
An Erlang Course
This is the content of the Erlang course. This course usually takes four days to
complete. It is divided into 5 modules and has a number of programming
exercises.

Module 1 - History
A short history of the Erlang language describing how Erlang was developed
and why we had to invent a new language.

Module 2 - Sequential Programming
Symbolic data representation, how pattern matching is used to pack/unpack
data, how functions are combined to form programs etc.

Module 3 - Concurrent Programming
Creating an Erlang process, communication between Erlang processes.

Module 4 - Error handling
Covers error handling and the design of robust systems.

Module 5 - Advanced Topics
All those tricky things like loading code in running systems, exception
handling etc.

Erlang University http://www.erlang.org/course/course.html

1 / 1 2009-05-14 10:59

History of Erlang

1982 - 1985
Experiments with programming of telecom using > 20 different languages.
Conclusion: The language must be a very high level symbolic language in
order to achive productivity gains ! (Leaves us with: Lisp , Prolog , Parlog ...)

1985 - 86
Experiments with Lisp,Prolog, Parlog etc. Conclusion: The language must
contain primitives for concurrency and error recovery, and the execution
model must not have back-tracking. (Rules out Lisp and Prolog.) It must also
have a granularity of concurrency such that one asyncronous telephony
process is represented by one process in the language. (Rules out Parlog.) We
must therefore develop our own language with the desirable features of Lisp,
Prolog and Parlog, but with concurrency and error recovery built into the
language.

1987
The first experiments with Erlang.

1988
ACS/Dunder Phase 1. Prototype construction of PABX functionality by external
users Erlang escapes from the lab!

1989
ACS/Dunder Phase 2. Reconstruction of 1/10 of the complete MD-110 system.
Results: >> 10 times greater gains in efficency at construction compared
with construction in PLEX!

Further experiments with a fast implementation of Erlang.

History of Erlang http://www.erlang.org/course/history.html

1 / 2 2009-05-14 10:59

1990
Erlang is presented at ISS'90, which results in several new users, e.g Bellcore.

1991
Fast implementation of Erlang is released to users. Erlang is represented at
Telecom'91 . More functionality such as ASN1 - Compiler , graphical interface
etc.

1992
A lot of new users, e.g several RACE projects. Erlang is ported to VxWorks, PC,
Macintosh etc. Three applications using Erlang are presented at ISS'92. The
two first product projects using Erlang are started.

1993
Distribution is added to Erlang, which makes it possible to run a homgeneous
Erlang system on a heterogeneous hardware. Decision to sell implementations
Erlang externally. Separate organization in Ericsson started to maintain and
support Erlang implementations and Erlang Tools.

History of Erlang http://www.erlang.org/course/history.html

2 / 2 2009-05-14 10:59

Sequential Programming
Numbers.

Integers
Floats

Atoms
Tuples
Lists
Variables
Complex Data Structures
Pattern Matching
Function Calls
The Module Systems
Starting the system
Built in Functions (BIFs)
Function syntax
An example of function evaluation
Guarded function clauses

Examples of Guards
Traversing Lists
Lists and Accumulators
Shell commands
Special Functions
Special Forms

Numbers
Integers

10
-234
16#AB10F
2#110111010
$A

Floats
 17.368
 -56.654
 12.34E-10.

B#Val is used to store numbers in base < B >.

Sequential Programming http://www.erlang.org/course/sequential_programmi...

1 / 10 2009-05-14 11:00

$Char is used for ascii values (example $A instead of 65).

Back to top

Atoms
abcef
start_with_a_lower_case_letter
'Blanks can be quoted'
'Anything inside quotes \n\012'

Indefinite length atoms are allowed.
Any character code is allowed within an atom.

Back to top

Tuples
{123, bcd}
{123, def, abc}
{person, 'Joe', 'Armstrong'}
{abc, {def, 123}, jkl}
{}

Used to store a fixed number of items.
Tuples of any size are allowed.

Back to top

Lists
[123, xyz]
[123, def, abc]
[{person, 'Joe', 'Armstrong'},

{person, 'Robert', 'Virding'},
{person, 'Mike', 'Williams'}

]
"abcdefghi"

becomes - [97,98,99,100,101,102,103,104,105]
""

becomes - []

Used to store a variable number of items.
Lists are dynamically sized.

Sequential Programming http://www.erlang.org/course/sequential_programmi...

2 / 10 2009-05-14 11:00

"..." is short for the list of integers representing the ascii character codes
of the enclosed within the quotes.

Back to top

Variables
Abc
A_long_variable_name
AnObjectOrientatedVariableName

Start with an Upper Case Letter.
No "funny characters".
Variables are used to store values of data structures.
Variables can only be bound once! The value of a variable can never be
changed once it has been set (bound).

Back to top

Complex Data Structures
[{{person,'Joe', 'Armstrong'},

{telephoneNumber, [3,5,9,7]},
{shoeSize, 42},
{pets, [{cat, tubby},{cat, tiger}]},
{children,[{thomas, 5},{claire,1}]}},

 {{person,'Mike','Williams'},
{shoeSize,41},
{likes,[boats, beer]},
...

Arbitrary complex structures can be cre- ated.
Data structures are created by writing them down (no explicit memory
alloca- tion or deallocation is needed etc.).
Data structures may contain bound vari- ables.

Back to top

Pattern Matching
A = 10

Succeeds - binds A to 10

{B, C, D} = {10, foo, bar}

Sequential Programming http://www.erlang.org/course/sequential_programmi...

3 / 10 2009-05-14 11:00

Succeeds - binds B to 10, C to foo and D
to bar

{A, A, B} = {abc, abc, foo}
Succeeds - binds A to abc, B to foo

{A, A, B} = {abc, def, 123}
Fails

[A,B,C] = [1,2,3]
Succeeds - binds A to 1, B to 2, C to 3

[A,B,C,D] = [1,2,3]
Fails

Back to top

Pattern Matching (Cont)
[A,B|C] = [1,2,3,4,5,6,7]

Succeeds - binds A = 1, B = 2,
C = [3,4,5,6,7]

[H|T] = [1,2,3,4]
Succeeds - binds H = 1, T = [2,3,4]

[H|T] = [abc]
Succeeds - binds H = abc, T = []

[H|T] = []
Fails

{A,_, [B|_],{B}} = {abc,23,[22,x],{22}}
Succeeds - binds A = abc, B = 22

Note the use of "_", the anonymous (don't care) variable.

Back to top

Function Calls
module:func(Arg1, Arg2, ... Argn)

func(Arg1, Arg2, .. Argn)

Arg1 .. Argn are any Erlang data struc- tures.
The function and module names (func and module in the above) must be
atoms.

Sequential Programming http://www.erlang.org/course/sequential_programmi...

4 / 10 2009-05-14 11:00

A function can have zero arguments. (e.g. date() - returns the current
date).
Functions are defined within Modules.
Functions must be exported before they can be called from outside the
module where they are defined.

Back to top

Module System
-module(demo).
-export([double/1]).

double(X) ->
times(X, 2).

times(X, N) ->
X * N.

double can be called from outside the module, times is local to the
module.
double/1 means the function double with one argument (Note that
double/1 and double/2 are two different functions).

Back to top

Starting the system
unix> erl
Eshell V2.0
1> c(demo).
double/1 times/2 module_info/0
compilation_succeeded
2> demo:double(25).
50
3> demo:times(4,3).
** undefined function:demo:times[4,3] **
** exited: {undef,{demo,times,[4,3]}} **
4> 10 + 25.
35
5>

c(File) compiles the file File.erl.
1> , 2> ... are the shell prompts.
The shell sits in a read-eval-print loop.

Sequential Programming http://www.erlang.org/course/sequential_programmi...

5 / 10 2009-05-14 11:00

Back to top

Built In Functions (BIFs)
date()
time()
length([1,2,3,4,5])
size({a,b,c})
atom_to_list(an_atom)
list_to_tuple([1,2,3,4])
integer_to_list(2234)
tuple_to_list({})

Are in the module erlang.
Do what you cannot do (or is difficult to do) in Erlang.
Modify the behaviour of the system.
Described in the BIFs manual.

Back to top

Function Syntax
Is defined as a collection of clauses.

func(Pattern1, Pattern2, ...) ->
... ;

func(Pattern1, Pattern2, ...) ->
... ;
...

func(Pattern1, Pattern2, ...) ->
... .

Evaluation Rules

Clauses are scanned sequentially until a match is found.
When a match is found all variables occurring in the head become bound.
Variables are local to each clause, and are allocated and deallocated
automatically.
The body is evaluated sequentially.

Back to top

Functions (cont)

Sequential Programming http://www.erlang.org/course/sequential_programmi...

6 / 10 2009-05-14 11:00

-module(mathStuff).
-export([factorial/1, area/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

area({square, Side}) ->
Side * Side;

area({circle, Radius}) ->
% almost :-)
3 * Radius * Radius;

area({triangle, A, B, C}) ->
S = (A + B + C)/2,
math:sqrt(S*(S-A)*(S-B)*(S-C));

area(Other) ->
{invalid_object, Other}.

Back to top

Evaluation example
factorial(0) -> 1;
factorial(N) ->

N * factorial(N-1)

> factorial(3)
matches N = 3 in clause 2
== 3 * factorial(3 - 1)
== 3 * factorial(2)
matches N =2 in clause 2
== 3 * 2 * factorial(2 - 1)
== 3 * 2 * factorial(1)
matches N = 1 in clause 2
== 3 * 2 * 1 * factorial(1 - 1)
== 3 * 2 * 1 * factorial(0)
== 3 * 2 * 1 * 1 (clause 1)
== 6

Variables are local to each clause.
Variables are allocated and deallocated automatically.

Back to top

Guarded Function Clauses
factorial(0) -> 1;
factorial(N) when N > 0 ->

N * factorial(N - 1).

Sequential Programming http://www.erlang.org/course/sequential_programmi...

7 / 10 2009-05-14 11:00

The reserved word when introduces a guard.
Fully guarded clauses can be re-ordered.

factorial(N) when N > 0 ->
N * factorial(N - 1);

factorial(0) -> 1.

This is NOT the same as:

factorial(N) ->
N * factorial(N - 1);

factorial(0) -> 1.

(incorrect!!)

Back to top

Examples of Guards
number(X) - X is a number
integer(X) - X is an integer
float(X) - X is a float
atom(X) - X is an atom
tuple(X) - X is a tuple
list(X) - X is a list

length(X) == 3 - X is a list of length 3
size(X) == 2 - X is a tuple of size 2.

X > Y + Z - X is > Y + Z
X == Y - X is equal to Y
X =:= Y - X is exactly equal to Y
 (i.e. 1 == 1.0 succeeds but

 1 =:= 1.0 fails)

All variables in a guard must be bound.
See the User Guide for a full list of guards and allowed function calls.

Back to top

Traversing Lists
average(X) -> sum(X) / len(X).

sum([H|T]) -> H + sum(T);
sum([]) -> 0.

len([_|T]) -> 1 + len(T);

Sequential Programming http://www.erlang.org/course/sequential_programmi...

8 / 10 2009-05-14 11:00

len([]) -> 0.

Note the pattern of recursion is the same in both cases. This pattern is
very common.

Two other common patterns:
double([H|T]) -> [2*H|double(T)];
double([]) -> [].

member(H, [H|_]) -> true;
member(H, [_|T]) -> member(H, T);
member(_, []) -> false.

Back to top

Lists and Accumulators
average(X) -> average(X, 0, 0).

average([H|T], Length, Sum) ->
average(T, Length + 1, Sum + H);

average([], Length, Sum) ->
Sum / Length.

Only traverses the list ONCE
Executes in constant space (tail recursive)
The variables Length and Sum play the role of accumulators
N.B. average([]) is not defined - (you cannot have the average of zero
elements) - evaluating average([]) would cause a run-time error - we
discuss what happens when run time errors occur in the section on error
handling .

Back to top

Shell Commands
h() - history . Print the last 20 commands.

b() - bindings. See all variable bindings.

f() - forget. Forget all variable bindings.

f(Var) - forget. Forget the binding of variable
X. This can ONLY be used as a command to
the shell - NOT in the body of a function!

Sequential Programming http://www.erlang.org/course/sequential_programmi...

9 / 10 2009-05-14 11:00

e(n) - evaluate. Evaluate the n:th command
in history.

e(-1) - Evaluate the previous command.

Edit the command line as in Emacs
See the User Guide for more details and examples of use of the shell.

Back to top

Special Functions
apply(Mod, Func, Args)

Apply the function Func in the module Mod to the arguments in the list
Args.
Mod and Func must be atoms (or expressions which evaluate to atoms).

1> apply(lists1,min_max,[[4,1,7,3,9,10]]).
{1, 10}

Any Erlang expression can be used in the arguments to apply.

Back to top

Special Forms
case lists:member(a, X) of

true ->
... ;

false ->
...

end,
...

if
integer(X) -> ... ;
tuple(X) -> ...

end,
...

Not really needed - but useful.

Back to top

Sequential Programming http://www.erlang.org/course/sequential_programmi...

10 / 10 2009-05-14 11:00

Concurrent Programming
Definitions
Creating a new process
Simple message passing
An Echo Process
Selective Message Reception
Selection of Any Message
A Telephony Example
Pids can be sent in messages
Registered Processes
The Client Server Model
Timeouts

Definitions
Process - A concurrent activity. A complete virtual machine. The system
may have many concurrent processes executing at the same time.
Message - A method of communication between processes.
Timeout - Mechanism for waiting for a given time period.
Registered Process - Process which has been registered under a name.
Client/Server Model - Standard model used in building concurrent
systems.

back to top

Creating a New Process
Before:

Code in Pid1

Concurrent Programming http://www.erlang.org/course/concurrent_program...

1 / 10 2009-05-14 11:00

Pid2 = spawn(Mod, Func, Args)
After

Pid2 is process identifier of the new process - this is known only to process
Pid1.

back to top

Simple Message Passing

self() - returns the Process Identity (Pid) of the process executing this
function.

From and Msg become bound when the message is received. Messages can
carry data.

Concurrent Programming http://www.erlang.org/course/concurrent_program...

2 / 10 2009-05-14 11:00

Messages can carry data and be selectively unpacked.
The variables A and D become bound when receiving the message.
If A is bound before receiving a message then only data from this process
is accepted.

back to top

An Echo process
-module(echo).
-export([go/0, loop/0]).

go() ->

Pid2 = spawn(echo, loop, []),
Pid2 ! {self(), hello},
receive

{Pid2, Msg} ->
io:format("P1 ~w~n",[Msg])

end,
Pid2 ! stop.

loop() ->
receive

{From, Msg} ->
From ! {self(), Msg},
loop();

stop ->
true

end.

back to top

Concurrent Programming http://www.erlang.org/course/concurrent_program...

3 / 10 2009-05-14 11:00

Selective Message Reception

The message foo is received - then the message bar - irrespective of the order
in which they were sent.

back to top

Selection of any message

Concurrent Programming http://www.erlang.org/course/concurrent_program...

4 / 10 2009-05-14 11:00

The first message to arrive at the process C will be processed - the variable
Msg in the process C will be bound to one of the atoms foo or bar depending
on which arrives first.

back to top

A Telephony Example

ringing_a(A, B) ->
receive

{A, on_hook} ->
A ! {stop_tone, ring},
B ! terminate,
idle(A);

{B, answered} ->
A ! {stop_tone, ring},
switch ! {connect, A, B},
conversation_a(A, B)

end.

Concurrent Programming http://www.erlang.org/course/concurrent_program...

5 / 10 2009-05-14 11:00

This is the code in the process `Call. A and B are local bound variables in the
process Call.

back to top

Pids can be sent in messages

A sends a message to B containing the Pid of A.
B sends a transfer message to C.
C replies directly to A.

back to top

Registered Processes
register(Alias, Pid) Registers the process Pid with the name Alias.

start() ->
Pid = spawn(num_anal, server, [])
register(analyser, Pid).

analyse(Seq) ->

Concurrent Programming http://www.erlang.org/course/concurrent_program...

6 / 10 2009-05-14 11:00

analyser ! {self(),{analyse,Seq}},
receive

{analysis_result,R} ->
R

end.

Any process can send a message to a registered process.

back to top

Client Server Model

Protocol

Server code

Concurrent Programming http://www.erlang.org/course/concurrent_program...

7 / 10 2009-05-14 11:00

-module(myserver).

server(Data) ->
receive

{From,{request,X}} ->
{R, Data1} = fn(X, Data),
From ! {myserver,{reply, R}},
server(Data1)

end.

Interface Library
-export([request/1]).

request(Req) ->
myserver ! {self(),{request,Req}},
receive

{myserver,{reply,Rep}} ->
Rep

end.

back to top

Timeouts

If the message foo is received from A within the time Time perform Actions1

Concurrent Programming http://www.erlang.org/course/concurrent_program...

8 / 10 2009-05-14 11:00

otherwise perform Actions2.

Uses of Timeouts
sleep(T)- process suspends for T ms.

sleep(T) ->
receive
after

T ->
true

end.

suspend() - process suspends indefinitely.
suspend() ->

receive
after

infinity ->
true

end.

alarm(T, What) - The message What is sent to the current process iin T
miliseconds from now

set_alarm(T, What) ->
spawn(timer, set, [self(),T,What]).

set(Pid, T, Alarm) ->
receive
after

T ->
Pid ! Alarm

end.
receive

Msg ->
... ;

end

flush() - flushes the message buffer

flush() ->
receive

Any ->
flush()

after
0 ->

true
end.

A value of 0 in the timeout means check the message buffer first and if it is
empty execute the following code.

Concurrent Programming http://www.erlang.org/course/concurrent_program...

9 / 10 2009-05-14 11:00

back to top

Concurrent Programming http://www.erlang.org/course/concurrent_program...

10 / 10 2009-05-14 11:00

Error Handling
Definitions
Exit signals are sent when processes crash
Exit Signals propagate through Links
Processes can trap exit signals
Complex Exit signal Propagation
Robust Systems can be made by Layering
Primitives For Exit Signal Handling
A Robust Server
Allocator with Error Recovery
Allocator Utilities

Definitions
Link A bi-directional propagation path for exit signals.
Exit Signal - Transmit process termination information.
Error trapping - The ability of a process to process exit signals as if they
were messages.

back to top

Exit Signals are Sent when
Processes Crash
When a process crashes (e.g. failure of a BIF or a pattern match) Exit Signals
are sent to all processes to which the failing process is currently linked.

Error handling http://www.erlang.org/course/error_handling.html

1 / 10 2009-05-14 11:01

back to top

Exit Signals propagate through
Links
Suppose we have a number of processes which are linked together, as in the
following diagram. Process A is linked to B, B is linked to C (The links are
shown by the arrows).

Now suppose process A fails - exit signals start to propogate through the links:

Error handling http://www.erlang.org/course/error_handling.html

2 / 10 2009-05-14 11:01

These exit signals eventuall reach all the processes which are linked together.

The rule for propagating errors is: If the process which receives an exit signal,
caused by an error, is not trapping exits then the process dies and sends exit
signals to all its linked processes.

back to top

Processes can trap exit signals
In the following diagram P1 is linked to P2 and P2 is linked to P3. An error
occurs in P1 - the error propagates to P2. P2 traps the error and the error is
not propagated to P3.

Error handling http://www.erlang.org/course/error_handling.html

3 / 10 2009-05-14 11:01

P2 has the following code:

receive
 {'EXIT', P1, Why} ->

... exit signals ...
 {P3, Msg} ->

... normal messages ...
end

back to top

Complex Exit signal Propagation
Suppose we have the following set of processes and links:

Error handling http://www.erlang.org/course/error_handling.html

4 / 10 2009-05-14 11:01

The process marked with a double ring is an error trapping process.

If an error occurs in any of A, B, or C then All of these process will die
(through propagation of errors). Process D will be unaffected.

back to top

Exit Signal Propagation Semantics
When a process terminates it sends an exit signal, either normal or
non-normal, to the processes in its link set.
A process which is not trapping exit signals (a normal process) dies if it
receives a non-normal exit signal. When it dies it sends a non-normal exit
signal to the processes in its link set.

Error handling http://www.erlang.org/course/error_handling.html

5 / 10 2009-05-14 11:01

A process which is trapping exit signals converts all incoming exit signals
to conventional messages which it can receive in a receive statement.
Errors in BIFs or pattern matching errors send automatic exit signals to
the link set of the process where the error occured.

back to top

Robust Systems can be made by
Layering
By building a system in layers we can make a robust system. Level1 traps and
corrects errors occuring in Level2. Level2 traps and corrects errors ocuring in
the application level.

In a well designed system we can arrange that application programers will not
have to write any error handling code since all error handling is isolated to
deper levels in the system.

Error handling http://www.erlang.org/course/error_handling.html

6 / 10 2009-05-14 11:01

back to top

Primitives For Exit Signal Handling
link(Pid) - Set a bi-directional link between the current process and the
process Pid
process_flag(trap_exit, true) - Set the current process to convert exit
signals to exit messages, these messages can then be received in a normal
receive statement.
exit(Reason) - Terminates the process and generates an exit signal
where the process termination information is Reason.

What really happens is as follows: Each process has an associated mailbox -
Pid ! Msg sends the message Msg to the mailbox associated with the process

Error handling http://www.erlang.org/course/error_handling.html

7 / 10 2009-05-14 11:01

Pid.

The receive .. end construct attempts to remove messages from the mailbox
of the current process. Exit signals which arrive at a process either cause the
process to crash (if the process is not trapping exit signals) or are treated as
normal messages and placed in the process mailbox (if the process is trapping
exit signals). Exit signals are sent implicitly (as a result of evaluating a BIF
with incorrect arguments) or explicitly (using exit(Pid, Reason), or
exit(Reason)).

If Reason is the atom normal - the receiving process ignores the signal (if it
is not trapping exits). When a process terminates without an error it sends
normal exit signals to all linked processes. Don't say you didn't ask!

back to top

A Robust Server
The following server assumes that a client process will send an alloc message
to allocate a resource and then send a release message to deallocate the
resource.

This is unreliable - What happens if the client crashes before it sends the
release message?

top(Free, Allocated) ->
 receive

{Pid, alloc} ->
 top_alloc(Free, Allocated, Pid);
{Pid ,{release, Resource}} ->
 Allocated1 = delete({Resource,Pid}, Allocated),

 top([Resource|Free], Allocated1)
 end.

top_alloc([], Allocated, Pid) ->
 Pid ! no,
 top([], Allocated);

top_alloc([Resource|Free], Allocated, Pid) ->
 Pid ! {yes, Resource},
 top(Free, [{Resource,Pid}|Allocated]).

This is the top loop of an allocator with no error recovery. Free is a list of
unreserved resources. Allocated is a list of pairs {Resource, Pid} - showing
which resource has been allocated to which process.

Error handling http://www.erlang.org/course/error_handling.html

8 / 10 2009-05-14 11:01

back to top

Allocator with Error Recovery
The following is a reliable server. If a client craches after it has allocated a
resource and before it has released the resource, then the server will
automatically release the resource.

The server is linked to the client during the time interval when the resource is
allocted. If an exit message comes from the client during this time the
resource is released.

top_recover_alloc([], Allocated, Pid) ->
 Pid ! no,
 top_recover([], Allocated);

top_recover_alloc([Resource|Free], Allocated, Pid) ->
 %% No need to unlink.
 Pid ! {yes, Resource},
 link(Pid),
 top_recover(Free, [{Resource,Pid}|Allocated]).

top_recover(Free, Allocated) ->
 receive

{Pid , alloc} ->
 top_recover_alloc(Free, Allocated, Pid);
{Pid, {release, Resource}} ->
 unlink(Pid),

 Allocated1 = delete({Resource, Pid}, Allocated),
 top_recover([Resource|Free], Allocated1);
{'EXIT', Pid, Reason} ->
 %% No need to unlink.
 Resource = lookup(Pid, Allocated),
 Allocated1 = delete({Resource, Pid}, Allocated),
 top_recover([Resource|Free], Allocated1)

 end.

Not done -- multiple allocation to same process. i.e. before doing the
unlink(Pid) we should check to see that the process has not allocated more
than one device.

back to top

Allocator Utilities
delete(H, [H|T]) ->

Error handling http://www.erlang.org/course/error_handling.html

9 / 10 2009-05-14 11:01

 T;
delete(X, [H|T]) ->
 [H|delete(X, T)].

lookup(Pid, [{Resource,Pid}|_]) ->
 Resource;
lookup(Pid, [_|Allocated]) ->
 lookup(Pid, Allocated).

back to top

Error handling http://www.erlang.org/course/error_handling.html

10 / 10 2009-05-14 11:01

