
30-5-2009

1

defining semantics for
complex systems

part 3: iTask semantics

Pieter Koopman, Rinus Plasmeijer

Radboud University Nijmegen

The Netherlands

iTasks are wonderful

�workflow management systems supports and guides
(administrative) tasks of humans and computers
�entering data, approving transactions, ..

�the iTasks system is a combinator library to
�specify workflows

�execute tasks using a multi user web-interface

�distinguishing features of the iTask system
�data dependent tasks

�dynamic task creation and adaptation

�iTasks are in the Clean distribution
�require generics, dynamics, iData and a little uniqueness

2

primitive tasks

�return e.g. return 1
�returns the given value

�editTask e.g. editTask "ok" 7

�allows to edit a value until you press the button

�buttonTask e.g. buttonTask "ok" (return 5)

�actually for every task t:
buttonTask s t = editTask s Void >>= _ -> t

CEFP 2009: iTask semantics

3

compose task: choose a task

task1 :: Task Int

task1 = buttonTask "default" (return 1)

-||- editTask "done" 42

�iTask-systems generates a
web-interface for task

� -||- is or-operator for tasks

� task is finished if either
�the user presses the default button, or

�presses the done button in the editor

(-||-) infixr 3 :: (Task a) (Task a) -> Task a

4

30-5-2009

2

compose task: tasks in parallel

task2 :: Task (String, Int)

task2 = editTask "string" "u" -&&- editTask "int" 2

� -&&- is the and-operator

� task2 is finished if both
�the user presses the string button, and

�presses the int button

(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a, b)
5

compose task: sequence of tasks

task3 :: Real -> Task Real

task3 x

= [Text (toString x +

" Forint = " +

toString (x * exchange_rate) + " euro"), BrTag []]

?>> editTask "compute" x

>>= task3

�>>= is the monadic bind-operator
�first do the task on the left, if that is finished

�function on the right generates the next task

(>>=) infixl 1 :: (Task a) (a -> Task b) -> Task b

6

a recursive task

data dependent

bind enables data dependency

�the bind operator, >>=, gives the power to create
data dependent tasks

task4 :: Task [Int]

task4

=[Text "number of bids?"]

?>> editTask "go" 2

>>= \n. if (n<1 || n>10)

([Text "between 1 and 10!"] ?>> task4)

(andTasks [("bid",editTask "ok" 1)

\\ i<-[1..n]

])

CEFP 2009: iTask semantics

7

some semantic questions about iTasks

task1 = buttonTask "default" (return 1)

-||- editTask "done" 42

�will the user be able to use the default button as
soon as she starts editing the value 42?

�is the expression s -||- t equivalent to t -||- s?

�is the expression s -&&- t equivalent to t -&&- s?

�what is the value of return 0 -||- return 42 ?
8

30-5-2009

3

look at the definition of combinators
:: Task a :== !*TSt -> *(!a,!*TSt)

(-||-) infixr 3 :: !(Task a) !(Task a) -> (Task a) | iData a

(-||-) taska taskb = newTask "-||-" (doOrTask (taska,taskb))

where

doOrTask :: !(Task a,Task a) -> (Task a) | iData a

doOrTask (taska,taskb)

= orTask2 (taska,taskb)

>>= \at -> case at of

(LEFT a) -> return_V a

(RIGHT b) -> return_V b

9

orTask2 :: !(Task a,Task b) -> Task (EITHER a b) | iData a & iData b

orTask2 (taska,taskb)

= allTasksCond "orTask2" showBoth (\list -> length list > 0)
[("orTask.0",taska >>= \a -> return_V (LEFT a))

,("orTask.0",taskb >>= \b -> return_V (RIGHT b))]

>>= \res -> return_V (hd res)

allTasksCond :: !String !(TasksToShow a) !(FinishPred a) ![LabeledTask a] -> Task [a] | iData a

allTasksCond label chooser pred taskCollection

= mkTask "andTasksCond" (doandTasks chooser taskCollection)

where

lengthltask = length taskCollection

doandTasks chooser [] tst = return [] tst

doandTasks chooser taskCollection tst=:{tasknr,html,options,userId}

((alist,acode),tst=:{activated=finished,html=allhtml})

= checkAllTasks label taskCollection 0 True ([],[]) {tst & html = BT [],activated = True}

| finished = (alist,{tst & html = html})

| pred alist = (alist,{tst & html = html, activated = True})

selectId = iTaskId userId tasknr "anTaskSelect"

((selected,shtml),tst) = chooser selectId taskCollection {tst & html = BT []}

(_,tst=:{html=ashtml}) = showtasks label [(i,taskCollection!!i) \\ i <- selected | i >= 0

&& i < lengthltask] {tst & html = BT [], activated = True}

= (alist,{tst & activated = finished, html = html +|+ ((BT shtml) +-+ ashtml) +|+ (userId -@: foldl (+|+) (BT [])

[htmlcode \\ htmlcode <- acode & i <- [0..] | not (isMember i selected)])

where

showtasks _ [] tst = ([],tst)

showtasks label [(chosen,(name,chosenTask)):tasks] tst=:{html=html}

(a,tst=:{html=ahtml}) = mkParSubTask label chosen chosenTask {tst & tasknr=tasknr, activated=True, html=BT []}

(as,tst=:{html=ashtml}) = showtasks label tasks {tst & html = BT []}

= ([a:as],{tst & html = html +|+ ahtml +|+ ashtml})

checkAllTasks traceid taskCollection ctasknr bool (alist,acode) tst=:{tasknr}

| ctasknr == length taskCollection = ((reverse alist,reverse acode),{tst & activated = bool})

(taskname,task) = taskCollection!!ctasknr

(a,tst=:{activated = adone,html=html}) = ..

..

mkTask :: !String !(Task a) -> (Task a) | iCreateAndPrint a

mkTask taskname mytask = mkTaskNoInc taskname mytask o incTaskNr

mkTaskNoInc :: !String !(Task a) -> (Task a) | iCreateAndPrint a

mkTaskNoInc taskname mytask = mkTaskNoInc`

where

mkTaskNoInc` tst=:{activated,tasknr,userId,options}

| not activated = (createDefault,tst)

(val,tst=:{activated,trace}) = mytask tst

tst = {tst & tasknr = tasknr, options = options, userId = userId}

| isNothing trace || taskname == "" = (val,tst)

= (val,{tst & trace = Just (InsertTrace activated tasknr userId options taskname

(printToString val%(0,30)) (fromJust trace))})

and many more (generic) functions

why are the combinators so complicated?

�the definition of combinators does not give a quick
answer to questions about the semantics

�combinators have several interdependent duties
�produce html-code for the web interface displaying the

current state of the task for each worker

�handle inputs from the web, update task expression

� interface to files and databases

�multi-user

�client/server

� ..

�due to the large number of related jobs it is
inevitable that the combinators are complicated

10

a solution

�in order to answer the semantic questions we
define an operational semantics for iTasks

�in addition we want:
�understand the system we are developing
• guide decisions in the design and development

�explain the behaviour to other people

�reason about iTasks

�use it as specification in model-based testing of the
implementation of the iTask system
• this connects the semantics and the implementation

11

how to define such a semantics ?

�it is kind of standard to define such a semantics
using Scott brackets or horizontal bars

�however, such a specification is
�hard to get correct and consistent

�hard to validate

�not suited for model-based testing of the system

�we use a functional programming language as
carrier for the specification
� language implementation checks types

�simulation to validate the semantics

�model-based test of the semantics

�suited for model-based testing of the real system
12

30-5-2009

4

a semantics for iTasks

�in order to reason about iTasks we define a
simplified model of iTasks
�based on a data type instead of functions
• sequence operator contains function to guarantee enough
expressive power (monadic bind)

�some simplifications:
• only basic iTask combinators

• tasks can only handle a fixed number of types

�concentrate first on event handling
• ignore interface generation (HTML)

• use a model of the world rather than real i/o

13

the data type for iTasks

�the type ITask mimics Task a:
:: ITask

= EditTask ID StringBVal

| .||. infixr 3 ITask ITask

| .&&. infixr 4 ITask ITask

| >>- infixl 1 ID ITask (Val → ITask)

| Return Val

:: Val = Pair Val Val | BVal BVal

:: BVal = String String | Int Int | VOID

ButtonTask id name task
:== EditTask id name VOID >>- λ x → task

14

edit only basic values

real function
for sequences

a monad

advantages of a data structure for tasks

�in the semantics we can look at the structure of
the task

�we can inspect the task to see what events are
enabled

�we can even change the task if desired

there is one exception

�in the bind operator we use a real function to
maintain the expressive power

:: ITask = >>- infixl 1 ID ITask (Val → ITask)

| ..

CEFP 2009: iTask semantics

15

one-to-one mapping from Task a to ITask

�we had the real iTask task
task1 :: Task Int

task1 = buttonTask "default" (return 1)

-||- editTask "done" 42

�this is represented as
task1` :: ITask

task1` =ButtonTask "default" (Return (BVal (Int 1)))

.||. EditTask "done" (Int 42)

16

30-5-2009

5

events

�inputs for the task are called events

�the iTask system and representation in its
semantics both require events
�we need to link events and tasks:

label the task and the event with a unique id

�system should assign the id's

�each event contains
�ID: unique identification of subtask

�the event kind: edit event with new value, or button event

:: ID = ID [Num]

:: Event = Event ID EventKind | ReFresh

:: EventKind = EE BVal | BE

17

needed events

�needed events: without these events the task
cannot return a value
�pressing the done button in an editor is needed

�changing the value is not needed

colNeeded (EditTask id n v) = [Event id BE]

colNeeded (t1 .&&. t2) = colNeeded t1 ++ colNeeded t2

colNeeded (Bind id t f) = colNeeded t

colNeeded t = []

�in the semantic representation of task we can scan
the data structure to find needed events
�the function after a bind can generate needed events

�the needed events of the generated task often depend on
the result of the first task

CEFP 2009: iTask semantics

18

the semantics

�semantics is specified by a function computing the
new task given the current task and the event

(@.) infixl 9 :: ITask Event -> ITask

(@.) (EditTask i n v) (Event j (EE w))

| i == j = EditTask (next i) n w

(@.) (EditTask i n e) (Event j BE)

| i==j = Return (BVal e)

(@.) (t .||. u) e

= case t @. e of

t=:(Return _) = t

t = case u @. e of

u=:(Return _) = u

u = t .||. u

..

19

edit event with new value

button event

or combinator:
first try left task

iTask semantics part 2

..

(@.) (t .&&. u) e

= case (t @. e, u @. e) of

(Return v, Return w)= Return (Pair v w)

(t, u) = t .&&. u

(@.) (Bind id t f) e

= case t @. e of

Return v = normalize id (f v)

t = Bind id t f

(@.) t e = t

20

and combinator

bind combinator

assign unique identifiers

send event to both tasks

30-5-2009

6

this answers our questions

�is the user able to press the button default after
changing a value in the editor?

u = ButtonTask id1 "default" (Return (BVal (Int 1)))

.||. EditTask id2 "done" (Int 42)

�equational reasoning
u @. Event id2 (EI 36)

→ ButtonTask id1 "default" (Return (BVal (Int 1)))

.||. EditTask id2 "done" (Int 36)

�answer: user can still press the default button

21

equivalence of tasks

�there are various notions of equivalence for tasks

1. two tasks are equivalent if they yield the same
result for any input sequence

� abstract from event Ids, they are invisible for users

� we can decide to look only at needed events

2. have exactly the same structure

3. ..

� we use the first notion of equivalence

� task of different shape can be equivalent
EditTask i s 3 ≈ EditTask i s 3 >>= λ v→Return (id v)

22

equivalence relation

�simulation: s ⊆ t:
user can do anything with task t that can be done with s

�ButtonTask id "ok" (Return 3) ⊆ EditTask id "ok" 3

�checking the shape of the tasks is not good enough
� in general we have to check if it responds identical to all

input sequences

�equivalence: s ⊆ t ∧ t ⊆ s ⇔ s ≈ t

�we can approximate this property automatically
�using shape information can help to determine

equivalence, but is in general not enough

23

equivalence of tasks

�given the tasks
s = editTask "a" 1

t = editTask "b" 2

�equivalence?
s -||- t ≈ t -||- s

�when are tasks equivalent x ≈ y ?
�user can do the same with x and y

�produce the same result for any sequence of events

� ignore differences in layout and event id's

�simulation x ⊆ y :
�user can do everything with y that can be done with x

�x ≈ y ⇔ x ⊆ y ∧ y ⊆ x

CEFP 2009: iTask semantics

24

30-5-2009

7

equivalence of tasks 2

�given the tasks
s = editTask "a" 1

t = editTask "b" 5

�equivalence s -||- t ≈ t -||- s ?
�yes

�simulation s -||- t ⊆ t -||- s,
s -||- t ⊆ t -||- s ?

�yes

CEFP 2009: iTask semantics

25

equivalence of tasks 3

�given the tasks
s = editTask "a" 1

t = editTask "b" 5

�equivalence s ≈ t ?
�no, BE

�simulation s ⊆ t,
t ⊆ s ?

�no, idem

CEFP 2009: iTask semantics

26

equivalence of tasks 4

�given the tasks
s = editTask "a" 1

t = buttonTask "b" (return 1)

�equivalence s ≈ t ?
�no: EE 7, BE

�simulation s ⊆ t ?
�no: EE 7, BE

�simulation t ⊆ s ?
�yes: t only allows BE

�s ≈ t ⇔ s ⊆ t ∧ t ⊆ s ?

CEFP 2009: iTask semantics

27

equivalence of tasks 5

�given the tasks
t = editTask "a" 1

�equivalence t ≈ t -||- t ?
�no: EE 7, BE

�simulation t ⊆ t -||- t ?
�yes: use only 1 of the tasks in t -||- t

�simulation t -||- t ⊆ t ?
�no: EE 7, BE

�be believed for a long time that t ≈ t -||- t !
�testing the semantics showed that we were wrong

CEFP 2009: iTask semantics

28

30-5-2009

8

equivalence of tasks 6

�given the tasks
s = editTask "a" 1

t = editTask "b" 1 >>= return

�equivalence s ≈ t ?
�yes, but shape of tasks is different

�simulation s ⊆ t, t ⊆ s ?
�yes

CEFP 2009: iTask semantics

29

equivalence of tasks 7

�given the tasks
s = editTask "a" 1

t = editTask "b" "Hi"

�equivalence s -&&- t ≈ t -&&- s ?
�no the types are different
Task (Int, String) and Task(String, Int)

�simulation s -&&- t ⊆ t -&&- s, s -&&- t ⊆ t -&&- s ?
�no, idem

CEFP 2009: iTask semantics

30

equivalence of tasks 8

�given the tasks
s = editTask "a" 1 >>= f

t = editTask "b" 1 >>= g

�equivalence s ≈ t ?
�depends on the functions f and g

� in general this is not decidable

�we can approximate it by supplying sequences of events
(like testing)

�simulation s ⊆ t, t ⊆ s ?
� idem

CEFP 2009: iTask semantics

31

approximation of equivalence

�if tasks are both of the form return v
compare the values

�compare the needed events and the enabled
events of tasks s and t, these should be equal

�apply different sequences of events and try again

�possible results:
Proof equal for all possible sequences of events,
Pass equal the used sequences of events,
CounterExample we found a difference,
Undefined no results found, e.g. infinite tasks

CEFP 2009: iTask semantics

32

30-5-2009

9

semantic properties
�what we want:
�∀ s t .(s .||. t) ≈ (t .||. s)

�∀ s t .(s .||. t) .||. u ≈ s .||. (t .||. u)

�some consequences:
�task remain equivalent after applying a needed event
s ≈ t ⇒ ∀ i ∈ neededEvents s . s @. i ≈ t @. i

�∀ i ∈ neededEvents u . u @. i ≈ (t .||. s) @. i
where u = s .||. t

�we can apply needed events in any order
is = neededEvents t . t @. i ≈ t @. permutation is

33

checking the system

�having defined reduction and equivalence
there are interesting questions
�do the required properties hold

� is the system consistent

� ..

� checking this manually is tedious and error prone

�a proof system requires a significant amount of
human guidance

�use our test system G∀st ! !
�express the properties using the logical combinators

�generation of test data is done by the generic system,
a little guidance by an additional data type is necessary

34

testing a property

�what we want:
�∀ s t .(s .||. t) ≈ (t .||. s)

�in Gast:
pOr1 :: ITask ITask -> Property

pOr1 s t = (s .||. t) ~~ (t .||. s)

�the test result
"pOr1" Counterexample 1 found after 23 tests:

(Return (BVal (Int 0)))

(Return (Pair (BVal (Int 0)) (BVal (Int 0))))

�a correct property
�∀ s t . ¬ NF s ∧ ¬ NF t ⇒ (s .||. t) ≈ (t .||. s)

pOr s t = notNF [t, u] ==> (s .||. t) ~~ (t .||. s)

CEFP 2009: iTask semantics

35

∀ s t .

examples of automatic testing

�first test our property of the or-operator:
pOr :: ITask ITask -> Property

pOr s t = notNF [t, u] ==> (s .||. t) ~~ (t .||. s)

Start = test pOr

�test execution yields: Passed after 1000 tests

pAnd s t = (s .&&. t) ~~ (t .&&. s)
� Counterexample: (GButtonT "b" (GReturn (BVal (Int 0))))

(GReturn (BVal (String "a")))

�the types of the subtasks are different !

36

∀ s t .

30-5-2009

10

automatic generation of tasks for tests

�systematic automatic generation of test cases is
desired
�easy to do more tests

�we do not forget tasks

�the data type ITask also allows bad test tasks
�nonterminating

�badly typed

�use an additional data type for desired test tasks
�generate instance by the generic algorithm

�transform these tasks to proper test talks

�very simular as we did for terminating While-programs

CEFP 2009: iTask semantics

37

how to obtain properties

�'obvious' properties arise during the development
of the semantics
�associativety of -||-, ..

�learn from your semantical mistakes
�turn each example of undesired behaviour into a test

�try to generalize these mistakes to general properties

�(s .||. t) ≈ (t .||. s) only holds iff s and t are can consume
events

�learn from your test results
�turn each counterexample into a test (is it still correct)

�try to generalize these errors to general properties

CEFP 2009: iTask semantics

38

validating the semantics

�semantics with properties can be consistent,
but wrong
�testing does not reveal all problems

�validation by simulating and human inspection
�since our tasks are data structures we can edit them with

a standard iTask for this data type !

�we can simulate the task using the executable semantics

39

a screen shot of the simulator
CEFP 2009: iTask semantics

40

30-5-2009

11

a methodology for defining consistent semantics

�semantics is a formal artefact (like a program)
�we need tool support to get it correct

�use a functional programming language as carrier of
the semantics
�Haskell, Clean, Erlang, F#, ..

�compiler spots mistakes with types and identifiers

�simulate the semantics to validate it using iTasks

�use model-based testing for regression tests: Gast
� learn from your mistakes

�[optional] prove the tested properties
�proving is much more work than model-based testing

CEFP 2009: iTask semantics

41

conclusions
�the iTask system needs a semantics
�we need to know what we are building

�explain the system

�model-based test of the implementation

�we defined an operation semantics and equivalence

�a functional programming language is very suited
to construct such a semantics
�concise

�compiler checks types

�automatic testing of desired properties of the semantics
•we have results in seconds

�validation by simulation

�edit tasks in the simulator
42

future work

�extend the semantics to cover:
�multi-user tasks

�access to databases and files

�exceptions

�dynamic changes of the running tasks

� ..

�test if the real iTask system behaves as specified

�prove properties that are tested successfully

43

the end

�Thanks for your attention

�questions ??

CEFP 2009: iTask semantics

44

