
Introduction to the F# Programming Language

What is F# and Why Should I Learn It?

F# is a functional programming language built on .NET. Just like C# and
VB.NET, F# can take advantage of core libraries such as Windows Presenta-
tion Foundation, Windows Communication Foundation, Visual Studio Tools for
Office, etc. With F# you can even write XBox game using XNA.

But just because you can write code in a new language does not mean you
should. So why use F#? Because being a functional language, F# makes
writing some classes of programs much easier than its imperative cousins like
C#. Parallel programming and language-oriented programming are two such
domains that can be expressed easily in F#.

If you have ever written a .NET application and found yourself fighting against
the language to get your idea expressed, then perhaps F# is what you have
been looking for.

Language Basics

#light (OCaml Compatibility)

F# has its roots in a programming language called OCaml and has the ability
to cross-compile OCaml code, meaning that it can compile simple OCaml pro-
grams unmodified. This ability however, means that F# requires some unsavory
syntax by default. #light (pronounced “hash light”) is a compiler directive that
simplifies the syntax of the language.

It is highly recommended to keep #light on since most F# code snippets you
find will either declare it, or assume that it has been declared.

let square x = x * x (Type Inference)

This defines a function called square which squares a number x. Consider for
a moment the equivalent C# code.

1

public static int square(int n)

{

return x * x;

}

Whereas C# requires you to specify type information as well as what the func-
tion actually returns, the F# compiler figures it out for the programmer. This
is referred to as type inference.

From the function signature F# knows that square takes a single parameter
named x and that the function would return x * x. The last thing evaluated
in a function body is the “return value”, so no need for a “return” keyword.
Since many primitive types support (*) such as byte, uint64, double, etc. F#
defaults to int, a signed 32-bit integer.

Now consider the following code which provides a “type annotation” for one
of the parameters, that is telling the compiler the type to expect. Since x is
stated to be of type string, and (+) is only defined for taking two strings,
then the parameter y must also be a string. ANd the result of x + y is the
concatenation of both strings.

> let concat (x: string) y = x + y;;

val concat : string -> string -> string

> concat "Hello, " "World!";;

val it : string = "Hello, World!"

let numbers = [1 .. 10] (F# Lists)

The next line declares a list of numbers one through ten. If you had typed
[|1 .. 10|] that would have created a .NET array of integers. But an F# list
is an immutable linked list, which is the backbone of functional programming.

// Define a list

let vowels = [’e’; ’i’; ’o’; ’u’]

// Attach item to front (cons)

let cons = ’a’ :: vowels

// Concat two lists

let sometimes = vowels @ [’y’]

2

let squares = List.map square numbers (First-Order Func-
tions)

Now we have a list of integers (numbers) and a function (square), we want to
create a new list where each item is the result of calling our function. In other
words, mapping our function to each item in the list.

Fortunately, List.map does just that. Consider another example:

> List.map (fun x -> x % 2 == 0) [1 .. 10];;

val it : bool list

= [false; true; false; true; false; true; false; true; false; true]

The code (fun x -> x % 2 == 0) defines an anonymous function, called a
lambda expression, that has a parameter x and the function returns the result
of “x % 2 = 0”, which is whether or not x is even.

Now notice what we just did — we passed a function as a parameter to another
function. You simply cannot do that in C#. But in F# it allowed us to be very
expressive and succint in our code. Passing around functions as values is known
as “first-order functions” and is a hallmark of functional programming.

printfn “Nˆ2 = %A” squares

Function printf is a simple and type-safe way to print text to the console
window. To get a better feel for how printf works, consider this example
which prints an integer, floating-point number, and a string:

> prinfn "%d %f= %s" 5 0.75 (5.0 * 0.75).ToString());;

5 * 0.7500000 = 3.75

val it : unit = ()

The %d, %f, and %s are holes for integers, floats, strings. %A may also be used
to print anything else.

Console.ReadKey(true) (.NET Interop)

Since F# is built on top of .NET, you can call any .NET library from F# —
from Regular Expressions to WinForms. Namespace can be opened by the open
keyword and brings its types into scope, similar to the using keyword of C#.

3

Modules

Though F# can declare the standard .NET classes you are familiar with, it also
has the notion of a module, which a collection of values, functions, and types.
In contrast to a namespace, which can only contain types.

This is how we are able to access List.map. In the F# library (FSharp.Core.dll)
there is a module named List and on that is a function named map.

Modules serve as a way of encapsulating code when you are rapid prototyping
without needing to spend the time to design a strict object-oriented type hier-
archy. To declare your own module, you can use the module keyword. In the
example, we will associate a mutable variable (explained later) with the module,
which will serve as a global variable.

module ProgramSettings =

let version = "1.0.0.0"

let debugMode = ref false

module MyProgram =

do printfn "Version %s" ProgramSettings.version

// You can also open modules like you can a namespace, which

// brings all their functions and values into scope

open ProgramSettings

debugMode := true

Tuples

A tuple (pronounced “two-pull”) is an ordered collection of values treated like
an atomic unit. Traditionally if you wantd to pass around a group of semi-
related values you would need to create a struct or class, perhaps rely on “out”
parameters. A tuple allows you to keep things organized by grouping related
values together without introducing a new type.

To define a type, simply enclose the group of values in parentheses separate the
individual components by commas.

> let tuple = (1, false, "text");;

val tuple : int * bool * string

> let getNumberInfo (x: int) = (x, x.ToString(), x * x);;

val getNumberInfo : int -> int * string * int

> getNumberInfo 42;;

val it : int * string * int = (42, "42", 1764)

4

Functions can even take tuples as arguments.

> let printBlogInfo (owner, title, url)

= printfn "%s’s blog [%s] is online at ’%s’"

owner title url;;

val printBlogInfo : string * string * string -> unit

Function Currying

A novel feature F# provides is the ability to provide a subset of a function’s
parameters, and bind a new value to the partial application. This is known as
function currying. For example, consider a function which takes three integers
and returns their sum. We can curry that function, by fixing the first parameter
to be 10, resulting in a function that only takes two integers and returns their
sum plus 10.

> let addThree x y z = x + y + z;;

val addThress : int -> int -> int -> int

> let addTwo x y = addThree 10 x y;;

val addTwo : int -> int -> int

> addTwo 1 1;;

val it : int = 12

Pattern Matching

Pattern matching is like a powerful switch statement, allowing you to branch
control flow. You can do more than just comparing a value against a constant
however, pattern matching allows you to also capture new values.

let printGreeting (emp: MicrosoftEmployee) =

match emp with

| BillGates -> printfn "Hello, Bill"

| SteveBallmer -> printfn "Hello, Steve"

| Worker(name)

| Lead(name, _) -> printfn "Hello, %s" name

Pattern matching can also match against the “structure” of the data. So we
can match against list elements joined together.

let listLength aList =

match aList with

5

| [] -> 0

| a :: [] -> 1

| a :: b :: [] -> 2

| a :: b :: c :: [] -> 3

| _ -> failwith "List is too big!"

At the end of the pattern match we had a wildcard _, which matches anything.
So if variable aList had more than three items, the last pattern clause would
execute and throw an exception. Pattern matching also allows you to execute an
arbitrary expression to determine if the pattern is matched. (If that expression
evaluates to false, then the clause is not matched.)

let isOdd x =

match x with

| _ when x % 2 = 0 -> false

| _ when x % 2 = 1 -> true

You can even pattern match using a dynamic type test.

let getType (x : obj) =

match x with

| :? string -> "x is a string"

| :? int -> "x is an int"

| :? Exception -> "x is an exception"

Option Values (Microsoft.FSharp.Core.Option< >)

It is difficult to find nulls in F# code since values are always initialized. However,
there are times when a null value means more than an uninitialized variable.
Sometimes it means the absence of a value. (Option values are similar to nullable
types in C#.)

F# has an “option type” to represent two states: Some and None. In the
following record type Person, the middle initial fields may or may not have a
value.

type Person = { First : string; MI : string option; Last : string }

let billg = { First = "Bill"; MI = Some("H"); Last = "Gates" }

Lazy Values (Microsoft.FSharp.Core.Lazy< >)

Lazy initialization is a term used to describe something which is computed as
needed (and not right when it is declared). F# has lazy values, such as the
following example where x is an integer, but as part of its evaluation prints
“Computed” to the screen.

6

> let x = lazy (printfn "Computed."; 42);;

val x : Lazy<int>

> let listOfX = [x; x; x];;

val listOfX : Lazy<int> list

> x.Force();;

Computed.

val it : int = 42

You see that the value of x was computed when we called Force and the value
of 42 was returned. You can use lazy initialization to avoid computing values
which are not needed or if they are computationally expensive. In addition
they are useful when constructing recursive values. For example, consider a
representation for a circular linked list:

type InfiniteList =

| ListNode of int * InfiniteList

let rec circularList = ListNode(1, circularList)

The value circularList has a reference to itself (representing an infinite loop of
ListNodes with value 1). Without lazy initialization declaring this type of value
would be impossible. But behind the scenes the compiler uses lazy initialization
to make this work.

Some Common Immutable Data Structures

Data structures are divided between mutable and immutable. Immutable data
structures are sometimes called persistent or functional.

• Tuple values and option values: These are immutable and are basic ele-
ments of F# programmings.

• Immutable linked lists of type ’a list: These are cheap to access from the
left end. They are inefficient for random access lookup because the list
must traversed from the left for each lookup, i.e. random access lookup is
O(n) where n is the number of elements in the collection.

• Immutable sets based on balanced trees: Implementation of mmutable sets
is provided via the type Set<’a> in the F# library. These are cheap to
add, access, and union, with O(log(n)) access times, where n is the number
of elments in the collection. Because the type is immutable, internal nodes
can be shared between different sets.

7

• Immutable maps based on balanced trees: These are similar to immutable
sets but associate keys with values (i.e., they are immutable dictionar-
ies). One implementation of these is provided via the F# library type
Map<’key,’value> in Microsoft.FSharp.Collections. As with sets,
these have O(log(n)) access times.

Function Values

Function values are a foundational building block of F# functional program-
ming. For example, they are used for using function values to transform one list
into another.

let http(url: string) =

let req = System.Net.WebRequest.Create(url)

let resp = req.GetResponse()

let stream = resp.GetResponseStream()

let reader = new StreamReader(stream)

let html = reader.ReadToEnd()

resp.Close()

html

let sites = ["http://www.live.com"; "http://www.google.com"]

let fetch url = (url, http url)

List.map fetch sites

One of the primary uses of F# lists is as a general-purpose concrete data struc-
ture for storing ordered list input and ordered rsults. Input lists are often
transformed to output lists using “aggregate” operations that transform, select,
filter, and categorize elements of the list according to a range of criteria.

Using Anonymous Function Values

Function values are common in F#, so it is convenient to define them without
giving them names.

let primes = [2; 3; 5; 7]

let primeCubes = List.map (fun n -> n * n * n) primes

The definition of primeCubes uses an anonymous function value. These are
similar to function definitions but are unnamed and appear as an expression
rather than as a let declaration. The fun is a keyword meaning “function”,
n represents the argument to the function, and n * n * n is the result of the
function. The overall type of the anonymous function expression is int -> int.

8

let resultsOfFetch = List.map (fun url -> (url, http url)) sites

List.map (fun (_,p) -> String.length p) resultsOfFetch

The argument of the anonymous function is a tuple pattern. Using a tuple
pattern automatically extract the second element from each tuple and gives it
the name p within the body of the anonymous function.

Computing with Aggregate Operators

Functions such as List.map are called aggregate operators, and they are powerful
constructs, especially when combined with the other features of F#.

let delimiters = [’ ’; ’\n’; ’\t’; ’<’; ’>’; ’=’]

let getWords s = String.split delimiters s

let getStats site =

let url = "http://" + site

let html = http url

let hwords = html |> getWords

let hrefs = html |> getWords |> List.filter (fun s -> s = "href")

(site,html.Length, hwords.Length, hrefs.Length)

Here we use the function getStats with three web pages. It computes the
length of the HTML for the given website, the number of words in the text of
that HTML, and the approximate number of links on that page.

let sites = ["www.live.com"; "www.google.com"; "search.yahoo.com"]

sites |> List.map getStats

The previous code sample extensively uses the |> operator to pipeline opera-
tions. It is called the “forward pipe” operator, and perhaps the most important
operator in F# programming. Its definition is deceptively simple:

let (|>) x f = fx

Here is how to use the operator to compute the cubes of three numbers:

[1;2;3] |> List.map (fun x -> x * x * x)

It is just as if you had written this:

List.map (fun x -> x * x * x) [1;2;3]

9

In a sense, |> is just “function application in reverse”. However, using |> has
distinct advantages:

• Clarity: When used in conjunction with operators such as List.map, the
|> operator allows you to peform the data transformations and iterations
in a forward-chaining, pipelined style.

• Type inference: Using the |> operator allows type information to tbe
flowed from input object to the functions manipulating those objects. F#
uses information from type inference to resolve some language constructs
such as property accesses and method overloading. This relies on infor-
mation being propagated left to right through the text of a program. In
particular, typing information to the right of a position is not taken into
account when resolving property access and overloads.

Recurring Aggregate Operator Design Pattern from the F# Library:

List.map : (’a -> ’b) -> ’a list -> ’b list

Array.map : (’a -> ’b) -> ’a[] -> ’b[]

Option.map : (’a -> ’b) -> ’a option -> ’b option

Seq.map : (’a -> ’b) -> #seq<’a> -> seq<’b>

Types will aso define methods such as Map that provide a slightly more succint
way of transforming data.

sites.Map(getStats)

Composing Functions with >>

Beside the process of computing with functions, there is an essential and powerful
programming technique in F# to compute new function values from existing
ones using compositional techniques.

let google = http "http://www.google.com"

google

|> getWords

|> List.filter (fun s -> s = "href")

|> List.length

This code can be rewritten using function composition as follows:

let countLinks = getWords

>> List.filter (fun s -> s = "href")

>> List.length

google |> countLinks

10

The countLinks has been defined as the composition of three function values
usnig the >> “forward composition” operator. This operator is defined in the
F# Library as follows:

let (>>) f g x = g(f(x))

The expression f >> g gives a function value that first applies f to the x then
applies g.

Note that >> is typically applied to only two arguments — those on either side
of the binary operator, here named f and g. The final argument x is typically
supplied at a later point. F# is good at optimizing basic constructions of
pipelines and composition sequences from functions — for example, the function
countLinks will become a single function calling the three functions in the
pipeline in sequence.

Building Functions with Partial Application

Composing functions is just one way to compute interesting new functions.
Another useful way is by using partial application.

let shift (dx,dy) (px,py) = (px + dx, py + dy)

let shiftRight = shift (1,0)

let shiftUp = shift (0,1)

let shiftLeft = shift (-1,0)

let shiftDown = shift (0,-1)

The last four functions have been defined by calling shift with only one argu-
ment, in each case leaving a residue function that expects an additional argu-
ment.

shiftRight (10,10)

List.map (shift (2,2)) [(0,0); (1,0); (1,1); (0,1)]

In the second line, the function shift takes two pairs as arguments. The results
of this partial application is a function that takes one remaining tuple parameter
and returns the value shifted by two units in each direction. This resulting
function can now be used in conjunction with List.map.

Using Local Functions

Partial application becomes very powerful when combined with additional local
definitions.

11

open System.Drawing;;

let remap (r1: Rectangle) (r2: Rectangle) =

let scalex = float r2.Width / float r1.Width

let scaley = float r2.Height / float r1.Height

let mapx x = r2.Left + truncate (float (x - r1.Left) * scalex)

let mapy y = r2.Top + truncate (float (y - r1.Top) * scaley)

let mapp (p: Point) = Point(mapx p.X, mapy p.Y)

mapp

The function remap computes a new function value mapp that maps points in
one rectangle to points in another. The type Rectangle is defined in the .NET
library System.Drawing.dll and represents rectangles specified by integer coor-
dinates. The computations on the interior of the transformation are performed
in floating point to improve precision.

In the previous sample, mapx, mapy, and mapp are local functions, i.e. functions
defined locally as part of the implementation of remap. Local functions can be
context dependent, so they can be defined in terms of any values and parameters
that happen to be in scope. Here mapx is defined in terms of scalex, scaley,
r1, and r2.

Local and partially applied functions are, if necessary, implemented by taking
the closure of the variables they depend upon and storing them away until
needed. In optimized F# code, the F# compiler often avoids this and instead
passes extra arguments to the function implementations.

Using Functions As Abstract Values

The function remap generates values of type Point -> Point. It can be thought
of this type as a way of representing “the familty of transformations for the type
Point”. Many useful concepts can be modeled using function types and values.

• The type unit -> unit is used to model “actions”, i.e. operations that
run and perform some unspecified side effect.

• Type of the form type -> type -> int are used to model “comparison
functions” over the type type. Type type * type -> int is also used
for this purpose, where a tuple is accepted as the first argument. Many
collection types will accept such a value as a configuration parameter.

• Type of the form type -> unit are used to model callbacks. Callbacks
are often run in response to a system event, such as when a user clicks a
user interface element.

• Type of the form unit -> type are used to model delayed computations,
which are values that will, when required, produced a value of type type.

12

Delayed computations are related to lazy computations and sequence ex-
pressions.

• Types of the form type -> unit are used to model sinks, which are values
that will, when required, consume a value of type type.

• Types of the form type_1 -> type_2 are used to model transformers,
which are functions that transform each element of a collection.

• Types of the form type_1 -> type_2 -> type_3 are used to model visi-
tor accumulating functions, which are functions that visit each element of
a collection (type type_1) and accumulate a result (type type_2).

Iterating with Aggregate Operators

It is common to use data to drive control, and indeed in functional programming
the distinction between data and control is often blurred: function values can
be used as data, and data can influence control flow. An example is using a
function such a List.iter to iterate over a list.

let sites = ["http://www.live.com"

; "http://www.google.com"

; "http://search.yahoo.com"]

sites

|> List.iter

(fun site ->

printfn "%s, length = %d" site (http site).Length)

Function List.iter simply calls the given (anonymous) function for each ele-
ment in the input list.

Many additional aggregate iteration techniques are defined in the F# and .NET
libraries, particularly by using values of type seq<type>.

Abstracting Control with Functions

Let us consider the common pattern of timing the executiong of an operation
by using System.DateTime.Now.

open System

let start = DateTime.Now

http "http://www.newscientist.com"

let finish = DateTime.Now

let elapsed = finish - start

elapsed

13

Not the type TimeSpan has been inferred from the use of the overloaded operator
in the expression finish - start. The presented technique can be wrapped
up now as a function time that acts as a new control operator:

open System

let time f =

let start = DateTime.Now

let res = f()

let finish = DateTime.Npw

(res, finish - start)

This function runs the input function f but takes the time on either side of
the call. It then returns both the result of the function and elapsed time. The
inferred type is as follows:

time : (unit -> ’a) -> ’a * TimeSpan

Note that F# has automatically inferred a generic type for the function, a tech-
nique called automatic generalization that lies at the heart of F# programming.

An example of using the time function:

time (fun () -> http "http://www.newscientist.com")

Using .NET Methods As First-Class Functions

Existing .NET methods can be used as first-class functions, for example:

open System.IO

[@"C:\Program Files"; @"C:\Windows"]

|> List.map Directory.GetDirectories

Note that sometimes extra type is needed to be added to indicate which “over-
load” of the methods is required.

let f = (Console.WriteLine : string -> unit)

Getting Started with Sequences

Many programming tasks require the iteration, aggregation, and transforma-
tion of data streamed from various sources. One important and general way
to code these tasks is in terms of values of the .NET type IEnumerable<type>

14

(System.Collections.Generic), which is typically abbreviated to seq<type>

in F# code. A seq<type> is simply a value that can be iterated, producing
results of type type on demand. Sequences are used to wrap collections, com-
putations, and data streams and are used to represent the results of database
queries.

Using Range Expressions

Simple sequences can be generated using range expressions. For integer ranges,
these take the form of seq {n .. m} for the integer expressions n and m.

seq {0 .. 2}

Range expressions using other numeric types such as double and single can
be also specified:

seq {-100.0 .. 100.0}

Values of type seq<’a> are lazy in the sense that they compute and return the
successive elements on demand. Therefore sequences representing very large
range can be created, and the elements of the sequence are computed only if
they are required by a subsequent computation. In other words, data structures
containing one trillion elements are not created, but rather sequences that have
the potential to yield this number of elements on demand.

seq {1I .. 10000000000000I}

The default incrment for range expression is always 1. A different increment
can be used via range expressions of the form seq { n .. skip .. m }.

Iterating a Sequence

Sequences can be iterated using the for ... in ... do construct, as well as
the Seq.iter aggregate operator.

let range = seq {0 .. 2 .. 6}

for i in range do

printfn "i = %d" i

This construct forces the iteration of the entire seq so must be used with care
when working with sequences that may yield a large number of elements.

15

Transforming Sequences with Aggregate Operators

Any value of type seq<type> can be iterated and transformed using functions
in the Microsoft.FSharp.Collections.Seq module.

let range = seq {0 .. 10}

range |> Seq.map (fun i -> (i, i * i))

The following operators necessarily evalute all the elements of the input seq

immediately:

• Seq.iter: This iterates all elements, applying a function to each one.

• Seq.to_list: This iterates all elements, building a new list.

• Seq.to_array: This iterates all elements, building a new array.

Most of the other operators in the Seq module return one or more seq<type>

values and force the computation of elements in any input seq<type> values
only on demand.

Seq.append : #seq<’a> -> #seq<’a> -> seq<’a>

Seq.concat : #seq< #seq<’a> > -> seq<’a>

Seq.choose : (’a -> ’b option) -> #seq<’a> -> seq<’b>

Seq.delay : (unit -> #seq<’a>) -> seq<’a>

Seq.empty seq<’a>

Seq.iter : (’a -> unit) -> #seq<’a> -> unit

Seq.filter : (’a -> bool) -> #seq<’a> -> seq<’a>

Seq.map : (’a -> ’b) -> #seq<’a> -> seq<’b>

Seq.singleton : ’a -> seq<’a>

Seq.truncate : int -> #seq<’a> -> seq<’a>

Seq.to_list : #seq<’a> -> ’a list

Seq.of_list : ’a list -> seq<’a>

Seq.to_array : #seq<’a> -> ’a[]

Seq.of_array : ’a[] -> seq<’a>

Types prefixed with #, such as #seq<’a>. This means the function will accept
any type that is compatible with (i.e. a subtype of) seq<’a>. Here are some of
these types:

• Array types: For example, int[] is compatible with ‘seq.

• F# list types: For example, int list is compatible with seq<int>.

• All other F# and .NET collection types: For example, SortedList<string>
(System.Collections.Generic) is compatible with seq<string>.

There are some types that are not directly type compatible with seq<’a> but
can be converted into sequences on demand.

16

Using Lazy Sequences from External Sources

Sequences are used to represent the process of streaming data from an external
source, such as from a database query or from a computer’s file system. For
example, the following recursive function constructs a seq<string> that repre-
sents the process of recursively reading the names of all the files under a given
path. The return types of Directory.GetFiles and Directory.GetDirectories

are string[], and as noted earlier, this type is always compatbile with seq<string>.

open System.IO

let rec allFiles dir =

Seq.append

(dir |> Directory.GetFiles)

(dir

|> Directory.GetDirectories

|> Seq.map allFiles

|> Seq.concat)

The allFiles function shows many aspects of F# working seamlessly together:

• Functions are values: The function allFiles is recursive and is used as
a first-class function values within its own definition.

• Pipelining: The pipelining operator |> provides a natural way to present
the transformations applied to each subdirectory name.

• Type inference: Type inference computes all types in the obvious way,
without any type annotations.

• .NET interoperability: The System.IO.Directory operations provide in-
tuitive primitives, which can then be incorporated in powerful ways using
succint F# programs.

• Laziness where needed: The function Seq.map applies the argument func-
tion lazily (on demand), which means subdirectories will not be read until
really required.

Note that side effects such as reading and writing from an external store should
not in general happen until the lazy sequence value is actually consumed.

Using Sequence Expressions

Aggregate operators are a powerful way of working with seq<type> values.
However, F# also provides a convenient and compact syntax called sequence

17

expressions for specifying sequence values that could be built using operations
such as choose, map, filter, and concat. Sequence expressions can also be
used to specify the shapes of lists and arrays.

• They are a compact way of specifying interesting data and generative
processes.

• They are used to specify database queries when using data access layers
such as Microsoft’s Language Integrated Queries (LINQ).

• They are one particular use of workflows, a more general concept that has
several uses in F# programming.

Creating Sequence Expressions Using for

The simplest form of a sequence expression is as follows:

seq { for value in expr .. expr -> expr }

Here -> should be read as “yield”. This is a shorthand way of writing Seq.map

over a range expression.

let squares = seq { for i in 0 .. 10 -> (i, i * i) }

The more complete form of this construct is the following:

seq { for pattern in seq -> expression }

The pattern allows to decompose the values yielded by the input enumerable.

seq { for (i, isquared) in squares -> (i, isquared, i * isquared) }

The input seq can be a seq<type> or any type supporting a GetEnumerator

method. Note that some important types from the .NET libraries support this
method without directly supporting the seq interface.

seq { for Some(nm) in [Some("James"); None; Some("John")]

-> nm.Length }

18

Enriching Sequence Expressions with Additional Classes

A sequence expression generally always begins with for ... in ..., but ad-
ditional constructs can be used.

• A secondary iteration: for pattern in seq do seq-expr

• A filter: if expr then seq-expr

• A conditional: if expr then seq-expr else seq-expr

• A let binding: let pattern = expr in seq-expr

• A final yield: -> expr or yield expr

• A final yield of another sequence: ->> expr or yield! expr

Secondary iterations generate additional sequences, all of which are collected
and concatenated together. Filters allow to skip elements that do not satisfy a
given predicate.

let checkerboardCoordinates n =

seq { for row in 1 .. n do

for col in 1 .. n do

if (row + col) % 2 = 0 then

yield (row,col) }

Using let clauses in sequence expressions allows to compute intermediary re-
sults.

let fileInfo dir =

seq { for file in Directory.GetFiles(dir) do

let creationTime = File.GetCreationTime(file)

let lastAccessTime = File.GetLastAccessTime(file)

yield (file,creationTime,lastAccessTime) }

The final yield of a sequence expression can also be another sequence, signified
through the use of the ->> symbol or the yield! keyword. Symbols -> and ->>

can be used in compact sequence expressions that do not contain let, if, and
other more advanced constructs. Note that multiple generators can be included
in one sequence expression.

let rec allFiles dir =

seq { for file in Directory.GetFiles(dir) -> file

for subdir in Directory.GetDirectories dir

->> (allFiles subdir) }

19

Note that when using the #light syntax option, the do and in tokens can be
omitted when immediately followed by a -> or ->> or when part of a sequence
of for or let bindings.

Enriching Sequence Expressions to Specify Lists and Arrays

Range and Sequence expressions can be also used to build list and array values.
The syntax is identical except the surrounding braces are replaced by the usual
[] for lists and [| |] for arrays.

[1 .. 4]

[for i in 0 .. 3 -> (i, i * i)]

[| for i in 0 .. 3 -> (i, i * i) |]

F# lists and arrays are finite data structures built immediately rather than on
demand, so care must be taken that length of the sequence is suitable.

Exploring Some Simple Type Definitions

F# is a typed language, and it is often necessary for the programmer to declare
new “shapes” of types via type definitions and type abbreviations. F# also lets
programmer define a range of sophisticated type definition related to object-
oriented programming, however, these are often not required in basic functional
programming.

Defining Type Abbreviations

Type abbrevations are the simplest type definitions:

type index = int

type flags = int64

type results = string * TimeSpan * int * int

Type abbreviations can be generic:

type StringMap<’a> = Microsoft.FSharp.Collections.Map<string,’a>

type Projectsion<’a,’b> = (’a -> ’b) * (’b -> ’a)

Type abbrevations are not concrete, because they alias an existing type. Type
abbrevations are expanded during the process of compiling F# code to the
format shared between multiple .NET languages. The difference can be detected
by other .NET languages, and because of this, a number of restrictions apply
to type abbreviations.

20

Defining Records

The simplest concrete type definitions are records.

type Person =

{ Name: string;

DateOfBirth: System.DateTime; }

Record values can be constructed by using the record labels.

{ Name = "Bill"; DateOfBirth = new System.DateTime(1962,09,02) }

Record values can be constructed by using the following more explicit syntax.

{ new Person

with Name = "Anna"

and DateOfBirth = new System.DateTime(1968,07,23) }

Record values are often used to return results from functions.

type PageStats =

{ Site: string;

Time: System.TimeSpan;

Length: int;

NumWords: int;

NumHRefs: int }

This technique works well when returning a large number of heterogeneous
results:

let stats site =

let url = "http://" + site

let html,t = time (fun () -> http url)

let hwords = html |> getWords

let hrefs = hWords |> List.filter (fun s -> s = "href")

{ Site=site; Time=t; Length=html.Length;

NumWords=hwords.Length; NumHRefs=hrefs.Length }

Handling Non-Unique Records Field Names

type Person =

{ Name: string;

21

DateOfBirth: System.DateTime; }

type Company =

{ Name: string;

Address: string; }

When record names are non-unique, constructions of record values may need to
use object expressions in order to indicate the name of the record type, thus
disambiguating the construction.

type Dot = { X: int; Y: int }

type Point = { X: float; Y: float }

On lookup, record labels are accessed using the . notation in the same way
as properties. One slight difference is that in the absence of further qualifying
information, the type of the object being accessed is inferred from the record
label.

Cloning Records

Records support a convenient syntax to clone all the values in the record, cre-
ating a new value, with some values replaced.

type Point3D = { X: float; Y: float; Z: float }

let p1 = { X = 3.0; Y = 4.0; Z = 5.0 }

let p2 = { p1 with Y = 0.0; Z = 0.0 }

The definition of p2 is identical to this:

let p2 = { X = p1.X; Y = 0.0; Z = 0.0 }

This expression form does not mutate the values of a record, even if the fields
of the original record are mutable.

Defining Discriminated Unions

The second kind of concrete type is a discriminated union.

type Route = int

type Make = string

type Model = string

type Transport =

| Car of Make * Model

| Bicycle

| Bus of Route

22

Each alternative of a discriminated union is called a discriminator. Values can
be built by using a discriminator much as if it were a function.

let nick = Car("BMW", "360")

let don = [Bicycle; Bus 8]

let james = [Car ("Ford","Fiesta"); Bicycle]

Discriminators can be also used in pattern matching:

let averageSpeed (tr: Transport) =

match tr with

| Car _ -> 35

| Bicycle -> 16

| Bus _ -> 24

Discriminated unions can include recursive references (the same is true for
records and other type definitions). This is used when representing structured
languages via discriminated.

type Proposition =

| True

| And of Proposition * Proposition

| Or of Proposition * Proposition

| Not of Proposition

Recursive functions can be used to traverse such a type.

let rec eval (p: Proposition) =

match p with

| True -> true

| And(p1,p2) -> eval p1 && eval p2

| Or (p1,p2) -> eval p1 || eval p2

| Not(p1) -> not (eval p1)

Discriminated unions are a powerful and important construct and are useful
when modeling a finite, sealed set of choice. This makes them a perfect fit for
many constructs that arise in applications and symbolic analysis libraries. They
are, by design, non-extensible: subsequent modules cannot add new cases to a
discriminated union.

23

Using Discriminated Unions As Records

Discriminated union types with only one data tag are an effective way to im-
plement record-like types.

type Point3D = Vector3D of float * float * float

let origin = Vector3D(0.,0.,0.)

let unitX = Vector3D(1.,0.,0.)

let unitY = Vector3D(0.,1.,0.)

let unitZ = Vector3D(0.,0.,1.)

They can be decomposed using succint patterns in the same way as tuple argu-
ments.

let length (Vector3D(dx,dy,dz)) = sqrt(dx * dx + dy * dy + dz * dz)

This technique is most useful for record-like values where there is some natu-
ral order on the constituent elements of the value or where the elements have
different types.

Defining Multiple Types Simultaneously

Multiple types can be declared together to give a mutually recursive collection
of types, including record types, discriminated unions, and abbreviations. The
type definitions must be separated by the keyword and.

type node =

{ Name : string;

Links : link list }

and link =

| Dangling

| Link of node

Imperative Programming in F#

The functional programming paradigm is associated with “programming with-
out side effects”, called pure functional programming. In this paradigm, pro-
grams compute the results of a mathematical expression and do not cause any
side effects, except perhaps reporting the result of the computation.

F# is not a “pure” functional language, for example, programmers can write
programs that mutate data, perform I/O communications, start threads, and

24

raise exceptions. Furthermore, the F# type system does not enforce a strict
distinction between expressions that perform these actions and expressions that
do not.

Programming with side effects is called imperative programming. If your pri-
mary programming experience has been with an imperative language such as
C, C#, or Java, you will initially find yourself using imperative constructs in
F#. However, over time F# programmers generally learn how to perform many
routine programming tasks within the side-effect-free subset of the language.
F# programmers tend to use side effects in the following situations:

• Scripting and prototyping.

• Working with .NET library components that use side effects heavily, such
as GUI libraries and I/O libraries.

• Initializing complex data structures.

• Using inherently imperative, efficient data structures such as hash tables
and hash sets.

• Locally optimizing routines in a way that improves on the performance of
the functional version of the routine.

• Working with very large data structures or in scenarios where the alloca-
tion of data structures must be minimized for performance reasons.

Some F# programmers do not use any imperative techniques at all except as
part of the external wrapper for their programs. Programming with fewer side
effects is attractive for many reasons. For example, eliminating unnecessary side
effects nearly always reduces the complexity of the code, so it leads to fewer
bugs. Another thing experienced functional programmers appreciate is that the
programmer or compiler can easily adjust the order in which expressions are
computed.

A lack of side effects also helps reason about the code: it is easier to visually
check when two programs are equivalent, and it is easier to make quite radical
adjustments to the code without introducing new bugs. Programs that are free
from side effects can often be computed on demand where necessary, often by
making very small, local changes to the code to introduce the use of delayed
data structures. Finally, side effects such as mutation are difficult to use when
data is accessed concurrently from multiple threads.

Imperative Looping and Iterating

Three looping constructs are available to help make writing iterative code with
side effects simple:

25

• for loops.

• while loops.

• Sequence loops.

All three constructs are for writing imperative programs, indicated partly by
the fact that in all cases the body of the loop must have a return type of unit.
Note that unit is the F# type that corresponds to void in imperative languages
such as C, and it has a single value ().

Using Mutable Records

The simplest mutable data structures in F# are mutable records. A record is
mutable if one or more of its fields is labeled mutable. This means that record
fields can be updated using the <- operator. Mutable fields are usually used for
records that implement the internal state of objects.

type DiscreteEventCounter =

{ mutable Total: int;

mutable Positive: int;

Name : string }

let recordEvent (s: DiscreteEventCounter) isPositive =

s.Total <- s.Total + 1

if isPositive then s.Positive <- s.Positive + 1

let reportStatus (s: DiscreteEventCounter) =

printfn "We have %d %s out of %d" s.Positive s.Name s.Total

let newCounter nm =

{ Total = 0;

Positive = 0;

Name = nm }

let longPageCounter = newCounter "long page(s)"

let fetch url =

let page = http url

recordEvent longPageCounter (page.Length > 10000)

page

Every call to the function fetch mutatas the mutable record fields in the global
variable longPageCounter.

26

fetch "http://www.smh.com.au" |> ignore

fetch "http://www.theage.com.au" |> ignore

reportStatus longPageCounter

Note that record types can also support members (e.g. properties and methods)
and give implicit implementations of interfaces. This means it can be used as a
way to implement object-oriented abstractions.

Mutable Reference Cells

One particularly useful mutable record is the general-purpose type of mutable
reference cells, or ref cells for short. These often play much the same role as
pointers in the other imperative programming languages.

The key type is ’a ref, and its main operators are ref, !, and :=. The types
of these operators are as follows:

val ref : ’a -> ’a ref

val (:=) : ’a ref -> ’a -> unit

val (!) : ’a ref -> ’a

These allocate a reference cell, read the cell, and mutate the cell, respectively.
Both the ’a ref type and its operations are defined in the F# library as a
simple record data structure with a single mutable field.

type ’a ref = { mutable contents: ’a }

let (!) r = r.contents

let (:=) r v = r.contents <- v

let ref v = { contents = v }

The type ’a ref is actually a synonym for a type Microsoft.FSharp.Core.Ref<’a>
defined in this way.

Mutability of Data Structures

It is useful to know which data structures are mutable and which are not. If
a data structure can be mutated, then this will typically be evident in the
types of the operations can be performed on that structure. For example, if a
data structure Table<’Key,’Value> has an operation like the following, then
in practice updates to the data structure modify the data structure itself.

val add : Table<’Key,’Value> -> ’Key -> ’Value -> unit

27

The updats to the data structure are destructive, and no value is returned from
the operation. The result is the type unit. The presence of unit as a return
type is a sure sign that an operation performs some imperative side effects.

In contrast, operations on immutable data structures typically return a new
instance of the data structure when an operation such as add is performed.

val add : ’Key -> ’Value -> Table<’Key,’Value> -> Table<’Key,’Value>

Immutable data structures are called functional or persistent, because the orig-
inal table is not modified when adding an element. Well-crafted persistent data
structures do not duplicate the actual memory used to store the data structure
every time an addition is made. Instead, internal nodes can be shared between
the old and new data structures. Most data structures in the .NET libraries are
not persistent, though they can be used as persistent ones by accessing them in
“read-only” mode and copying them where necessary.

Avoid Aliasing

Two values of type ’a ref may refer to the same reference cell — this is called
aliasing. Aliasing of immutable data structures is not a problem, however,
aliasing of mutable data can lead to problems in understanding code. In general,
it is a good practice to ensure that no two values currently in scope directly alias
the same mutable data structures.

Hiding Mutable Data

Mutable data is often hidden behind an encapsulation boundary. For example,
the following code shows how to hide a mutable reference within the inner closure
of values referenced by a function value.

let generateStamp =

let count = ref 0

(fun () -> count := !count + 1; !count)

The line let count = ref 0 is executed one, when the generateStamp func-
tion is defined.

This is a powerful technique for hiding and encapsulating mutable state without
resorting to writing new type and class definitions. It is a good programming
practice in polished code to ensure that all related items of mutable state are
collected under some named data structure or other entity such as a function.

28

Using Mutable Locals

Mutable references must be explicitly dereferenced, but F# also supports mu-
table locals that are implicitly dereferenced. These must either be top-level
definitions or be a local variable in a function.

let sum n m =

let mutable res = 0

for i = n to m do

res <- res + i

res

There are strong restrictions on the use of mutable locals. In particular, unlike
mutable references, mutable locals are guaranteed to be stack-allocated values,
which is important in some situations because the .NET garbage collector will
not move stack values. As a result, mutable locals may not be used at all in
any inner lambda expressions or other closure constructs, with the exception
of top-level mutable values, which can be used anywhere, and mutable fields
of records and objects, which are associated with the heap allocated objects
themselves.

Exceptions and Controlling Them

When a routine encounters a problem, it may respond in several ways, such
as by recovering internally, emitting a warning, returning a marker value or
incomplete result, or throwing an exception.

let req = System.Net.WebRequest.Create("not a URL")

Similarly, the GetResponse method also used in the http function may raise a
System.Net.WebException exception. The exceptions that may be raised by
routines are typically recorded in the documentation for those routines in the
documentation for those routines. Exception values may also be raised explicitly
by F# code.

raise (System.InvalidException("not today thank you"))

Exceptions are commonly raised using the F# failwith function.

if false then 3 else failwith "hit the wall"

The types of some of the common functions used to raise exceptions:

29

val failwith : string -> ’a

val raise : #exn -> ’a

val failwithf : StringFormat<’a,’> -> ’a

val invalid_arg : string -> ’a

Note that the return types of all these are generic type variables, meaning
that the functions never return “normally” and instead return by raising an
exception. This means they can be used to form an expression of any particular
type and indeed can be handy when drafting code.

Catching Exceptions

Exceptions can be caught using the try ... with ... language construct and
:? type-test patterns, which filter any exception value caught by the with clause.

try

raise (System.InvalidOperationException ("it’s just not my day"))

with

| :? System.InvalidOperationException -> printfn "caught!";;

Note that try ... with ... is just an expression, and it may return a result
in more branches.

open System.IO

let http(url: string) =

try

let req = System.Net.WebRequest.Create(url)

let resp = req.GetResponse()

let stream = resp.GetResponseStream()

let reader = new StreamReader(stream)

let html = reader.ReadToEnd()

html

with

| :? System.UriFormatException -> ""

| :? System.Net.WebException -> ""

When an exception is thrown, a value is created that records information about
the exception. It is this value that is being matched against the earlier type-test
patterns. This value may also be bound directly and manipulated in the with

clause of the try ... with constructs.

30

Using try ... finally

Exceptions may also be processed using the try ... finally ... construct.
This guarantees to run the finally clause both when an exception is thrown and
when the expression evalutates evaluates normally. This allows the programmer
to ensure that resources are disposed after the completion of an operation.

let httpViaTryFinally(url: string) =

let req = System.Net.WebRequest.Create(url)

let resp = req.GetResponse()

try

let stream = resp.GetResponseStream()

let reader = new StreamReader(stream)

let html = reader.ReadToEnd()

html

finally

resp.Close()

A shorter form to close and dispose of resource is to use a use binding instead
of a let binding.

let httpViaUseBinding(url: string) =

let req = System.Net.WebRequest.Create(url)

use resp = req.GetResponse()

let stream = resp.GetResponseStream()

let reader = new StreamReader(stream)

let html = reader.ReadToEnd()

html

Defining New Exception Types

F# lets you define new kinds of exception objects that carry data in a conve-
niently accessible form.

exception BlockedURL of string

let http2 url =

if url = "http://www.kaos.org"

then raise(BlockedURL(url))

else http url

The information from F# exception values can be extracted, using pattern
matching:

31

try

raise(BlockedURL("http://www.kaos.org"))

with

| BlockedURL(url) -> printf "blocked! url = ’%s’\n" url;;

Exception values are always subtypes of the F# type exn, an abbreviation for
the .NET type System.Exception.

Having an Effect: Basic I/O

Imperative programming style and input/output are closely related topics.

Very Simple I/O: Reading and Writing Files

The .NET types System.IO.File and System.IO.Directory contain a number
of simple functions to make working with files easily.

open System.IO

File.WriteAllLines("test.txt", [| "This is a test file.";

"It is easy to read." |])

File.ReadAllLines("test.txt")

The results of System.IO.File.ReadAllLines can be also used as part of a list
or sequence defined using a sequence expression.

[for line in File.ReadAllLines("test.txt") do

let words = line.Split [| ’ ’ |]

if words.Length > 3 && words.[2] = "easy" then

yield line]

.NET I/O via Streams

The .NET namespace System.IO contains the primary .NET types for read-
ing and writing bytes and text to or from data sources. The primary output
constructs in this namespace:

• System.IO.BinaryWriter: Writes primitive data types as binary values.
Create using new BinaryWriter(stream). Create output streams using
File.Create(filename).

• System.IO.StreamWriter: Writes textual strings and characters to a
stream. The text is encoded according to a particular Unicode encod-
ing. Create by using new StreamWriter(stream) and its variants or by
using File.CreateText(filename).

32

• System.IO.StringWriter: Writes textual strings to a StringBuilder,
which eventually can be used to generate a string.

These are the primary input constructs in the System.IO namespace:

• System.IO.BinaryReader: Reads primitive data types as binary values.
When reading the binary data as a string, it interprets the bytes according
to a particular Unicode encoding. Create using new BinaryReader(stream).

• System.IO.StreamReader: Reads a stream as textual strings and charac-
ters. The bytes are decoded to strings according to a particular Unicode
encoding. Create by using new StreamReader(stream) and its variants
or by using File.OpenText(filename).

• System.IO.StringReader: Reads a string as textual strings and charac-
ters.

Using System.Console

Some simple input/output routines are provided in the System.Console class.

System.Console.WriteLine("Hello World")

System.Console.Readline()

Working with null Values

The keyword null is used in imperative programming languages as a special,
distinguished value of a type that represents an uninitialized value or some other
kind of special condition. In general, null is not used in conjunction with types
defined in F# code, though it is common to simulate null with a value of the
option type.

let parents = [("Adam",None); ("Cain",Some("Adam","Eve"))]

However, reference types defined in other .NET languages do support null,
and when using .NET APIs, one may have to explicitly pass null values to
the API and also, where appropriate, test return values for null. The .NET
Framework documentation specified when null may be returned from an API.
It is recommended to test for this condition using null pattern tests.

match System.Environment.GetEnvironmentVariable("PATH") with

| null -> printf "the environment variable PATH is not defined\n"

| res -> printf "the environment variable PATH is set to %s\n" res

33

The following is a function that incorporates a pattern type test and a null-
value test.

let switchOnType (a:obj) =

match a with

| null -> printf "null!"

| :? System.Exception as e -> printf "An exception: %s!" e.Message

| :? System.Int32 as i -> printf "An integer: %d!" i

| :? System.DateTime as d -> printf "A date/time: %O!" d

| _ -> printf "Some other kind of object\n"

There are other important sources of null values. For example, the “semisafe”
function Array.zero_create creates an array whose values are initially null

or, in the case of values types, and array each of whose entities is the zero bit
pattern. This function is included with F# primarily because there is really
no other alternative technique to initialize and create the array values used as
building blocks of larger, more sophisticated data structures.

Functional Programming with Side Effects

F# stems from a tradition in programming languages where the emphasis has
been on declarative and functional approaches to programming where state is
made explicit, largely by passing extra parameters. Many F# programmers
use functional programming techniques first before turning to their imperative
alternatives.

However, F# also integrates imperative and functional programming together
in a powerful way, and F# is actually an extremely succint imperative program-
ming language. Furthermore, in some cases, no good functional techniques exist
to solve a problem, or those that do are too experimental for production to use.
As a consequence using imperative constructs and libraries is common in F# in
practice.

Regardless of this, the reader is encouraged to “think functionally”, even about
his or her imperative programming. In particular, it is always helpful to be
aware of the potential side effects of the overall program and the particular
characteristics of those side effects.

Consider Replacing Mutable Locals and Loops with Recursion

When imperative programmers begin to use F#, they frequently use mutable
local variables or reference cells heavily as they translate code fragments from
imperative-language implementations.

Consider the following (naive) implementation of factorization, transliterated
from C.

34

let factorizeImperative n =

let mutable primefactor1 = 1

let mutable primefactor2 = n

let mutable i = 2

let mutable fin = false

while (i < n && not fin) do

if (n % i = 0) then

primefactor1 <- i

primefactor2 <- n / i

fin <- true

i <- i + 1

if (primefactor1 = 1) then None

else Some (primefactor1, primefactor2)

This code can be replaced by use of an inner recursive function.

let factorizeRecursive n =

let rec find i =

if i >= n then None

elif (n % i = 0) then Some(i,n / i)

else find (i+1)

find 2

This second code is not only shorter, but it also uses no mutation, which makes
it easier to reuse and maintain. It is also easy to see that the loop terminates (i
increasing toward n) and to see the two exit conditions for the function (i >= n

and n % i = 0). Note that state i has become an explicit parameter.

Separate Pure Computation from Side-Effecting Computations

Where possible, separate out as much of your computation as possible using side-
effect-free functional programming. For example, injecting printf expressions
throughout your code may make for a good debugging technique but, if not
used widely, can lead to code that is difficult to understand and inherently
imperative.

Separating Mutable Data Structures

A common technique of object-oriented programming is to ensure that mutable
data structures are private, non-escaping, and, where possible, fully separated,
which means there is no chance that distinct pieces of code can access each
other’s internal state in undesirable ways. Fully separated state can even be

35

used inside the implementation of what, to the outside world, appears to be a
purely functional piece of code.

For example, where necessary, side effects can be used on private data structures
allocated at the start of an algorithm and then discard these data structures
before returning a result. The result is then effectively a side-effect-free function.

One example of separation from the F# library is the library’s implementation
of List.map, which uses mutation internally, but the writes occur on an internal,
separated data structure that no other code can access. Thus, as far as callers
are concerned, List.map is pure and functional.

open System.Collections.Generic

let divideIntoEquivalenceClasses keyf seq =

// The dictionary to hold the equivalence classes

let dict = new Dictionary<’key,ResizeArray<’a>>()

// Build the groupings

seq |> Seq.iter (fun v ->

let key = keyf v

let ok,prev = dict.TryGetValue(key)

if ok then prev.Add(v)

else let prev = new ResizeArray<’a>()

dict.[key] <- prev

prev.Add(v))

// Return the sequence-of-sequences. Don’t reveal the

// internal collections: just reveal them as sequences

dict |> Seq.map (fun group -> group.Key, Seq.readonly group.Value)

This uses the Dictionary and ResizeArray mutable data structures internally,
but these mutable data structures are not revealed externally.

An example use:

divideIntoEquivalenceClasses (fun n -> n % 3) [0 .. 10]

Not All Side Effects Are Equal

It is often helpful to use the “weakest” set of side effects necessary to achieve
the desired programming task and at least be aware when using “strong” side
effects:

• Weak side effects are ones that are effectively benign given the assump-
tions making about the application. For example, writing to a log file is
very useful and is essentially benign. Similarly, reading data from a stable,

36

unchanging file store on a local disk is effectively treating the disk as an
extension of read-only memory. so reading these files is a weak form of
side effect that will not be difficult to incorporate into programs.

• Strong side effects have a much more corrosive effect on the correctness
and operational properties of the program. For example, blocking network
I/O is a relatively strong side effect by any measure. Performing blocking
network I/O in the middle of a library routine can have the effect of
destroying the responsiveness of a GUI application, at least if the routine
invoked by the GUI thread of an application. Any constructs that perform
synchronization between threads are also a major source of strong side
effects.

Whether a particular side effect is stronger or weaker depends very much on
the application and whether the consequences of the side effect are sufficiently
isolated and separated from other entities. Strong side effects can and should
be used freely in the outer shell of an application or when scripting.

Avoid Combining Imperative Programming and Laziness

It is generally thought to be bad style to combine delayed computations (i.e. lazi-
ness) and side effects. But sometimes it is reasonable to set up a read from a
file system as a lazy computation using sequences. However, it is relatively easy
to make mistakes in this sort of programming.

open System.IO

let reader1, reader2 =

let reader = new StreamReader(File.OpenRead("test.txt"))

let firstReader() = reader.ReadLine()

let secondReader() = reader.ReadLine()

reader.Close()

firstReader, secondReader

let firstLine = reader1()

let secondLine = reader2()

firstLine, secondLine

This code is wrong because the StreamReader object reader is used after the
point indicated by the comment. The returned function values are then called,
and they will try to read from the “captured” variable reader. Function values
are just one example of delayed computations: other examples are lazy values,
sequences, and any objects that perform computations on demand. Be careful
not to build delayed objects such as reader that represent handles to transient,

37

disposable resources unless those objects are used in a way that respects the
lifetime of that resource.

The previous code can be corrected to avoid using laziness in combination with
a transient resource.

open System.IO

let line1, line2 =

let reader = new StreamReader(File.OpenRead("test.txt"))

let firstLine = reader.ReadLine()

let secondLine = reader.ReadLine()

reader.Close()

firstLine, secondLine

Another technique is to use language and/or library constructs that tie the
lifetime of an object to some larger object. For example, we might want to read
from a file to generate a delayed sequence. The Seq.generate_using function
is useful for opening disposable resources and using them to generate results.

let reader =

Seq.generate_using

(fun () -> new StreamReader(File.OpenRead("test.txt")))

(fun reader ->

if reader.EndOfStream

then None

else Some(reader.ReadLine()))

A use binding within a sequence expression can be used, which augments the
sequence object with the code needed to clean up the resource when iteration
is finished or terminates.

let reader =

seq { use reader = new StreamReader(File.OpenRead("test.txt"))

while not reader.EndOfStream do

yield reader.ReadLine() }

Try to keep the code application pure and use both delayed computations lazi-
ness) and imperative programming (side effects) where appropriate but to be
careful about using them together.

38

