
Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Introduction to Clean

Mónika Mészáros
E-mail: bonnie@inf.elte.hu

Department of Programming Languages and Compilers
ELTE

May 21, 2009.

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Outline of the presentation

1 Functional programming languages

2 Evaluation

3 Characteristics of Clean

4 Clean basics

5 Lists, functions on lists

6 Polymorphic functions

7 Exercises

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functional programming languages

Subset of declarative programming languages:
computation is defined by set of declarations

Specification of problem, refinement of problem are the
main concerns

Type, class, function definitions, initial expression

Computation means evaluation of the initial expression
(rewriting rules)

Program components solving subproblems do not cause
side-effects

Mathematical model of computation: λ-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Evaluation

Evaluation = sequence of rewriting (reduction) steps

A reduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

Normal form is unique (in confluent rewriting systems),
lazy evaluation order always finds the normal form, if it
exists

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Evaluation

Evaluation = sequence of rewriting (reduction) steps

A reduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

Normal form is unique (in confluent rewriting systems),
lazy evaluation order always finds the normal form, if it
exists

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Evaluation

Evaluation = sequence of rewriting (reduction) steps

A reduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

Normal form is unique (in confluent rewriting systems),
lazy evaluation order always finds the normal form, if it
exists

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Evaluation

Evaluation = sequence of rewriting (reduction) steps

A reduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

Normal form is unique (in confluent rewriting systems),
lazy evaluation order always finds the normal form, if it
exists

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Examples of evaluation

inc x = x + 1
square x = x * x
squareinc x = square (inc x)

Evaluation of squareinc 7 :

strict :

squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8*8 -> 64

lazy :

squareinc 7 -> square (inc 7)
-> (inc 7) * (inc 7) -> (7+1) * (inc 7)
-> 8 * (inc 7) -> 8 * (7+1) -> 8*8 -> 64

Clean uses lazy evaluation.
Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Examples of evaluation

inc x = x + 1
square x = x * x
squareinc x = square (inc x)

Evaluation of squareinc 7 :

strict :

squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8*8 -> 64

lazy :

squareinc 7 -> square (inc 7)
-> (inc 7) * (inc 7) -> (7+1) * (inc 7)
-> 8 * (inc 7) -> 8 * (7+1) -> 8*8 -> 64

Clean uses lazy evaluation.
Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Examples of evaluation

inc x = x + 1
square x = x * x
squareinc x = square (inc x)

Evaluation of squareinc 7 :

strict :

squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8*8 -> 64

lazy :

squareinc 7 -> square (inc 7)
-> (inc 7) * (inc 7) -> (7+1) * (inc 7)
-> 8 * (inc 7) -> 8 * (7+1) -> 8*8 -> 64

Clean uses lazy evaluation.
Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Examples of evaluation

inc x = x + 1
square x = x * x
squareinc x = square (inc x)

Evaluation of squareinc 7 :

strict :

squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8*8 -> 64

lazy :

squareinc 7 -> square (inc 7)
-> (inc 7) * (inc 7) -> (7+1) * (inc 7)
-> 8 * (inc 7) -> 8 * (7+1) -> 8*8 -> 64

Clean uses lazy evaluation.
Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Examples of evaluation

inc x = x + 1
square x = x * x
squareinc x = square (inc x)

Evaluation of squareinc 7 :

strict :

squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8*8 -> 64

lazy :

squareinc 7 -> square (inc 7)
-> (inc 7) * (inc 7) -> (7+1) * (inc 7)
-> 8 * (inc 7) -> 8 * (7+1) -> 8*8 -> 64

Clean uses lazy evaluation.
Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

No destructive assignments

Referential transparency - equational reasoning (same
expression means always the same value)

Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

Currying - functions with 1 argument
(+) x y vs. ((+) x) y)

inc = (+) 1

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Recursion

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Lazy evaluation and strictness analysis

take 5 (map inc [1 ..])

Zermelo-Fraenkel set-expressions
[<expression> \\ <generator> | <filter>]
<generator> : <value> <- <list>

[x * x \\ x <- [1 ..] | odd x]
=> [1, 9, 25, ..]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Recursion

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Lazy evaluation and strictness analysis

take 5 (map inc [1 ..])

Zermelo-Fraenkel set-expressions
[<expression> \\ <generator> | <filter>]
<generator> : <value> <- <list>

[x * x \\ x <- [1 ..] | odd x]
=> [1, 9, 25, ..]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Recursion

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Lazy evaluation and strictness analysis

take 5 (map inc [1 ..])

Zermelo-Fraenkel set-expressions
[<expression> \\ <generator> | <filter>]
<generator> : <value> <- <list>

[x * x \\ x <- [1 ..] | odd x]
=> [1, 9, 25, ..]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Recursion

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Lazy evaluation and strictness analysis

take 5 (map inc [1 ..])

Zermelo-Fraenkel set-expressions
[<expression> \\ <generator> | <filter>]
<generator> : <value> <- <list>

[x * x \\ x <- [1 ..] | odd x]
=> [1, 9, 25, ..]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Pattern matching of arguments

<function name> <pattern> or
<function name> <pattern> | <condition>

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Off-side rule determining scope of identifiers

add4 = twice inc //inc mean local inc
where

inc x = x+2 //local inc declaration
add = ... inc ... //inc means global inc

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Pattern matching of arguments

<function name> <pattern> or
<function name> <pattern> | <condition>

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Off-side rule determining scope of identifiers

add4 = twice inc //inc mean local inc
where

inc x = x+2 //local inc declaration
add = ... inc ... //inc means global inc

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Characteristics of Clean

Pattern matching of arguments

<function name> <pattern> or
<function name> <pattern> | <condition>

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

Off-side rule determining scope of identifiers

add4 = twice inc //inc mean local inc
where

inc x = x+2 //local inc declaration
add = ... inc ... //inc means global inc

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

First program in Clean

//this is a compilation unit;
//filename: test.icl
module test

//imports modules from Standard Environment
import StdEnv

//function definitions

fac 0 = 1
fac n | n > 0 = n * fac (n-1)

//initial expression
Start = fac 5

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Quadratic equation

module quadratic
import StdEnv

qeq :: Real Real Real -> (String, [Real])
qeq a b c
| a == 0.0 = ("not quadratic", [])
| delta < 0.0 = ("complex roots", [])
| delta == 0.0 = ("one root", [~b/2.0*a])
| delta > 0.0 = ("two roots",
[(~b+radix)/(2.0*a), (~b-radix)/(2.0*a)])
where

delta = b*b-4.0*a*c
radix = sqrt delta

Start = qeq 1.0 (-4.0) 1.0

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Lists

A list is a sequence of values of same type a
The type of this list is [a]
Defining a list :

[] - empty list
[e1, e2, ..., en] - enumerate the elements
[e : list] - the list’s first element is e, the other
elements are elements of list

Example :

l = [’a’, ’b’, ’c’]

z :: [[Int]]
z = [[1,2,3],[1,2]]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Lists

A list is a sequence of values of same type a
The type of this list is [a]
Defining a list :

[] - empty list
[e1, e2, ..., en] - enumerate the elements
[e : list] - the list’s first element is e, the other
elements are elements of list

Example :

l = [’a’, ’b’, ’c’]

z :: [[Int]]
z = [[1,2,3],[1,2]]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Lists

A list is a sequence of values of same type a
The type of this list is [a]
Defining a list :

[] - empty list
[e1, e2, ..., en] - enumerate the elements
[e : list] - the list’s first element is e, the other
elements are elements of list

Example :

l = [’a’, ’b’, ’c’]

z :: [[Int]]
z = [[1,2,3],[1,2]]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Lists

A list is a sequence of values of same type a
The type of this list is [a]
Defining a list :

[] - empty list
[e1, e2, ..., en] - enumerate the elements
[e : list] - the list’s first element is e, the other
elements are elements of list

Example :

l = [’a’, ’b’, ’c’]

z :: [[Int]]
z = [[1,2,3],[1,2]]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Standard functions on lists

hd [x : xs] = x
hd [] = abort "hd of []"

tl [x : xs] = xs
tl [] = abort "tl of []"

sum [] = 0
sum [x : xs] = x + sum xs

length [] = 0
length [x:xs] = 1 + length xs

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Standard functions on lists

hd [x : xs] = x
hd [] = abort "hd of []"

tl [x : xs] = xs
tl [] = abort "tl of []"

sum [] = 0
sum [x : xs] = x + sum xs

length [] = 0
length [x:xs] = 1 + length xs

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Standard functions on lists

hd [x : xs] = x
hd [] = abort "hd of []"

tl [x : xs] = xs
tl [] = abort "tl of []"

sum [] = 0
sum [x : xs] = x + sum xs

length [] = 0
length [x:xs] = 1 + length xs

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Standard functions on lists

hd [x : xs] = x
hd [] = abort "hd of []"

tl [x : xs] = xs
tl [] = abort "tl of []"

sum [] = 0
sum [x : xs] = x + sum xs

length [] = 0
length [x:xs] = 1 + length xs

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Polymorphic type

Types can be parametrised - eg. [Int] - [a]

A function that can be applied to values of different types is
called as polymorphic function .

length :: [a] -> Int // a is a type variable
hd :: [a] -> a

The functionality of the polymorphic function doesn’t
depend on the actual type.

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Polymorphic type

Types can be parametrised - eg. [Int] - [a]

A function that can be applied to values of different types is
called as polymorphic function .

length :: [a] -> Int // a is a type variable
hd :: [a] -> a

The functionality of the polymorphic function doesn’t
depend on the actual type.

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Polymorphic type

Types can be parametrised - eg. [Int] - [a]

A function that can be applied to values of different types is
called as polymorphic function .

length :: [a] -> Int // a is a type variable
hd :: [a] -> a

The functionality of the polymorphic function doesn’t
depend on the actual type.

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Polymorphic type

Types can be parametrised - eg. [Int] - [a]

A function that can be applied to values of different types is
called as polymorphic function .

length :: [a] -> Int // a is a type variable
hd :: [a] -> a

The functionality of the polymorphic function doesn’t
depend on the actual type.

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists

1. Last element of a list

2. Every element but last

3. N-th element of a list

4. The first n elements of a list

5. Reverse a list

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists

1. Last element of a list

2. Every element but last

3. N-th element of a list

4. The first n elements of a list

5. Reverse a list

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists

1. Last element of a list

2. Every element but last

3. N-th element of a list

4. The first n elements of a list

5. Reverse a list

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists

1. Last element of a list

2. Every element but last

3. N-th element of a list

4. The first n elements of a list

5. Reverse a list

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists

1. Last element of a list

2. Every element but last

3. N-th element of a list

4. The first n elements of a list

5. Reverse a list

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

1. Last element of a list

last [x] = x
last [x : xs] = last xs
last [] = abort "last of []"

2. Every element but last

init [] = []
init [x] = []
init [x : xs] = [x: init xs]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

1. Last element of a list

last [x] = x
last [x : xs] = last xs
last [] = abort "last of []"

2. Every element but last

init [] = []
init [x] = []
init [x : xs] = [x: init xs]

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

3. N-th element of a list

index [x : xs] 0 = x
index [x : xs] n = index xs (n - 1)
index [] _ = abort "index out of range"

Usage: index [1,2,3] 2
With more confortable infix notation: [1,2,3] !! 2

(!!) infixl 9 :: [a] Int -> a
(!!) list i = index list i

4. The first n elements of a list

take 0 _ = []
take n [x : xs] = [x : take (n - 1) xs]
take n [] = []

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

3. N-th element of a list

index [x : xs] 0 = x
index [x : xs] n = index xs (n - 1)
index [] _ = abort "index out of range"

Usage: index [1,2,3] 2
With more confortable infix notation: [1,2,3] !! 2

(!!) infixl 9 :: [a] Int -> a
(!!) list i = index list i

4. The first n elements of a list

take 0 _ = []
take n [x : xs] = [x : take (n - 1) xs]
take n [] = []

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

3. N-th element of a list

index [x : xs] 0 = x
index [x : xs] n = index xs (n - 1)
index [] _ = abort "index out of range"

Usage: index [1,2,3] 2
With more confortable infix notation: [1,2,3] !! 2

(!!) infixl 9 :: [a] Int -> a
(!!) list i = index list i

4. The first n elements of a list

take 0 _ = []
take n [x : xs] = [x : take (n - 1) xs]
take n [] = []

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

3. N-th element of a list

index [x : xs] 0 = x
index [x : xs] n = index xs (n - 1)
index [] _ = abort "index out of range"

Usage: index [1,2,3] 2
With more confortable infix notation: [1,2,3] !! 2

(!!) infixl 9 :: [a] Int -> a
(!!) list i = index list i

4. The first n elements of a list

take 0 _ = []
take n [x : xs] = [x : take (n - 1) xs]
take n [] = []

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

5. Reverse a list

1st solution:

reverse [] = []
reverse [x:xs] = reverse xs ++ [x]

2nd solution:

reverse list = reverse_ list []
where
reverse_ [x:xs] acc = reverse_ xs [x:acc]
reverse_ [] acc = acc

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

5. Reverse a list

1st solution:

reverse [] = []
reverse [x:xs] = reverse xs ++ [x]

2nd solution:

reverse list = reverse_ list []
where
reverse_ [x:xs] acc = reverse_ xs [x:acc]
reverse_ [] acc = acc

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists II.

6. Check two lists wether they are equal or not

7. Check two lists if the first is lexikographically less than
the second

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Functions on lists II.

6. Check two lists wether they are equal or not

7. Check two lists if the first is lexikographically less than
the second

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

6. Check two lists wether they are equal or not

eq [] [] = True
eq [a:as] [b:bs]
| a == b = as == bs
| otherwise = False

eq _ _ = False

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

7. Check two lists if the first is lexikographically less than the
second

less [] [] = False
less [] _ = True
less _ [] = False
less [a:as] [b:bs]

| a < b = True
| a > b = False
| otherwise = as < bs

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Higher order functions on lists

filter : selecting elements satisfying a property

filter :: (a -> Bool) [a] -> [a]
filter p [] = []
filter p [x : xs]

| p x = [x : filter p xs]
| otherwise = filter p xs

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Higher order functions on lists

8.map: function applied elementwise (length is preserved)

9.foldr: elementwise consumer

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Higher order functions on lists

8.map: function applied elementwise (length is preserved)

9.foldr: elementwise consumer

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

8. map: function applied elementwise (length is preserved)

map :: (a -> b) [a] -> [b]
map f [] = []
map f [x : xs] = [f x : map f xs]

9. foldr: elemetwise consumer

foldr :: (a b -> b) b [a] -> b
foldr op e [] = e
foldr op e [x : xs] = op x (foldr op e xs)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Solutions

8. map: function applied elementwise (length is preserved)

map :: (a -> b) [a] -> [b]
map f [] = []
map f [x : xs] = [f x : map f xs]

9. foldr: elemetwise consumer

foldr :: (a b -> b) b [a] -> b
foldr op e [] = e
foldr op e [x : xs] = op x (foldr op e xs)

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

Exercise

10. Find the maximum of the list

Mónika Mészáros Introduction to Clean

Outline Introduction Evaluation Characteristics Basics Lists Polymorphism Exercises

10. find the maximum of the list

listmax :: [a] -> a | Ord a
listmax [x:xs] = foldl max x xs
where
max x y
| x>y = x
| otherwise = y

Mónika Mészáros Introduction to Clean

	Outline
	Functional programming languages
	Evaluation
	Characteristics of Clean
	Clean basics
	Lists, functions on lists
	Polymorphic functions
	Exercises

