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Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)
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Evaluation

Evaluation = sequence of rewriting (reduction) steps

A reduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

Normal form is unique (in confluent rewriting systems),
lazy evaluation order always finds the normal form, if it
exists
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Examples of evaluation

inc x = x + 1
square x = x * x
squareinc x = square (inc x)

Evaluation of squareinc 7 :

strict :

squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8*8 -> 64

lazy :

squareinc 7 -> square (inc 7)
-> (inc 7) * (inc 7) -> (7+1) * (inc 7)
-> 8 * (inc 7) -> 8 * (7+1) -> 8*8 -> 64

Clean uses lazy evaluation.
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Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1
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Characteristics of Clean

Recursion

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Lazy evaluation and strictness analysis

take 5 ( map inc [1 .. ] )

Zermelo-Fraenkel set-expressions
[ <expression> \\ <generator> | <filter> ]
<generator> : <value> <- <list>

[ x * x \\ x <- [ 1 .. ] | odd x ]
=> [1, 9, 25, ..]
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Characteristics of Clean

Pattern matching of arguments

<function name> <pattern> or
<function name> <pattern> | <condition>

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Off-side rule determining scope of identifiers

add4 = twice inc //inc mean local inc
where

inc x = x+2 //local inc declaration
add = ... inc ... //inc means global inc
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First program in Clean

//this is a compilation unit;
//filename: test.icl
module test

//imports modules from Standard Environment
import StdEnv

//function definitions

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

//initial expression
Start = fac 5
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Quadratic equation

module quadratic
import StdEnv

qeq :: Real Real Real -> (String, [Real])
qeq a b c
| a == 0.0 = ("not quadratic", [])
| delta < 0.0 = ("complex roots", [])
| delta == 0.0 = ("one root", [~b/2.0*a])
| delta > 0.0 = ("two roots",
[(~b+radix)/(2.0*a), (~b-radix)/(2.0*a)])
where

delta = b*b-4.0*a*c
radix = sqrt delta

Start = qeq 1.0 (-4.0) 1.0
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Lists

A list is a sequence of values of same type a
The type of this list is [a]
Defining a list :

[] - empty list
[e1, e2, ..., en] - enumerate the elements
[e : list] - the list’s first element is e, the other
elements are elements of list

Example :

l = [’a’, ’b’, ’c’]

z :: [[Int]]
z = [[1,2,3],[1,2]]
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Standard functions on lists

hd [x : xs] = x
hd [] = abort "hd of []"

tl [x : xs] = xs
tl [] = abort "tl of []"

sum [] = 0
sum [x : xs] = x + sum xs

length [] = 0
length [x:xs] = 1 + length xs
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Polymorphic type

Types can be parametrised - eg. [Int] - [a]

A function that can be applied to values of different types is
called as polymorphic function .

length :: [a] -> Int // a is a type variable
hd :: [a] -> a

The functionality of the polymorphic function doesn’t
depend on the actual type.
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Functions on lists

1. Last element of a list

2. Every element but last

3. N-th element of a list

4. The first n elements of a list

5. Reverse a list
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Solutions

1. Last element of a list

last [x] = x
last [x : xs] = last xs
last [] = abort "last of []"

2. Every element but last

init [] = []
init [x] = []
init [x : xs] = [x: init xs]
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Solutions

3. N-th element of a list

index [x : xs] 0 = x
index [x : xs] n = index xs (n - 1)
index [] _ = abort "index out of range"

Usage: index [1,2,3] 2
With more confortable infix notation: [1,2,3] !! 2

(!!) infixl 9 :: [a] Int -> a
(!!) list i = index list i

4. The first n elements of a list

take 0 _ = []
take n [x : xs] = [x : take (n - 1) xs]
take n [] = []
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Solutions

5. Reverse a list

1st solution:

reverse [] = []
reverse [x:xs] = reverse xs ++ [x]

2nd solution:

reverse list = reverse_ list []
where
reverse_ [x:xs] acc = reverse_ xs [x:acc]
reverse_ [] acc = acc
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2nd solution:

reverse list = reverse_ list []
where
reverse_ [x:xs] acc = reverse_ xs [x:acc]
reverse_ [] acc = acc
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Functions on lists II.

6. Check two lists wether they are equal or not

7. Check two lists if the first is lexikographically less than
the second
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Functions on lists II.

6. Check two lists wether they are equal or not

7. Check two lists if the first is lexikographically less than
the second
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Solutions

6. Check two lists wether they are equal or not

eq [] [] = True
eq [a:as] [b:bs]
| a == b = as == bs
| otherwise = False

eq _ _ = False
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Solutions

7. Check two lists if the first is lexikographically less than the
second

less [] [] = False
less [] _ = True
less _ [] = False
less [a:as] [b:bs]

| a < b = True
| a > b = False
| otherwise = as < bs
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Higher order functions on lists

filter : selecting elements satisfying a property

filter :: (a -> Bool) [a] -> [a]
filter p [] = []
filter p [x : xs]

| p x = [ x : filter p xs ]
| otherwise = filter p xs
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Higher order functions on lists

8.map: function applied elementwise (length is preserved)

9.foldr: elementwise consumer
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8.map: function applied elementwise (length is preserved)

9.foldr: elementwise consumer
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Solutions

8. map: function applied elementwise (length is preserved)

map :: (a -> b) [a] -> [b]
map f [] = []
map f [x : xs] = [ f x : map f xs ]

9. foldr: elemetwise consumer

foldr :: (a b -> b) b [a] -> b
foldr op e [] = e
foldr op e [x : xs] = op x (foldr op e xs)
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Solutions

8. map: function applied elementwise (length is preserved)

map :: (a -> b) [a] -> [b]
map f [] = []
map f [x : xs] = [ f x : map f xs ]

9. foldr: elemetwise consumer

foldr :: (a b -> b) b [a] -> b
foldr op e [] = e
foldr op e [x : xs] = op x (foldr op e xs)
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Exercise

10. Find the maximum of the list
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10. find the maximum of the list

listmax :: [a] -> a | Ord a
listmax [x:xs] = foldl max x xs
where
max x y
| x>y = x
| otherwise = y
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