Introduction to Clean

Mónika Mészáros E-mail: bonnie@inf.elte.hu

Department of Programming Languages and Compilers ELTE

May 21, 2009.

Outline of the presentation

(1) Functional programming languages

Outline of the presentation

(1) Functional programming languages
(2) Evaluation

Outline of the presentation

(1) Functional programming languages
(2) Evaluation
(3) Characteristics of Clean

Outline of the presentation

(1) Functional programming languages
(2) Evaluation
(3) Characteristics of Clean

4 Clean basics

Outline of the presentation

(1) Functional programming languages
(2) Evaluation

3 Characteristics of Clean
(4) Clean basics
(5) Lists, functions on lists

Outline of the presentation

(1) Functional programming languages
(2) Evaluation
(3) Characteristics of Clean
(4) Clean basics
(5) Lists, functions on lists

6 Polymorphic functions

Outline of the presentation

(1) Functional programming languages
(2) Evaluation
(3) Characteristics of Clean

4 Clean basics
(5) Lists, functions on lists
(6) Polymorphic functions
(7) Exercises

Functional programming languages

- Subset of declarative programming languages: computation is defined by set of declarations
main concerns

Functional programming languages

- Subset of declarative programming languages: computation is defined by set of declarations
- Specification of problem, refinement of problem are the main concerns

Functional programming languages

- Subset of declarative programming languages: computation is defined by set of declarations
- Specification of problem, refinement of problem are the main concerns
- Type, class, function definitions, initial expression

Functional programming languages

- Subset of declarative programming languages: computation is defined by set of declarations
- Specification of problem, refinement of problem are the main concerns
- Type, class, function definitions, initial expression
- Computation means evaluation of the initial expression (rewriting rules)

Functional programming languages

- Subset of declarative programming languages: computation is defined by set of declarations
- Specification of problem, refinement of problem are the main concerns
- Type, class, function definitions, initial expression
- Computation means evaluation of the initial expression (rewriting rules)
- Program components solving subproblems do not cause side-effects

Mathematical model of computation: λ-calculus (Church 1932-33, computationally equivalent to Turing machine)

Functional programming languages

- Subset of declarative programming languages: computation is defined by set of declarations
- Specification of problem, refinement of problem are the main concerns
- Type, class, function definitions, initial expression
- Computation means evaluation of the initial expression (rewriting rules)
- Program components solving subproblems do not cause side-effects
- Mathematical model of computation: λ-calculus (Church, 1932-33, computationally equivalent to Turing machine)

Evaluation

- Evaluation = sequence of rewriting (reduction) steps

> A reduction step: substitution (rewriting) of a functior application by its definition in the body, until we reach normal form Evaluation strategy: selection order of redexes (reducible expressions), well-known strategies: lazy (function application first), strict (arquments first), paralell

Evaluation

- Evaluation = sequence of rewriting (reduction) steps
- A reduction step: substitution (rewriting) of a function application by its definition in the body, until we reach normal form

Evaluation

- Evaluation = sequence of rewriting (reduction) steps
- A reduction step: substitution (rewriting) of a function application by its definition in the body, until we reach normal form
- Evaluation strategy: selection order of redexes (reducible expressions), well-known strategies: lazy (function application first), strict (arguments first), paralell

Evaluation

- Evaluation = sequence of rewriting (reduction) steps
- A reduction step: substitution (rewriting) of a function application by its definition in the body, until we reach normal form
- Evaluation strategy: selection order of redexes (reducible expressions), well-known strategies: lazy (function application first), strict (arguments first), paralell
- Normal form is unique (in confluent rewriting systems), lazy evaluation order always finds the normal form, if it exists

Examples of evaluation

inc	$x=x+1$
square	$x=x * x$
squareinc $x=$ square (inc $x)$	

Examples of evaluation

inc	$x=x+1$
square	$x=x * x$
squareinc $x=$ square (inc $x)$	

Evaluation of squareinc 7:
lazy:

Examples of evaluation

```
inc
x = x + 1
square x = x * x
squareinc x = square (inc x)
```


Evaluation of squareinc 7:

- strict:

$$
\begin{aligned}
& \text { squareinc } 7->\text { square (inc } 7 \text {) }->\text { square }(7+1) \\
& \quad->\text { square } 8->8 \star 8->64
\end{aligned}
$$

lazy:

Examples of evaluation

$$
\begin{array}{ll}
\text { inc } & x=x+1 \\
\text { square } & x=x \star x \\
\text { squareinc } x=\text { square (inc } x \text {) }
\end{array}
$$

Evaluation of squareinc 7:

- strict:

$$
\begin{aligned}
& \text { squareinc } 7->\text { square }(\text { inc } 7)->\text { square }(7+1) \\
& \quad->\text { square } 8->8 \star 8->64
\end{aligned}
$$

- lazy:

$$
\begin{aligned}
& \text { squareinc } 7 \rightarrow \text { square }(\text { inc } 7) \\
& \quad->(\text { inc } 7) \star(\text { inc } 7)->(7+1) \star(\text { inc } 7) \\
& ->8 \star(\text { inc } 7) \rightarrow>8 \star(7+1)->8 \star 8->64
\end{aligned}
$$

Examples of evaluation

```
inc x = x + 1
square x = x * x
squareinc x = square (inc x)
```

Evaluation of squareinc 7:

- strict:

$$
\begin{aligned}
& \text { squareinc } 7->\text { square (inc } 7 \text {) }->\text { square }(7+1) \\
& \quad->\text { square } 8->8 \star 8->64
\end{aligned}
$$

- lazy:

$$
\begin{aligned}
& \text { squareinc } 7->\text { square }(\text { inc } 7) \\
& \quad->(\text { inc } 7) \star(\text { inc } 7)->(7+1) \star(\text { inc } 7) \\
& ->8 \star(\text { inc } 7)->8 \star(7+1)->8 \star 8->64
\end{aligned}
$$

Clean uses lazy evaluation.

Characteristics of Clean

- No destructive assignments

Referential transparency - equational reasoning (same expression means always the same value) Strongly tyned (every suheynrescion has a static type) type deduction, polymorphism, abstract algebraic data

Characteristics of Clean

- No destructive assignments
- Referential transparency - equational reasoning (same expression means always the same value)

Characteristics of Clean

- No destructive assignments
- Referential transparency - equational reasoning (same expression means always the same value)
- Strongly typed (every subexpression has a static type), type deduction, polymorphism, abstract algebraic data types

Currying - functions with 1 argument

Characteristics of Clean

- No destructive assignments
- Referential transparency - equational reasoning (same expression means always the same value)
- Strongly typed (every subexpression has a static type), type deduction, polymorphism, abstract algebraic data types
- Higher order functions (argument or value is a function) example:
twice $\mathrm{f} x=\mathrm{f}$ (f x$) / / \mathrm{f}$ is a function

Characteristics of Clean

- No destructive assignments
- Referential transparency - equational reasoning (same expression means always the same value)
- Strongly typed (every subexpression has a static type), type deduction, polymorphism, abstract algebraic data types
- Higher order functions (argument or value is a function) example:
twice $\mathrm{f} x=\mathrm{f}$ (f x) //f is a function
- Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

Characteristics of Clean

- No destructive assignments
- Referential transparency - equational reasoning (same expression means always the same value)
- Strongly typed (every subexpression has a static type), type deduction, polymorphism, abstract algebraic data types
- Higher order functions (argument or value is a function) example:
twice $\mathrm{f} x=\mathrm{f}$ (f x) //f is a function
- Currying - functions with 1 argument
(+) x y vs. ((+) x) y)
inc $=(+) 1$

Characteristics of Clean

- Recursion

```
fac 0 = 1
fac n | n > 0 = n * fac (n-1)
```


Lazy evaluation and strictness analysis

Zermelo-Fraenkel set-expressions

Characteristics of Clean

- Recursion

```
fac 0 = 1
fac n | n > 0 = n * fac (n-1)
```

- Lazy evaluation and strictness analysis

```
take 5 ( map inc [1 .. ] )
```


Characteristics of Clean

- Recursion

fac 0	$=1$
fac $n \mid n>0$	$=n * \operatorname{fac}(n-1)$

- Lazy evaluation and strictness analysis
take 5 (map inc [1 ..])
- Zermelo-Fraenkel set-expressions

$$
\begin{aligned}
& \text { [<expression> \\
<generator> | <filter>] } \\
& \text { <generator> : <value> <- <list> }
\end{aligned}
$$

Characteristics of Clean

- Recursion

```
fac 0 = 1
fac n | n > 0 n * fac (n-1)
```

- Lazy evaluation and strictness analysis
take 5 (map inc [1 ..])
- Zermelo-Fraenkel set-expressions

$$
\begin{aligned}
& \text { [<expression> \\
<generator> | <filter>] } \\
& \text { <generator> : <value> <- <list> }
\end{aligned}
$$

$$
\begin{aligned}
& {[x * x \backslash \backslash x<-[1 \ldots] \mid \text { odd } x]} \\
& =>[1,9,25, \ldots]
\end{aligned}
$$

Characteristics of Clean

- Pattern matching of arguments

```
<function name> <pattern> or
<function name> <pattern> | <condition>
```


Characteristics of Clean

- Pattern matching of arguments

```
<function name> <pattern> or
<function name> <pattern> | <condition>
```

```
fac 0 = 1
fac n n > 0 = n * fac (n-1)
```

Off-side rule determining scope of identifiers

Characteristics of Clean

- Pattern matching of arguments

```
<function name> <pattern> or
<function name> <pattern> | <condition>
```

```
fac 0 = 1
fac n | n > 0 = n * fac (n-1)
```

- Off-side rule determining scope of identifiers

$$
\begin{array}{ll}
\text { add4 = twice inc } & \text { //inc mean local inc } \\
\text { where } & \text { inc } x=x+2
\end{array} \quad \text { //local inc declaration } \quad \text { //inc means global inc } \quad l
$$

First program in Clean

```
//this is a compilation unit;
//filename: test.icl
module test
//imports modules from Standard Environment
import StdEnv
//function definitions
fac 0 = 1
fac n | n > 0 n * fac (n-1)
//initial expression
Start = fac 5
```


Quadratic equation

```
module quadratic
import StdEnv
qeq :: Real Real Real -> (String, [Real])
qeq a b c
    a == 0.0 = ("not quadratic", [])
    delta < 0.0 = ("complex roots", [])
    delta == 0.0 = ("one root", [~b/2.0*a])
    delta > 0.0 = ("two roots",
    [(~b+radix)/(2.0*a), (~b-radix)/(2.0*a)])
        where
            delta = b*b-4.0*a*c
            radix = sqrt delta
Start = qeq 1.0 (-4.0) 1.0
```


Lists

- A list is a sequence of values of same type a The type of this list is [a]

Lists

- A list is a sequence of values of same type a The type of this list is [a]
- Defining a list:
- [] - empty list
- $\left[e_{1}, e_{2}, \ldots, e_{n}\right]$-enumerate the elements
- [e : list]-the list's first element is e, the other elements are elements of list

Lists

- A list is a sequence of values of same type a The type of this list is [a]
- Defining a list:
- [] - empty list
- $\left[e_{1}, e_{2}, \ldots, e_{n}\right]$-enumerate the elements
- [e : list]-the list's first element is e, the other elements are elements of list
- Example:

$$
l=[\prime a \prime, ~ ' b \prime, ~ ' c ']
$$

Lists

- A list is a sequence of values of same type a The type of this list is [a]
- Defining a list:
- [] - empty list
- $\left[e_{1}, e_{2}, \ldots, e_{n}\right]$-enumerate the elements
- [e : list]-the list's first element is e, the other elements are elements of list
- Example:

$$
l=\left[\prime a \prime, \quad b^{\prime}, c^{\prime}\right]
$$

```
z :: [[Int]]
z = [[1,2,3],[1,2]]
```


Standard functions on lists

```
hd [x : xs] = x
hd [] = abort "hd of []"
```


Standard functions on lists

```
hd [x : xs] = x
hd [] = abort "hd of []"
tl [x : xs] = xs
tl [] = abort "tl of []"
```


Standard functions on lists

```
hd [x : xs] = x
hd [] = abort "hd of []"
```

```
tl [x : xs] = xs
tl [] = abort "tl of []"
```

```
sum [] = 0
sum [x : xs] = x + sum xs
```


Standard functions on lists

hd $[x: x s]$	$=x$
hd []	$=$ abort "hd of []"

tl [x : xs] = xs
tl [] = abort "tl of []"

```
sum [] = 0
sum [x : xs] = x + sum xs
```

```
length [] \(=0\)
length [x:xs] = 1 + length \(x s\)
```


Polymorphic type

- Types can be parametrised - eg. [Int] - [a]

Polymorphic type

- Types can be parametrised - eg. [Int] - [a]
- A function that can be applied to values of different types is called as polymorphic function.

The functionality of the polymorphic function doesn't
denend on the actual tvoe.

Polymorphic type

- Types can be parametrised - eg. [Int] - [a]
- A function that can be applied to values of different types is called as polymorphic function.

```
length :: [a] -> Int // a is a type variable
hd :: [a] -> a
```

The functionality of the polymorphic function doesn't depend on the actual type.

Polymorphic type

- Types can be parametrised - eg. [Int] - [a]
- A function that can be applied to values of different types is called as polymorphic function.

$$
\begin{aligned}
& \text { length :: [a] -> Int // a is a type variable } \\
& \text { hd }:: \text { [a] -> a }
\end{aligned}
$$

- The functionality of the polymorphic function doesn't depend on the actual type.

Functions on lists

- 1. Last element of a list

2. Every element but last 3. N -th element of a list

Functions on lists

- 1. Last element of a list
- 2. Every element but last

3. N-th element of a list
4. The first n elements of a list

Functions on lists

- 1. Last element of a list
- 2. Every element but last
- 3. N-th element of a list

Functions on lists

- 1. Last element of a list
- 2. Every element but last
- 3. N-th element of a list
- 4. The first n elements of a list

Functions on lists

- 1. Last element of a list
- 2. Every element but last
- 3. N-th element of a list
- 4. The first n elements of a list
- 5. Reverse a list

Solutions

1. Last element of a list

last [x] $=x$
last [x : xs] = last xs
last [] = abort "last of []"
2. Every element but last

Solutions

1. Last element of a list
last [x] $=x$
last [x : xs] = last xs
last [] = abort "last of []"
2. Every element but last

init []	$=[]$
init [x]	$=[]$
init [x : xs]	$=[x:$ init $x s]$

Solutions

3. N-th element of a list
index [x : $x s] 0=x$
index [x : xs] $n=$ index $x s$ (n - 1)
index [] _ \quad abort "index out of range"

Solutions

3. N -th element of a list
```
index [x : xs] \(0=x\)
index \([x\) : \(x s] n=i n d e x ~ x s ~(n ~-~ 1) ~\)
index [] _ \(\quad\) abort "index out of range"
```

Usage: index $[1,2,3] 2$
With more confortable infix notation: $[1,2,3]$!! 2
4. The first n elements of a list

Solutions

3. N -th element of a list

index $[x: x s] 0$	$=x$
index $[x: x s]$	$=$ index $x s(n-1)$
index []$-$	
in abort "index out of range"	

Usage: index $[1,2,3] 2$
With more confortable infix notation: [1, 2, 3] !! 2
(!!) infixl 9 :: [a] Int -> a
(!!) list i $=$ index list i
4. The first n elements of a list

Solutions

3. N -th element of a list

index $[x: x s] 0$	$=x$
index $[x: x s] n$	$=$ index $x s(n-1)$
index []$-$	
	$=$ abort "index out of range"

Usage: index $[1,2,3] 2$
With more confortable infix notation: $[1,2,3]$!! 2
(!!) infixl 9 :: [a] Int -> a
(!!) list i = index list i
4. The first n elements of a list

take $0-$	$=[]$
take $n[x: x s]$	$=[x:$ take $(n-1) x]$
take $n[]$	
	$=[]$

Solutions

5. Reverse a list

- 1st solution:

```
reverse [] = []
reverse [x:xs] = reverse xs ++ [x]
```


Solutions

5. Reverse a list

- 1st solution:

```
reverse [] = []
reverse [x:xs] = reverse xs ++ [x]
```

- 2nd solution:

```
reverse list = reverse_ list []
    where
    reverse_ [x:xs] acc = reverse_ xs [x:acc]
    reverse_ [] acc = acc
```


Functions on lists II.

- 6. Check two lists wether they are equal or not

Functions on lists II.

- 6. Check two lists wether they are equal or not
- 7. Check two lists if the first is lexikographically less than the second

Solutions

6. Check two lists wether they are equal or not
```
eq [] [] = True
eq [a:as] [b:bs]
    a == b = as == bs
    otherwise = False
eq _ _ = False
```


Solutions

7. Check two lists if the first is lexikographically less than the second

less [] []	$=$ False
less [] -	$=$ True
less -[]	$=$ False
less [a:as] [b:bs]	
	$\|$$a<b$ $a>b$ otherwise $=$ Fas $<\mathrm{bs}$

Higher order functions on lists

filter: selecting elements satisfying a property

```
filter :: (a -> Bool) [a] -> [a]
filter p [] = []
filter p [x : xs]
    p x = [ x : filter p xs ]
    otherwise = filter p xs
```


Higher order functions on lists

- 8.map: function applied elementwise (length is preserved)

Higher order functions on lists

- 8.map: function applied elementwise (length is preserved)
- 9.foldr: elementwise consumer

Solutions

8. map: function applied elementwise (length is preserved)
```
map :: (a -> b) [a] -> [.b]
map f [] = []
map f [x : xs] = [ f x : map f xs ]
```


Solutions

8. map: function applied elementwise (length is preserved)
```
map :: (a -> b) [a] -> [.b]
map f [] = []
map f [x : xs] = [ f x : map f xs ]
```

9. foldr: elemetwise consumer
```
foldr :: (a b -> b) b [a] -> b
foldr op e [] = e
foldr op e [x : xs] = op x (foldr op e xs)
```


Exercise

- 10. Find the maximum of the list

10. find the maximum of the list

```
listmax :: [a] -> a | Ord a
listmax [x:xs] = foldl max x xs
    where
    max x y
        x>y = x
        otherwise = y
```

