defining semantics for
complex systems
part 3: iTask semantics

Pieter Koopman, Rinus Plasmeijer

Radboud University Nijmegen
The Netherlands

iTasks are wonderful

=workflow management systems supports and guides
(administrative) tasks of humans and computers
» entering data, approving transactions, ..
*the iTasks system is a combinator library to
> specify workflows
> execute tasks using a multi user web-interface
»distinguishing features of the iTask system
» data dependent tasks
» dynamic task creation and adaptation
*iTasks are in the Clean distribution
> require generics, dynamics, iData and a little uniqueness

primitive tasks

*refurne.g. return 1

> returns the given value
7

. k
=editTask e.g. editTask "ok" 7 Lo |
> allows to edit a value until you press the button

*buttonTask e.g. buttonTask "ok" (return 5)

ok
>actually for every task t:
buttonTask s t = editTask s Void >>=_ -> t

CEFP 2009: iTask semantics

compose task: choose a task

taskl :: Task Int
taskl = buttonTask "default" (return 1)
-||- editTask "done" 42
@ Refresh task

*iTask-systems generates a

web-interface for task 42
=-||- is or-operator for tasks default | | done |
=task is finished if either

» the user presses the default button, or

» presses the done button in the editor
(-11-) infixr 3 :: (Task a) (Task a) -> Task a

30-5-2009

compose task: tasks in parallel

task2 :: Task (String, Int)
task2 = editTask "string" "u" -&&- editTask "int" 2

i Refresh task

hello FP students in Kormarnol 42
string int

=-&&- is the and-operator
=task2 is finished if both
> the user presses the string button, and
> presses the int button
(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a, b)

compose task: sequence of tasks

& Refresh task
task3 :: Real -> Task Real

taSk3 X 1000 Forint = 3.74531835205992 euro
= [Text (toString x + 1000
" Forint =" + _ampute |

toString (x * exchange_rate) + " euro"), BrTag []]
?>> editTask "compute" x

>>= task3 a recursive task

»>>= is the monadic bind-operator

» first do the task on the left, if that is finished

» function on the right generates the next task
(>>=) infixl 1 :: (Task @) (a -> Task b) -> Task b

data dependent

bind enables data dependency

*the bind operator, >>=, gives the power to create
data dependent tasks

task4 :: Task [Int]
task4
=[Text "number of bids?"]
?>> editTask "go" 2
>>=\n.if (n<1 || n>10)
([Text "between 1 and 10!"] ?>> task4)
(andTasks [("bid",editTask "ok" 1)
\\i<-[1..n]
D

CEFP 2009: iTask semantics

some semantic questions about iTasks

taskl = buttonTask "default" (return 1)
-||- editTask "done" 42

*will the user be able to use the default button as
soon as she starts editing the value 42?

*is the expression s -||- t equivalent to t -||- s?
*is the expression s -&&- t equivalent to t -&&- s?

swhat is the value of return 0 -||- return 42 ?

30-5-2009

look at the definition of combinators

allTasksCond :: IString !(TasksToShow a) !(FinishPred a) ![LabeledTask a] -> Task [a] | iData a
allTasksCond label chooser pred taskCollection
= mkTask "andTasksCond" (doandTasks chooser taskCollection)
where
lengthlta * * ot oo . X
doandTa mkTask :: !String !(Task a) -> (Task a) | iCreateAndPrint a
doandTa MKkTask taskname mytask = mkTaskNoInc taskname mytask o incTaskd
((alist,

mkTaskNolInc :: IString !(Task a) -> (Task a) | iCreateAndPrizg
| finishec mkTaskNoInc taskname mytask = mkTaskNoInc

I predal \here
select]

{
E(S:;Z | not activated = (g

(val,tst=:{activated,trace})
= (alist,4 # tst = {tst & tasknr =4 ‘\0
| isNothing trace || ta \ﬂo'\‘

PertTrace activated tasknr userld options taskname
(printToString val%(0,30)) (fromJust trace))})

where
show
show
#(a
(a
=([c

nl=BT []}

= and many more (generic) functions
(taskname,task) = taskCollection!!ctasknr
(a,tst=:{activated = adone,html=html}) = ..

why are the combinators so complicated?

»the definition of combinators does not give a quick
answer to questions about the semantics

=combinators have several /inferdependent duties

» produce html-code for the web interface displaying the
current state of the task for each worker

> handle inputs from the web, update task expression
»interface to files and databases

» multi-user

» client/server

> ..

*due to the large number of related jobs it is
inevitable that the combinators are complicated

a solution

*in order fo answer the semantic questions we
define an operational semantics for iTasks
*in addition we want:
> understand the system we are developing
* guide decisions in the desigh and development
» explain the behaviour o other people
» reason about iTasks

> use it as specification in model-based testing of the
implementation of the iTask system

* this connects the semantics and the implementation

how to define such a semantics ?

*it is kind of standard to define such a semantics

using Scott brackets or horizontal bars
*however, such a specification is

» hard to get correct and consistent

» hard to validate

» not suited for model-based testing of the system
*we use a functional programming language as

carrier for the specification

> language implementation checks types

» simulation to validate the semantics

» model-based test of the semantics

» suited for model-based testing of the real system

30-5-2009

a semantics for iTasks

*in order to reason about iTasks we define a
simplified model of iTasks
> based on a data type instead of functions

* sequence operator contains function to guarantee enough
expressive power (monadic bind)

> some simplifications:

* only basic iTask combinators

* tasks can only handle a fixed number of types
> concentrate first on event handling

* ignore interface generation (HTML)

* use a model of the world rather than real i/o

CEFP 2009: iTask semantics

advantages of a data structure for tasks

*in the semantics we can look at the structure of
the task

»we can inspect the task to see what events are
enabled

*we can even change the task if desired

there is one exception
*in the bind operator we use a real function to
maintain the expressive power
:: ITask = >>-infixl 1 ID ITask (Val — ITask)
[..

the data type for iTasks

=the type ITask mimics Task a: g only basic values
:: ITask ,

= EditTask ID String
| .]l. infixr 3 ITask ITask
| .&&.infixr 4 ITask ITask
| >>-infixl 1 ID ITask|(Val — ITask)

| Return Val\
:: Val Pair Val Val | BVal Bval a monad

11 Bval String String | Int Int | VOID

real function
for sequences

ButtonTask id name task
:== EditTask id name VOID >>- A x — task

one-fo-one mapping from Task a to ITask

*we had the real iTask task

taskl :: Task Int

taskl = buttonTask "default" (return 1)
-||- editTask "done" 42

»this is represented as

taskl™ :: ITask

taskl® =ButtonTask "default" (Return (BVal (Int 1)))
.||. EditTask "done" (Int 42)

30-5-2009

events

inputs for the task are called events
*the iTask system and representation in its
semantics both require events

> we need to link events and tasks:
label the task and the event with a unique id

> system should assign the id's
»each event contains
> ID: unique identification of subtask
> the event kind: edit event with new value, or button event

. ID = ID [Num]
:: Event = Event ID EventKind | ReFresh
:: EventKind = EE BVal | BE

CEFP 2009: iTask semantics

needed events

*needed events: without these events the task
cannot return a value
> pressing the done button in an editor is needed
» changing the value is not needed
colNeeded (EditTask id n v) = [Event id BE]
colNeeded (t1 .&&. t2) = colNeeded t1 ++ colNeeded t2
colNeeded (Bind id t f) = colNeeded t
colNeeded t =[]
*in the semantic representation of task we can scan
the data structure to find needed events
> the function after a bind can generate needed events
> the needed events of the generated task often depend on

the semantics

»semantics is specified by a function computing the
new task given the current task and the event
(@.) infixl 9 :: ITask Event -> ITask

(@.) (EditTask i nv) (Event j (EE w))

| i ==j = EditTask (nexti) nw
(@.).(Ec.iltTask ine)(EventjBE) T——
| i==j = Return (BVal e)
(@.)(t.]].u)e
t=:(Return _) =t first try left task
t = caseu @. e of
u=:(Return _) =u
u =t.|].u

the result of the first task

18

iTask semantics part 2

and combinator

send event to both tasks

(@.)(t.&&. u)e
=case (t@.¢e,u@.e)of
(Return v, Return w)= Return (Pair v w)
(t, w =t.&&. u
(@.)(Bindidtf)e
= case t @. e of
Return v =(f V)

t =Bindid tf . —— ors
assign uhique identifiers

(@)te=t

20

30-5-2009

this answers our questions

*is the user able to press the button default after
changing a value in the editor?

u = ButtonTask id1 "default" (Return (BVal (Int 1)))
.||. EditTask id2 "done" (Int 42)

»equational reasoning

u @. Event id2 (EI 36)

— ButtonTask id1 "default" (Return (BVal (Int 1)))
.||. EditTask id2 "done" (Int 36)

=answer: user can still press the default button

equivalence of tasks

*there are various notions of equivalence for tasks
1. two tasks are equivalent if they yield the same
result for any input sequence
» abstract from event Ids, they are invisible for users
» we can decide to look only at needed events
2. have exactly the same structure
3. .
we use the first notion of equivalence

task of different shape can be equivalent
EditTask i s 3 = EditTask i s 3 >>= A v—Return (id v)

22

equivalence relation

=simulation: s c t:
user can do anything with task t that can be done with s
»ButtonTask id "ok" (Return 3) c EditTask id "ok" 3

»checking the shape of the tasks is not good enough
> in general we have to check if it responds identical to all

input sequences
"equivalence: sctAatcses=t
=we can approximate this property automatically

> using shape information can help to determine
equivalence, but is in general not enough

equivalence of tasks

=given the tasks
s = editTask "a" 1
t = editTask "b" 2
»equivalence?
s-ll-t=t-[[-s
*when are tasks equivalent x = y ?
> user can do the same with x and y
> produce the same result for any sequence of events
> ignore differences in layout and event id's
ssimulation x c y :
» user can do everything with y that can be done with x

XYy S XCYAYCX

24

CEFP 2009: iTask semantics

30-5-2009

equivalence of tasks 2

=given the tasks

s = editTask "a" 1

t = editTask "b" 5

*equivalence s -||- t=t-||- s ?
»>yes

=simulation s-||-tct-||-s,

s-|l-tct-[|-s?

»>yes

CEFP 2009: iTask semantics

equivalence of tasks 3

=given the tasks
s = editTask "a" 1
t = editTask "b" 5
"equivalence s = t ?

> no, BE
ssimulation sct,
tcs?
> no, idem

iTask semantics

26

equivalence of tasks 4

=given the tasks
s = editTask "a" 1
t = buttonTask "b" (return 1)
"equivalence s = t ?

> no: EE 7, BE
ssimulationsct?

»no: EE 7, BE
»simulationtcs?

>yes: t only allows BE

CEFP 2009: iTask semantics

equivalence of tasks 5

=given the tasks
t = editTask "a" 1
mequivalence t =t -||- t?
>no: EE 7, BE
ssimulationt c t-||-+?
>yes: use only 1 of the tasks in t -||- t
ssimulationt -||-tct?
>no: EE 7, BE

iTask semantics

30-5-2009

*be believed for a long time that t =t -||- 1|
> testing the semantics showed that we were wrong

ss=tesctatcs?

equivalence of tasks 6

=given the tasks
s = editTask "a" 1
t = editTask "b" 1 >>= return
"equivalence s = t ?

> yes, but shape of tasks is different
ssimulationsct,tcs?

»>yes

CEFP 2009: iTask semantics

CEFP 2009: iTask semantics

equivalence of tasks 7

=given the tasks
s = editTask "a" 1
t = editTask "b" "Hi"
"equivalence s -&&- t ~ t -&&- s ?
> no the types are different
Task (Int, String) and Task(String, Int)

ssimulation s -&&- t =t -&&-s,s -&&t =t -&&-s ?
> no, idem

equivalence of tasks 8

=given the tasks
s = editTask "a" 1 >>=f
t = editTask "b" 1 >>=g¢g
"equivalence s = t ?
> depends on the functions f and g
> in general this is not decidable
> we can approximate it by supplying sequences of events
(like testing)
ssimulationsct,tcs?
>idem

CEFP 2009: iTask semantics

CEFP 2009: iTask semantics

approximation of equivalence

*if tasks are both of the form return v
compare the values

=compare the needed events and the enabled
events of tasks s and t, these should be equal
=apply different sequences of events and try again
»possible results:
Proof equal for all possible sequences of events,
Pass equal the used sequences of events,
CounterExample we found a difference,
Undefined no results found, e.g. infinite tasks

30-5-2009

semantic properties

*what we want:
>Vst.(s.|].t)=(t.[].s)
»Vst.(s.].t).|l-u=s.]||. (t.[]. u)
"Some consequences:

> task remain equivalent after applying a needed event
s=t=Vie neededEventss.s @.i=t @. i

»Vie neededEventsu.u @. i= (t.|].s) @.i
whereu =s .||. t

> we can apply needed events in any order
is = neededEvents t . t @. i = t @. permutation is

testing a property

*what we want:
>Vst.(s.||.t)=(t.]].5s)
*in Gast:
pOrl :: ITask ITask -> Property
pOrlst=(s.[|].t) ~~ (t.]].S)
*the test result
"pOr1" Counterexample 1 found after 23 tests:
(Return (BVal (Int 0)))
(Return (Pair (BVal (Int 0)) (BVal (Int 0))))
*a correct property
»>Vst. A NFsA-NFt=(s.||.1)=(t.]].9)
pOr st = notNF [t, u] ==> (s .[]. t) ~~ (t.]]. s)

CEFP 2009: iTask semantics

checking the system

*having defined reduction and equivalence
there are interesting questions
> do the required properties hold
»is the system consistent
>
» checking this manually is tedious and error prone

*a proof system requires a significant amount of
human guidance

=use our test system GVst !!
» express the properties using the logical combinators

» generation of test data is done by the generic system,
a little guidance by an additional data type is necessary

examples of automatic testing

=first test our property of the or-operator:
pOr :: ITask ITask -> Property
pOr st = notNF [t, u] ==> (s .||. t) ~~ (t.]]. s)

Start = test pOr
»test execution yields: Passed after 1000 tests
pAnd st = (s .&&. t) ~~ (t .&&.)

= Counterexample: (GButtonT "b" (GReturn (BVal (Int 0))))
(GReturn (BVal (String "a")))

*the types of the subtasks are different |

30-5-2009

CEFP 2009: iTask semantics

automatic generation of tasks for tests

»systematic automatic generation of test cases is
desired
> easy to do more fests
> we do not forget tasks
*the data type ITask also allows bad test tasks
> nonterminating
> badly typed
=use an additional data type for desired test tasks
» generate instance by the generic algorithm
> transform these tasks to proper test talks
> very simular as we did for terminating While-programs

CEFP 2009: iTask semantics

how to obtain properties

='obvious' properties arise during the development
of the semantics
> associativety of -|[-, ..
=|learn from your semantical mistakes
» turn each example of undesired behaviour into a test
> try to generalize these mistakes fo general properties

»>(s.||. 1) = (*.]l. s) only holds iff s and t are can consume
events

*|learn from your test results
»turn each counterexample into a test (is it still correct)
> try to generalize these errors to general properties

validating the semantics

»semantics with properties can be consistent,
but wrong
> testing does not reveal all problems

=validation by simulating and human inspection

> since our tasks are data structures we can edit them with
a standard iTask for this data type !

> we can simulate the task using the executable semantics

CEFP 2009: iTask semantics

a screen shot of the simulator

Task simulator
Task editor

Task Tree:
A& e 84 EditTask ~ (ID [0,0,0]) Int 0| EditTask ~ (D [0,1,0]) String
EditTask = Select an event:

(ID [0,0,01)

Int v press button
’ 42
EditTask =
ap (0,1,01) EETEEA
String .

press button
_submit | Kemaro

submit string

40

30-5-2009

10

NE o methodology for defining consistent semantics

»semantics is a formal artefact (like a program)
> we need tool support to get it correct

=use a functional programming language as carrier of
the semantics

> Haskell, Clean, Erlang, F#, ..

» compiler spots mistakes with types and identifiers
»simulate the semantics to validate it using iTasks
=use model-based testing for regression tests: Gast

> learn from your mistakes
=[optional] prove the tested properties

> proving is much more work than model-based testing

CEFP 2009: iTask semantics

conclusions

*the iTask system needs a semantics
> we need to know what we are building
»>explain the system
»model-based test of the implementation

*we defined an operation semantics and equivalence

*a functional programming language is very suited
to construct such a semantics
» concise
» compiler checks types
» automatic testing of desired properties of the semantics

* we have results in seconds
> validation by simulation
> edit tasks in the simulator

42

future work

»extend the semantics to cover:
> multi-user tasks
» access to databases and files
> exceptions
> dynamic changes of the running tasks
>..
»test if the real iTask system behaves as specified

*prove properties that are tested successfully

the end
=Thanks for your attention

=questions ??

44

CEFP 2009: iTask semantics

30-5-2009

11

