Introduction to Clean

Monika Mészaros
E-mail: bonnie@inf.elte.hu

Department of Programming Languages and Compilers
ELTE

May 21, 20089.

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages

Q Evaluation

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages
Q Evaluation

Q Characteristics of Clean

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages
Q Evaluation
Q Characteristics of Clean

0 Clean basics

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages
Q Evaluation

Q Characteristics of Clean

0 Clean basics

Q Lists, functions on lists

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages
Q Evaluation

Q Characteristics of Clean

0 Clean basics

Q Lists, functions on lists

Q Polymorphic functions

Monika Mészaros Introduction to Clean

Outline

Outline of the presentation

0 Functional programming languages
Q Evaluation

Q Characteristics of Clean

0 Clean basics

Q Lists, functions on lists

Q Polymorphic functions

o Exercises

Monika Mészaros Introduction to Clean

Introduction

Functional programming languages

@ Subset of declarative programming languages:
computation is defined by set of declarations

Monika Mészaros Introduction to Clean

Introduction

Functional programming languages

@ Subset of declarative programming languages:
computation is defined by set of declarations

@ Specification of problem, refinement of problem are the
main concerns

Monika Mészaros Introduction to Clean

Introduction

Functional programming languages

@ Subset of declarative programming languages:
computation is defined by set of declarations

@ Specification of problem, refinement of problem are the
main concerns

@ Type, class, function definitions, initial expression

Monika Mészaros Introduction to Clean

Introduction

Functional programming languages

@ Subset of declarative programming languages:
computation is defined by set of declarations

@ Specification of problem, refinement of problem are the
main concerns

@ Type, class, function definitions, initial expression

@ Computation means evaluation of the initial expression
(rewriting rules)

Monika Mészaros Introduction to Clean

Introduction

Functional programming languages

@ Subset of declarative programming languages:
computation is defined by set of declarations

@ Specification of problem, refinement of problem are the
main concerns

@ Type, class, function definitions, initial expression

@ Computation means evaluation of the initial expression
(rewriting rules)

@ Program components solving subproblems do not cause
side-effects

Monika Mészaros Introduction to Clean

Introduction

Functional programming languages

@ Subset of declarative programming languages:
computation is defined by set of declarations

@ Specification of problem, refinement of problem are the
main concerns

@ Type, class, function definitions, initial expression

@ Computation means evaluation of the initial expression
(rewriting rules)

@ Program components solving subproblems do not cause
side-effects

@ Mathematical model of computation: A-calculus (Church,
1932-33, computationally equivalent to Turing machine)

Monika Mészaros Introduction to Clean

Evaluation

Evaluation

@ Evaluation = sequence of rewriting (reduction) steps

Monika Mészaros Introduction to Clean

Evaluation

Evaluation

@ Evaluation = sequence of rewriting (reduction) steps

@ Areduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

Monika Mészaros Introduction to Clean

Evaluation

Evaluation

@ Evaluation = sequence of rewriting (reduction) steps

@ Areduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

@ Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

Monika Mészaros Introduction to Clean

Evaluation

Evaluation

@ Evaluation = sequence of rewriting (reduction) steps

@ Areduction step : substitution (rewriting) of a function
application by its definition in the body, until we reach
normal form

@ Evaluation strategy : selection order of redexes (reducible
expressions), well-known strategies: lazy (function
application first), strict (arguments first), paralell

@ Normal form is unique (in confluent rewriting systems),
lazy evaluation order always finds the normal form, if it
exists

Monika Mészaros Introduction to Clean

Evaluation

Examples of evaluation

x + 1
X * X
square (inc x)

i nc X
squar e X
squar ei nc X

Monika Mészaros Introduction to Clean

Evaluation

Examples of evaluation

x + 1
X * X
square (inc x)

i nc X
squar e X
squar ei nc X

Evaluation of squareinc 7 :

Monika Mészaros Introduction to Clean

Evaluation

Examples of evaluation

i nc X x + 1
squar e X X * X
squarei nc x = square (inc x)

Evaluation of squareinc 7 :

@ strict :
squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8+«8 -> 64

Monika Mészaros Introduction to Clean

Evaluation

Examples of evaluation

i nc X x + 1
squar e X X * X
squarei nc x = square (inc x)

Evaluation of squareinc 7 :

@ strict :
squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8+«8 -> 64
o lazy:
squareinc 7 -> square (inc 7)
-> (inc 7) = (inc 7) -> (7+1) * (inc 7)
->8 * (inc 7) -> 8 * (7+1) -> 8+*8 -> 64

Monika Mészaros Introduction to Clean

Evaluation

Examples of evaluation

i nc X x + 1
squar e X X * X
squarei nc x = square (inc x)

Evaluation of squareinc 7 :

@ strict :
squareinc 7 -> square (inc 7) -> square (7+1)
-> square 8 -> 8+«8 -> 64
o lazy:
squareinc 7 -> square (inc 7)
-> (inc 7) = (inc 7) -> (7+1) * (inc 7)
->8 * (inc 7) -> 8 * (7+1) -> 8+*8 -> 64

Clean uses lazy evaluation.

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ No destructive assignments

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ No destructive assignments

@ Referential transparency - equational reasoning (same
expression means always the same value)

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ No destructive assignments

@ Referential transparency - equational reasoning (same
expression means always the same value)

@ Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data

types

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ No destructive assignments

@ Referential transparency - equational reasoning (same
expression means always the same value)

@ Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

@ Higher order functions (argument or value is a function)

example:
twice f x = f (f x) //f is a function

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ No destructive assignments

@ Referential transparency - equational reasoning (same
expression means always the same value)

@ Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

@ Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

@ Currying - functions with 1 argument
(+) x y vs. ((+) x)y)

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ No destructive assignments

@ Referential transparency - equational reasoning (same
expression means always the same value)

@ Strongly typed (every subexpression has a static type),
type deduction, polymorphism, abstract algebraic data
types

@ Higher order functions (argument or value is a function)
example:
twice f x = f (f x) //f is a function

@ Currying - functions with 1 argument
(+) x y vs. ((+) x)y)

inc = (+) 1)

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Recursion
fac O =1
facn| n>0=nx* fac (n-1) J

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Recursion
fac O =1
facn| n>0=n~x* fac (n-1) J

@ Lazy evaluation and strictness analysis

take 5 (map inc [1 ..]) J

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Recursion
fac O =1
facn| n>0=n~x* fac (n-1) J

@ Lazy evaluation and strictness analysis

take 5 (map inc [1 ..]) J

@ Zermelo-Fraenkel set-expressions

[<expression>\\ <generator>| <filter>]
<generator> : <value> <- <list>

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Recursion

fac O =1
facn| n>0=n~x* fac (n-1) J

@ Lazy evaluation and strictness analysis

take 5 (map inc [1 ..]) J

@ Zermelo-Fraenkel set-expressions

[<expression> \\ <generator> | <filter>]
<generator> : <value> <- <list>

[x * x \\ x <~ [1 ..] | odd x]
= [1, 9, 25, ..] J

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Pattern matching of arguments

<function nanme> <pattern> or
<function nane> <pattern> | <condition>

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Pattern matching of arguments

<function nanme> <pattern> or
<function nane> <pattern> | <condition>

fac O =1
facn| n>0=n~x* fac (n-1) J

Monika Mészaros Introduction to Clean

Characteristics

Characteristics of Clean

@ Pattern matching of arguments

<function nane> <pattern> or
<function nane> <pattern> | <condition>

fac O =1
facn| n>0=n~x* fac (n-1) J

@ Off-side rule determining scope of identifiers

add4 = twi ce inc //inc nmean | ocal inc
wher e

inc X = x+2 //1ocal inc declaration
add = ... inc ... /1inc nmeans gl obal inc

Monika Mészaros Introduction to Clean

Basics

First program in Clean

/[/this is a conpilation unit;
[/filenane: test.icl
nodul e t est

[linmports nodul es from Standard Envi r onnment
i mport St dEnv

[/ function definitions

fac 0 = 1
facn| n>0=n~x* fac (n-1)
/linitial expression

Start = fac 5

Monika Mészaros Introduction to Clean

Basics

Quadratic equation

nmodul e quadratic
i mport St dEnv
geq :: Real Real Real -> (String, [Real])
geq a b ¢
| a ==20.0 = ("not quadratic", [])
| delta < 0.0 = ("conplex roots”, [])
| delta == 0.0 = ("one root", [~b/2.0+a])
| delta > 0.0 = ("two roots",
[(~b+radix)/(2.0xa), (~b-radix)/(2.0xa)])
wher e
delta = b*b-4.0xa*c
radix = sqrt delta
Start = qeq 1.0 (-4.0) 1.0)

Monika Mészaros Introduction to Clean

Lists

@ Alist is a sequence of values of same type a
The type of this list is [a]

Monika Mészaros Introduction to Clean

Lists

@ Alist is a sequence of values of same type a
The type of this list is [a]
@ Defining a list :
o [] - empty list
o [eiq, €, ..., ey] -enumerate the elements

o [e : [list] -thelist’s first element is e, the other
elements are elements of | i st

Monika Mészaros Introduction to Clean

Lists

@ Alist is a sequence of values of same type a
The type of this list is [a]
@ Defining a list :
o [] - empty list
o [eiq, €, ..., ey] -enumerate the elements

o [e : [list] -thelist’s first element is e, the other
elements are elements of | i st

@ Example:

Monika Mészaros Introduction to Clean

Lists

@ Alist is a sequence of values of same type a
The type of this list is [a]
@ Defining a list :
o [] - empty list

o [eiq, €, ..., ey] -enumerate the elements
o [e : [list] -thelist’s first element is e, the other
elements are elements of | i st
@ Example:
I = [! al , ’ b! , ’ Cl] J
z i [[Int]]
z =0[1,2,3],[1,2]] J

Monika Mészaros Introduction to Clean

Standard functions on lists

hd [x : xs]
hd []

X
abort "hd of []" J

Monika Mészaros Introduction to Clean

Standard functions on lists

hd [x : xs] = X
hd [] = abort "hd of []" J
tl [x : xs] = XS
tl [] = abort "tl of []" J

Monika Mészaros Introduction to Clean

Standard functions on lists

X
abort "hd of []"

tl [x XS] = XS
tl [] = abort "tl of []" |
sum [] 0

X + sum Xs

Monika Mészaros Introduction to Clean

Standard functions on lists

X
abort "hd of []"

tl [x XS] = XS
tl [] = abort "tl of []" |
sum [] 0

sum|[x : xs] X + sum XS

0
1 + length xs

length []
| ength [x:xs]

Monika Mészaros Introduction to Clean

Polymorphism

Polymorphic type

@ Types can be parametrised - eg. [Int] - [a]

Monika Mészaros Introduction to Clean

Polymorphism

Polymorphic type

@ Types can be parametrised - eg. [Int] - [a]

@ A function that can be applied to values of different types is
called as polymorphic function

Monika Mészaros Introduction to Clean

Polymorphism

Polymorphic type

@ Types can be parametrised - eg. [Int] - [a]

@ A function that can be applied to values of different types is
called as polymorphic function

length :: [a] ->Int // ais a type variable
hd :: [a] -> a J

Monika Mészaros Introduction to Clean

Polymorphism

Polymorphic type

@ Types can be parametrised - eg. [Int] - [a]

@ A function that can be applied to values of different types is
called as polymorphic function

length :: [a] ->Int // ais a type variable
hd :: [a] -> a J

@ The functionality of the polymorphic function doesn’t
depend on the actual type.

Monika Mészaros Introduction to Clean

Exercises

Functions on lists

@ 1. Last element of a list

Monika Mészaros Introduction to Clean

Exercises

Functions on lists

@ 1. Last element of a list
@ 2. Every element but last

Monika Mészaros Introduction to Clean

Exercises

Functions on lists

@ 1. Last element of a list
@ 2. Every element but last
@ 3. N-th element of a list

Monika Mészaros Introduction to Clean

Exercises

Functions on lists

@ 1. Last element of a list

@ 2. Every element but last

@ 3. N-th element of a list

@ 4. The first n elements of a list

Monika Mészaros Introduction to Clean

Exercises

Functions on lists

@ 1. Last element of a list

@ 2. Every element but last

@ 3. N-th element of a list

@ 4. The first n elements of a list
@ 5. Reverse a list

Monika Mészaros Introduction to Clean

Exercises

Solutions

1. Last element of a list

[ast [x] = X
last [x : xs] = last xs
last [] = abort "last of []"

Monika Mészaros Introduction to Clean

Exercises

Solutions

1. Last element of a list

[ast [x] = X
last [x : xs] = last xs
last [] = abort "last of []"

2. Every element but last
init [] =
init [x]
init [x : xs] =

[]
[]
[x:

init xs]

Monika Mészaros Introduction to Clean

Exercises

Solutions

3. N-th element of a list

X

i ndex xs (n - 1)

abort "index out of range"

index [x : xs] O
index [Xx : Xs] n
i ndex []

Monika Mészaros Introduction to Clean

Exercises

Solutions

3. N-th element of a list

index [x : xs] 0 = Xx
index [X : Xxs] n = index xs (n - 1)
index [] _ = abort "index out of range"

Usage:index [1,2,3] 2
With more confortable infix notation: [1,2, 3] I'! 2

Monika Mészaros Introduction to Clean

Exercises

Solutions

3. N-th element of a list
index [x : xs] O
index [Xx : Xs] n
i ndex []

X
i ndex xs (n - 1)
abort "index out of range"

Usage:index [1,2,3] 2
With more confortable infix notation: [1,2, 3] I'! 2

(') infixl 9 :: [a] Int -> a
('') list i = index list i J

Monika Mészaros Introduction to Clean

Exercises

Solutions

3. N-th element of a list

index [x : xs] O
index [Xx : Xs] n

X
i ndex xs (n - 1)
range"

i ndex [] _ = abort "index out of
Usage:index [1,2,3] 2

With more confortable infix notation: [1,2, 3] I'! 2

(') infixl 9 :: [a] Int -> a

('') list i = index list i J

4. The first n elements of a list

take 0 _ =[]
take n [x : xs] =[x : take (n - 1) xs]
take n [] =[]

Monika Mészaros Introduction to Clean

Exercises

Solutions

5. Reverse a list

@ 1st solution:

reverse []
reverse [x: xs]

[]
reverse xs ++ [Xx] J

Monika Mészaros Introduction to Clean

Exercises

Solutions

5. Reverse a list

@ 1st solution:

reverse [] =[]
reverse [Xx:Xxs] = reverse xs ++ [X] J
@ 2nd solution:
reverse list = reverse_list []
wher e
reverse_ [x:Xs] acc = reverse_ Xs [X:acc]
reverse_ [] acc = acc

Monika Mészaros Introduction to Clean

Exercises

Functions on lists II.

@ 6. Check two lists wether they are equal or not

Monika Mészaros Introduction to Clean

Exercises

Functions on lists II.

@ 6. Check two lists wether they are equal or not

@ 7. Check two lists if the first is lexikographically less than
the second

Monika Mészaros Introduction to Clean

Exercises

Solutions

6. Check two lists wether they are equal or not

eq [] [] = True
eq [a:as] [b:bs]
| a == = as == pbs
| otherw se = Fal se
eq _ _ = Fal se

Monika Mészaros Introduction to Clean

Exercises

Solutions

7. Check two lists if the first is lexikographically less than the

second
less [] [] = Fal se
less [] _ = True
less _[] = Fal se
| ess [a:as] [b:bs]
| a<b = True
| a>0b = Fal se
| otherwise = as < bs)

Monika Mészaros Introduction to Clean

Exercises

Higher order functions on lists

filter : selecting elements satisfying a property

filter :: (a -> Bool) [a] -> [a]
filter p[] =[]
filter p [x : xs]
| px = x: filter p xs]
| otherwise = filter p xs

Monika Mészaros Introduction to Clean

Exercises

Higher order functions on lists

@ 8.map: function applied elementwise (length is preserved)

Monika Mészaros Introduction to Clean

Exercises

Higher order functions on lists

@ 8.map: function applied elementwise (length is preserved)
@ 9.foldr: elementwise consumer

Monika Mészaros Introduction to Clean

Exercises

Solutions

8. map: function applied elementwise (length is preserved)

map :: (a ->b) [a] -> [b]
map f [] =[]
mep f [x : xs] = f x: mp f xs]

Monika Mészaros Introduction to Clean

Exercises

Solutions

8. map: function applied elementwise (length is preserved)

map :: (a ->Db) [a] -> [b]

map f [] =[]
mep f [x : xs] = f x: mp f xs]

9. foldr: elemetwise consumer

foldr :: (ab->b) b [a] ->b
foldr op e [] =
foldr op e [x : xs]

I @

op X (foldr op e xs)

Monika Mészaros Introduction to Clean

Exercises

Exercise
@ 10. Find the maximum of the list

Introduction to Clean

Exercises

10. find the maximum of the list

listmax :: [a] ->a | Od a
listmax [x:xs] = foldl max x xs
wher e
max X y
| x>y = X
| otherwi se =y

Ménika Mé: Introduction to Clean

	Outline
	Functional programming languages
	Evaluation
	Characteristics of Clean
	Clean basics
	Lists, functions on lists
	Polymorphic functions
	Exercises

