appel semi-generational collector
and the Doligez-Leroy-Gonthier parallel collector

Minor GCs are completely asynchronous

Major GCs are mostly asynchronous

Global GCs are parallel stop-the-world
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Heap Architecture

Goal: minimize synchronization and communication b/w VProcs

VProc

VProc state

Local Heap

VProc

VProc state

Local Heap

VProc

VProc state

Local Heap

Global Heap

Invariant: no pointers from global heap to local heaps
Invariant: no pointers from one local heap to another

Implementation of Manticore



Minor Garbage Collections

Minor collections use the Appel semi-generational collector.
Allows data to age in the local heap

VProc

VProc state

Local Heap

Old data

Full nursery

VProc

VProc state

Local Heap

Old data

Garbage

Young data

VProc

VProc state

Local Heap

Old data

Empty nursery

Young data

Copying
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Major Garbage Collections

Major collections promote older data to the global heap

VProc

VProc state

Local Heap

Empty nursery

Young data

VProc

VProc state

Local Heap

Old data

Empty nursery

Young data

VProc

VProc state

Local Heap

Garbage

Empty nursery

Young data

Global Heap Chunk Global Heap Chunk Global Heap Chunk

Copying

Copying
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Global Garbage Collections

Global collector is a simple parallel collector

All VProcs start by doing a major colletion

Each VProc does a copy collection in the global heap,
using its local heap and registers as roots

Forward pointers are set using atomic CAS instructions

No load balancing
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Nested Schedulers

Coordinating heterogeneous parallelism with nested schedulers.

User Interface

sound

keyboard

mouse

Network

server

player 2

player 3

Physics Simulation

Particle Systems
(rain, fog, clouds)

Artificial Intelligence

Flight Simulator

Graphics
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Schedulers

Decide what work to do and when and where to do it.

Many scheduling techniques:
round-robin thread scheduler
interactive-threads scheduler, engines, nested engines,
workcrews/gangs, work-stealing, lazy-task creation
cancellation
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Infrastructure for Nested Schedulers

Provide an infrastructure
core mechanisms for building schedulers
express all of the previous policies

Support for nested schedulers
multiple scheduling policies in one application
hierarchies of parallel compuations
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Scheduler Actions

A scheduler is represented as a function (called an action)
that implements scheduling logic.

An action is executed in response to signals:
STOP — the executing fiber has terminated
PREEMPT — the VProc has preempted the executing fiber
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Virtual Processors (VProcs)

A VProc has a ready queue, a stack of scheduler actions, a signal
mask, local state, and a currently executing fiber.

ready queue

scheduler stack running fiber

signal mask local state

Infrastructure provides primitive operations
to manipulate the state of a VProc.
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Scheduler Operations: Fiber-local storage

Dynamically-bound per-fiber storage
part of vproc local state
access to scheduler data structures
thread IDs
other per-fiber information

type fls
val newFls : unit -> fls
val setFls : fls -> unit
val getFls : unit -> fls

type ’a tag
val getFromFls : fls * ’a tag -> ’a option ref
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Scheduler Operations: Scheduling Queues

One logical scheduling queue per vproc

Two physical scheduling queues per vproc
local queue

no synchronization overhead
only accessed by local vproc

global queue
synchronization by mutex lock
accessed by local and other vprocs

Fibers in global queue moved to local queue at preemption

val enq : fiber -> unit
val deq : unit -> fiber
val enqOnVP : vproc * fiber -> unit
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Scheduler Operations: Signal Mask

Operations for explicitly masking and unmasking preemption

val mask : unit -> unit
val unmask : unit -> unit
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Scheduler Operations: run

run act f — pushes the action onto the action stack
and starts executing the fiber

ready queue

scheduler stack running fiber

ready queue

scheduler stack running fiber

act

act’
E[ run act f ] throw f ()

run

act’

signal mask signal masklocal state local state
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Scheduler Operations: PREEMPT

preempt — captures the executing computation,
pops an action from the stack, and delivers a preemption signal.

ready queue

scheduler stack running fiber

ready queue

scheduler stack running fiber

act

act’
f act (PREEMPT f)

preempt

act’

signal mask signal masklocal state local state
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Scheduler Operations: forward

forward sig — pops an action from the stack
and delivers the signal.

signal mask
ready queue

scheduler stack running fiber

signal mask
ready queue

scheduler stack running fiber

act

act’
E[forward sgn] act sgn

forward
act’

local state local state
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VProc Operations

A scheduler action performs scheduler specific duties,
and concludes either by forwarding a signal up the stack
or by pushing a new scheduler onto the stack and running a fiber.

ready queue

scheduler stack running fiber

ready queue

scheduler stack running fiber

act

act’
E[ run act f ] throw f ()

run

act’

signal mask signal masklocal state local state

ready queue

scheduler stack running fiber

ready queue

scheduler stack running fiber

act

act’
f act (PREEMPT f)

preempt

act’

signal mask signal masklocal state local state

signal mask
ready queue

scheduler stack running fiber

signal mask
ready queue

scheduler stack running fiber

act

act’
E[forward sgn] act sgn

forward
act’

local state local state
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Derived VProc Operations

Fiber exit function:

fun stop () = forward STOP

Fiber yield function:

fun preempt k = forward (PREEMPT k)
fun yield () =
let cont k x = x
in preempt k
end

Fiber atomic yield function

fun atomicYield () = ( yield () ; mask () )

used to pass preemptions up the action stack
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Derived VProc Operations

Fiber migration:

fun migrateTo vp =
let val fls = getFls ()

cont k x = ( set Fls fls ; x )
in

enqOnVP (vp, k) ;
stop ()

end

migrated computation takes its fiber-local storage
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Default Scheduler

Simple round-robin scheduling policy for fibers in the scheduling queue

cont dispatch () = run (roundRobin, deq ())
and roundRobin sgn =
case sgn of

STOP => dispatch ()
| PREEMPT k =>

let val fls = getFls ()
cont k’ () = ( setFls fls ; throw k () )

in
enq k’ ;
dispatch ()

end

Each vproc executes an instance of this scheduler
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Future Directions

Address costs with a combination of static analyses and dynamic
policies

Neither static nor dynamic information alone will maximize
performance on parallel hardware
Exclusively static information is necessarily conservative and
misses opportunities for parallelism that are apparent dynamically
Exclusively dynamic information imposes unacceptable overhead
to maintain information that may have been available statically
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Future Directions

Scheduling (migration) costs
“hot” cache lines are not migrated along with a thread;
the migrated thread resumes execution with a “cold” cache.
migrating a thread to a remote VProc requires promoting the
thread (and any object reachable from the thread).
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Future Directions

Addressing scheduling (migration) costs
static promotion analysis — when should data be allocated in the
global heap
static reachability analysis — estimate the amount of (local) data
reachable from each program point, encode result into
representation of continuations
dynamic migration policies — use result of static reachability
analysis as a cheap, dynamic estimation of the cost of migrating a
thread
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Future Directions

Scheduling costs
trade off between locality and load balancing
sending a message to a remote VProc requires promoting the
message (and any object reachable from the message).
setup and teardown of schedulers for implicitly threaded
parallelism
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Future Directions

Addressing scheduling costs
dynamic and static thread characterization — classify threads (or
portions of threads) as interactive or computational
static communication topology analysis — specialize the
communication and scheduling of threads
static scheduler analysis — identify regions of implicitly threaded
parallelism that can share setup and teardown
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Future Directions

Implicitly threaded parallelism costs
flattening everywhere (i.e., all types and all expressions) suitable
for wide vector hardware, but introduces overheads on non-vector
hardware
preserving the sequential semantics of exceptions and
communications introduces compensation code
granularity of parallel work must exceed the overhead of
coordinating the parallel execution
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Future Directions

Addressing implicitly threaded parallelism costs
selective flattening transformation — bias flattening towards
static effect analysis — when may a function raise an exception or
perform a communication
dynamic effect inspection — encode effect in closure
representation, dispatch to more efficient parallel code in pure
case
top-down or bottom-up cutoff — switch over to a sequential
code-path when exceeding a threshhold (e.g., trAdd)
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Conclusion

Implementation of Manticore
???
???
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Conclusion
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