
27-5-2009

1

defining semantics for
complex systems
part 2: semantics

Pieter Koopman, Rinus Plasmeijer

Radboud University Nijmegen

The Netherlands

syntax & semantics

�the syntax tells what is allowed to write in a
(programming) language
exp = var | num | exp + exp | exp - exp | exp * exp

var = char alpha*

num= [-] digit+

�e.g. x + 32 is allowed
fac 5 is not allowed

�the semantics tells what valid sentences mean
�we are not interested in the semantics of invalid
sentences (not error, undefined, ..)

� if we know that x # 10 (x has the value 10),
the expression x + 4*8 has value 42

�fac 5 has no value in this language
2

CEFP 2009: semantics

different kinds of semantics

�operational semantics:
how has the value of a sentence to be computed
�hides details like storage allocation

�structural operational semantics (small step)
focus on individual computation steps

�natural semantics (big step)
hides more details, computes values in one go

�denotational semantics:
gives the value of constructs without worrying how
it has to be obtained

�algebraic semantics:
gives algebraic properties of sentences
�not necessarily complete

CEFP 2009: semantics

3

semantics for imperative language

�consider the very simple language While
v a variable

n a number

a = v | n | a + a | a - a | a * a

b = TRUE | FALSE | a = a | a < a | ¬ b | b && b

S = x := a | skip | S ; S | if b S else S | while b S

�for instance a statement to compute factorial of 4:

x := 4;

y := 1;

while (x>1)

(y := y*x;

x := x-1

)

CEFP 2009: semantics

4

27-5-2009

2

the state in semantics

�in order to compute values we need to know the
values of variables

�we store values in a function called state:
state : Variable → Integer

�the state can be updated:
[x # v] s is the state that maps variable x to
value v and all other variables to the value in s:
([x # v] s) x = v

([x # v] s) y = s y, if x ≠ y

CEFP 2009: semantics

5

the semantics of arithmetic expressions
�use Scott brackets, P and T,

to indicate a pattern math on syntax elements in
an operational semantics

A : a → State → Number

A P n T s = N P n T

A P v T s = s v

A P a1 + a2 T s = A P a1 T s + A P a2 T s

A P a1 - a2 T s = A P a1 T s - A P a2 T s

A P a1 * a2 T s = A P a1 T s × A P a2 T s

CEFP 2009: semantics

6

syntax mathematical operation

number

variable

executable operational semantics

�for a functional programmer:
A : a → State → Number

A P n T s = N P n T

A P v T s = s v

A P a1 + a2 T s = A P a1 T s + A P a2 T s

A P a1 - a2 T s = A P a1 T s - A P a2 T s

A P a1 * a2 T s = A P a1 T s × A P a2 T s

CEFP 2009: semantics

7

a function

pattern match: hence
a data structure

CEFP 2009: semantics

8

representation of expressions

the grammar

a

= v

| n

| a + a

| a - a

| a * a

the data type

:: AExpr

= Int Int

| Var Var

| (+.) infixl 6 AExpr AExpr

| (-.) infixl 6 AExpr AExpr

| (*.) infixl 7 AExpr AExpr

:: Var :== String

dot to avoid
name conflicts

infix constructor
with binding power

27-5-2009

3

CEFP 2009: semantics

9

semantic functions
for arithmetic expressions

Scott brackets

A : a → State → Number

A P n T s = N P n T

A P v T s = s v

A P a1 + a2 T s

= A P a1 T s + A P a2 T s

A P a1 - a2 T s

= A P a1 T s - A P a2 T s

A P a1 * a2 T s

= A P a1 T s × A P a2 T s

Clean

A :: AExpr State → Int

A (Int i) s = i

A (Var v) s = s v

A (x +. y) s = A x s + A y s

A (x -. y) s = A x s - A y s

A (x *. y) s = A x s * A y s

see Nielson & Nielson 1992
only the syntax is improved

main idea

�semantics ≈ interpreter that focuses on
clarity rather than efficiency

CEFP 2009: semantics

11

evaluating the FPL approach

disadvantages

• less abstract/
mathematical

• harder to reason about

• nontermination is a
problem

• semantics inherits from
embedding programming
language

advantage

• compiler checks proper use
of identifiers and types

• we can execute the
semantics
• simulate for validation

• model based testing of
properties

• nontermination always
requires separate attention

• the price to be paid is
rather small

CEFP 2009: semantics

12

Boolean expressions

grammar/data type

:: BExpr

= TRUE

| FALSE

| (=.) infix 4 AExpr AExpr

| (<.) infix 4 AExpr AExpr

| ~. BExpr

| (&&.) infixr 3 BExpr BExpr

semantic function

B :: BExpr State → Bool

B TRUE s = True

B FALSE s = False

B (x =. y) s
= A x s == A y s

B (x <. y) s
= A x s < A y s

B (~. exp) s
= not (B exp s)

B (x &&. y) s
= B x s && B y s

27-5-2009

4

semantic domains

�in this way the semantics of While inherits the
numbers and Booleans of Clean

�if this would be undesirable we can always
introduce a new type and associated operators

:: TruthVal = TT | FF

B :: BExpr State → Bool

B TRUE s = True

B FALSE s = False

B (x &&. y) s
= B x env && B y env

..

B :: BExpr State → TruthVal

B TRUE s = TT

B FALSE s = FF

B (x &&. y) s

| B x env == TT && B y env == TT

= TT

= FF

.. better: define an instance
of && for TruthVal

the state

�(at least) two possibilities
�data structure, e.g. [(Var,Int)]

• needs separate lookup and store functions
• easy to compare states

�function, :: State :== Var → Int

• close to the mathematical semantics
• hard to compare states

�we will use the function approach
emptyState :: State

emptyState = λ x → 0

(#) infix :: Var Int → State → State

(#) v i = λ env x → if (x==v) i (env x)

CEFP 2009: semantics

14

CEFP 2009: semantics

15

statements in While

syntax

S

= x := a

| S ; S

| skip

| if b S else S

| while b S

data structure

:: Stmt

= (:=.) infix 2 Var AExpr

| (:.) infixr 1 Stmt Stmt

| Skip

| IF BExpr Stmt Stmt

| While BExpr Stmt

operational semantics of statements

�big step operational semantics:
�describe how the result must be calculated

� in one go to the result: a new state

ns :: Stmt State → State

ns (v :=. e) s = (v # A e s) s

ns (s1 :. s2) s = ns s2 (ns s1 s)

ns Skip s = s

ns (IF c t e) s | B c s = ns t s

ns (IF c t e) s | ~(B c s) = ns e s

ns (While c b) s | B c s = ns (While c b) (ns b s)

ns (While c b) s | ~(B c s) = s

CEFP 2009: semantics

16

note: alternatives are
mutual exclusive, can be
placed in any order

27-5-2009

5

how the type system helps us

�suppose we would write
ns :: Stmt State → State

ns (v :=. e) s = (v # e) s

ns (s1 :. s2) s = ns s2 (ns s1 s)

ns Skip s = s

....

�what is wrong with this?

�the type system says:
Type error [exprSem.icl,67,ns]:"argument 2 of |->"
cannot unify types: Int AExpr

�we should have written:
ns (v :=. e) s = (v # A e s) s

CEFP 2009: semantics

17

this models lazy evaluation.
It requires a state of type:

Var → AExpr

CEFP 2009: semantics

18

mathematical notation of semantic
natural (big step) semantics

Scott brackets

NS P S1 ; S2 T e

= NS P S2 T (NS P S1 T e)

or
NS P S1 ; S2 T

= NS P S2 T . NS P S1 T

horizontals bars

if the premises above the
bar holds, the conclusion
below it can be derived

<S1, e> →e1 <S2, e1> →e3

<S1;S2, e> →e3

using
<S,e>→ e1 ≡ NS PSTe=e1

these things do
not have an order

using Currying and
function composition

a small step operation semantics
structural operational semantics

�one step a time
:: Config = Final State | Inter Stmt State

sos1 :: Stmt State -> Config

sos1 (v :=. e) s = Final ((v |-> A e s) s)

sos1 Skip s = Final s

sos1 (x :. y) s

= case sos1 x s of

Final t = Inter y t

Inter z t = Inter (z :. y) t

sos1 (IF c t e) s | B c s = Inter t s

sos1 (IF c t e) s | ~(B c s) = Inter e s

sos1 (While c b) s = Inter (IF c (b :. While c b) Skip) s

really different

structural operational semantics 2

�trace obtained by applying sos1 until a final state
sosTrace :: Config -> [Config]

sosTrace c=:(Final _) = [c]

sosTrace c=:(Inter ss s) = [c: sosTrace (sos1 ss s)]

�big step by selecting the last state of this trace
sos :: Stmt State -> State

sos s env = env1

where (Final env1) = last (sosTrace (Inter s env))

CEFP 2009: semantics

20

27-5-2009

6

denotational semantics

�we are interested in the final state,
not how it is obtained

ds :: Stmt State -> State

ds (v :=. a) s = (v |-> A a s) s

ds Skip s = s

ds (s1 :. s2) s = ds s2 (ds s1 s)

ds (IF c t e) s = if (B c s) (ds t s) (ds e s)

ds (While c stmt) s = fix f s

where f g s = if (B c s) (g (ds stmt s)) s

fix :: (a -> a) -> a

fix f = f (fix f)

CEFP 2009: semantics

21

main differences of the various semantics

�handling of the while-statement:
ns :: Stmt State -> State

ns (While c b) s | B c s = ns (While c b) (ns b s)

ns (While c b) s | ~(B c s) = s

sos1 :: Stmt State -> Config

sos1 (While c b) s = Inter (IF c (b :. While c b) Skip) s

ds :: Stmt State -> State

ds (While c stmt) s = fix f s

where f g s = if (B c s) (g (ds stmt s)) s

CEFP 2009: semantics

22

simulation

�iData makes a syntax directed
editor for statements

�any of the semantics can
execute this program

�we scan the program for used
variables and display their value

�useful for small experiments!

�demo

CEFP 2009: semantics

23

testing properties

�Clean as its own model-based test tool: Gast

�we use this to test properties of the semantics
�thousands of tests in a second

�easy to repeat after each change

�this improves the confidence in the correctness

�if we have gathered enough confidence we can give
a mathematical prove of these properties
�even with a prove assistant this is usually much work

CEFP 2009: semantics

24

27-5-2009

7

some properties

propFac :: (Stmt State -> State) -> Bool

propFac sem = sem facStmt emptyState "y" == 24

propFacAll :: Property

propFacAll = propFac For [ns, ds, sos]

prop :: Stmt -> Bool

prop s = eqState (ns s empty) (ds s empty) (allvars s)

CEFP 2009: semantics

25

∀ sem

∀ sem ∈ { ns, ds, sos }

checks equality for given variables

generate only terminating statements

∀ statement

wrap up: main idea

�semantics ≈ interpreter that focuses on
clarity rather than efficiency

lessons learned

�semantics assigns meaning to languages
�natural semantics:
shows how the value is computed in big steps

�structural operational semantics: small steps

�denotational semantics: concentrate on the value

�with very little effort this can be expressed
in a modern functional programming language

�advantages:
�checks use of identifiers and types

�simulate language for validation

�model based testing of properties

�warning: there is much more in semantics

CEFP 2009: semantics

27

exercise

�purpose: get acquired with iTasks and this style of
semantics

�see http://www.cs.ru.nl/~pieter/cefp09/
�exercise as pdf

�Clean files for parts 5 and 6.

CEFP 2009: semantics

28

