defining semantics for
 complex systems
 part 2: semantics

Pieter Koopman, Rinus Plasmeijer
Radboud University Nijmegen
The Netherlands

semantics for imperative language

- operational semantics:
how has the value of a sentence to be computed
> hides details like storage allocation
> structural operational semantics (small step) focus on individual computation steps
> natural semantics (big step)
hides more details, computes values in one go
- denotational semantics:
gives the value of constructs without worrying how it has to be obtained
- algebraic semantics:
gives algebraic properties of sentences
> not necessarily complete

syntax \& semantics

-the syntax tells what is allowed to write in a (programming) language
$\exp =$ var | num | exp $+\exp |\exp -\exp | \exp * \exp$ var = char alpha* num $=[-]$ digit ${ }^{+}$
>e.g. $x+32$ is allowed
fac 5 is not allowed
-the semantics tells what valid sentences mean
$>$ we are not interested in the semantics of invalid sentences (not error, undefined, ..)
$>$ if we know that $\mathrm{x} \mapsto 10$ (x has the value 10),
the expression $x+4 * 8$ has value 42
$>$ fac 5 has no value in this language
CEFP 2009: semantics
tac has no value in this language

- consider the very simple language While
\checkmark a variable
n a number
$a=v|n| a+a|a-a| a * a$
$\mathrm{b}=$ TRUE \mid FALSE $|\mathrm{a}=\mathrm{a}| \mathrm{a}<\mathrm{a}|\neg \mathrm{b}| \mathrm{b} \& \& \mathrm{~b}$
$S=x:=a|\operatorname{skip}| S ; S \mid$ if $b S$ else $S \mid$ while $b S$
$>$ for instance a statement to compute factorial of 4:
$x:=4 ;$
$y:=1$;
while ($x>1$)
($y:=y^{*}$;
$x:=x-1$
)

the state in semantics

- in order to compute values we need to know the values of variables
-we store values in a function called state: state : Variable \rightarrow Integer
-the state can be updated:
[$\mathrm{x} \mapsto \mathrm{v}$] s is the state that maps variable x to value v and all other variables to the value in s :
$([x \mapsto v] s) x=v$
([x↔v]s) $y=s y$, if $x \neq y$
essions
the semantics of arithmetic expressions -use Scott brackets, I and I,
to indicate a pattern math on syntax elements in an operational semantics

CEFP 2009: semantics
representation of expressions
the grammar the data type
a

Scott brackets	Clean
$\mathcal{A}: \mathrm{a} \rightarrow$ State \rightarrow Number	A : : AExpr State \rightarrow Int
$\mathcal{A} \llbracket \mathrm{n} \rrbracket \mathrm{s}=\mathcal{N} \llbracket \mathrm{n} \rrbracket$	A (Int i) $s=i$
$\mathcal{A} \llbracket \vee \rrbracket \mathrm{s}=\mathrm{s} \vee$	A (Varv) $s=s v$
$\mathcal{A} \llbracket \mathrm{a}_{1}+\mathrm{a}_{2} \rrbracket \mathrm{~s}$	$A(x+y) s=A x s+A y s$
$=\mathcal{A} \llbracket \mathrm{a}_{1} \rrbracket \mathrm{~s}+\mathcal{A} \llbracket \mathrm{a}_{2} \rrbracket \mathrm{~s}$	$A(x-y) s=A x s-A y s$
$\mathcal{A} \llbracket \mathrm{a}_{1}-\mathrm{a}_{2} \rrbracket \mathrm{~s}$	$A\left(x^{*} \cdot y\right) s=A x s{ }^{*} A y s$
$=\mathcal{A} \llbracket a_{1} \rrbracket s-\mathcal{A} \llbracket a_{2} \rrbracket s$	
$\mathcal{A} \llbracket \mathrm{a}_{1} * \mathrm{a}_{2} \rrbracket \mathrm{~s}$	Nielson \& Nielson 19
$=\mathcal{A} \llbracket a_{1} \rrbracket \mathrm{~s} \times \mathcal{A} \llbracket \mathrm{a}_{2} \rrbracket \mathrm{~s}$	only the syntax is improved

- semantics \approx interpreter that focuses on clarity rather than efficiency

disadvantages

- less abstract/ mathematical
- harder to reason about
- nontermination is a problem
- semantics inherits from embedding programming language

advantage

- compiler checks proper use of identifiers and types
- we can execute the semantics
- simulate for validation model based testing of properties
- nontermination always requires separate attention
- the price to be paid is rather small

semantic domains

- in this way the semantics of While inherits the numbers and Booleans of Clean
- if this would be undesirable we can always introduce a new type and associated operators
:: TruthVal = TT | FF

B : : BExpr State \rightarrow Bool
B TRUE $\quad s=$ True
B FALSE $s=$ False
B ($x \& \& . y$) s
= B x env \&\& B y env
B : : BExpr State \rightarrow TruthVal
B TRUE $\quad s=T T$
B FALSE $\quad s=F F$
$B(x \& \& . y) s$
| $B x e n v==T T \& B y$ env $==T T$ $=T$ $=\mathrm{FF}$
better: define an instance of $\& \&$ for TruthVal

the state

-(at least) two possibilities
$>$ data structure, e.g. [(Var,Int)]

- needs separate lookup and store functions
- easy to compare states
$>$ function, :: State $:==$ Var \rightarrow Int
- close to the mathematical semantics
- hard to compare states
-we will use the function approach
emptyState :: State
emptyState $=\lambda x \rightarrow 0$
(\mapsto) infix $::$ Var Int \rightarrow State \rightarrow State
$(\mapsto) v i=\lambda$ env $x \rightarrow$ if $(x==v) i(e n v x)$

statements in While							
```syntax S = x:= a \| S;S	skip	if b S else S	while b S```	```data structure :: Stmt = (:=.) infix 2 Var AExpr \| (:.) infixr 1 Stmt Stmt	Skip	IF BExpr Stmt Stmt	While BExpr Stmt```

how the type system helps us

- suppose we would write
ns :: Stmt State $\rightarrow$ State
ns $(v:=. e) \quad s=(v \mapsto e) s$
this models lazy evaluation.
It requires a state of type:
ns ( $\mathrm{s} 1: . \mathrm{s} 2$ ) $\mathrm{s}=\mathrm{ns} \mathrm{s} 2$ ( ns s 1 s )
ns Skip $\quad s=s$
- what is wrong with this?
-the type system says:
Type error [exprSem.icl,67,ns]:"argument 2 of |->" cannot unify types: Int AExpr
- we should have written:
ns (v:=.e) $s=(v \mapsto A e s) s$

CEFP 2009: semantics
mathematical notation of semantic natural (big step) semantics

Scott brackets horizontals bars
$\mathcal{N S} \llbracket \mathrm{S}_{1} ; \mathrm{S}_{2} \rrbracket \mathrm{e}$
$=\mathcal{N S} \llbracket \mathrm{S}_{2} \rrbracket\left(\mathcal{N S} \llbracket \mathrm{~S}_{1} \rrbracket e\right)$
or
$\mathcal{N S} \llbracket \mathrm{S}_{1} ; \mathrm{S}_{2} \rrbracket$
$=\mathcal{N S} \llbracket \mathrm{S}_{2} \rrbracket \cdot \mathcal{N S} \llbracket \mathrm{~S}_{1} \rrbracket$
using Currying and
function composition
these things do
not have an order
if the premises above the bar holds, the conclusion below it can be derived

$$
<\mathrm{S}_{1}, \mathrm{e}>\rightarrow \mathrm{e}_{1}<\mathrm{S}_{2}, \mathrm{e}_{1}>\rightarrow \mathrm{e}_{3}
$$

$$
\left\langle S_{1} ; S_{2}, e>\rightarrow e_{3}\right.
$$

using
$\langle\mathrm{S}, \mathrm{e}\rangle \rightarrow \mathrm{e}_{1} \equiv \mathcal{N S} \llbracket \mathrm{~S} \rrbracket \mathrm{e}=\mathrm{e}_{1}$

## - one step a time

:: Config = Final State \| Inter Stmt State
sos1 :: Stmt State -> Config
$\operatorname{sos} 1(v:=. e) s=$ Final $((v \mid->A e s) s)$
sos1 Skip $\quad s=$ Final $s$
sos1 (x:. y) s
$=$ case $\operatorname{sos} 1 \times$ of
Final $t=$ Inter $y t$
Inter $\mathrm{z} \mathrm{t}=$ Inter ( $\mathrm{z}: . \mathrm{y}$ ) t
sos1 (IF cte) s| Bcs = Intert s sos1 (IF cte) $s \mid \sim(B \subset s)=$ Inter e $s$

sos1 (While c b) s=Inter (IF c (b:. While c b) Skip) s
structural operational semantics 2

- trace obtained by applying sos1 until a final state
sosTrace :: Config -> [Config]
sosTrace c=:(Final_) = [c]
sosTrace $c=:($ Inter ss s) $=[\mathrm{c}$ : sosTrace (sos1 ss s)]
-big step by selecting the last state of this trace
sos :: Stmt State -> State
sos s env = env1
where (Final env1) = last (sosTrace (Inter s env))

main differences of the various semantics
- handling of the while-statement:
ns :: Stmt State -> State

ns (While cb) $s \mid \sim(B c s)=s$
sos 1 :: Stmt State -> Config
sos1 (While cb) $s=\operatorname{Inter}(\operatorname{IF} c(b:$. While c b) Skip) s
ds :: Stmt State -> State
ds (While c stmt) $s=$ fix $f s$
where $\mathrm{fg} \mathrm{s}=\mathrm{if}(\mathrm{B} \mathrm{c} \mathrm{s})(\mathrm{g}(\mathrm{ds}$ stmt s$)$ ) s

- iData makes a syntax directed		
editor for statements	:=.	
	$\times$	
- any of the semantics can	Int	
execute this program	:=.	
- we scan the program for used	y	
variables and display their value	*.	
	Var	
-useful for small experiments!	$\times$	
	Int	
	7	
	compute	
- demo	Used variables:	
	V 42	

## lessons learned

- semantics assigns meaning to languages
> natural semantics:
shows how the value is computed in big steps
$>$ structural operational semantics: small steps
$>$ denotational semantics: concentrate on the value


CEFP 2009: semantics

## exercise

- purpose: get acquired with iTasks and this style of semantics
-see http://www.cs.ru.nl/~pieter/cefp09/
> exercise as pdf
$>$ Clean files for parts 5 and 6 .
- with very little effort this can be expressed
in a modern functional programming language
- advantages:
$>$ checks use of identifiers and types
$>$ simulate language for validation
> model based testing of properties
- warning: there is much more in semantics


## wrap up: main idea

-semantics $\approx$ interpreter that focuses on clarity rather than efficiency
$\qquad$

