Types in CLEAN
CLEAN

Gobi Attila

2009. majus 21.

Gobi Attila CLEAN



Outline

o Synonyms
g Tuples

0 Records

0 Algebraic Types
Q Uniqueness typing

Q Arrays

Q Abstract data types

Q Classes



Synonyms

Type aliases

: Name :== String )

@ Documentary nature
— improves readablity

o Like typedef in C++

Gobi Attila CLEAN



Synonyms

Excercise — Synonyms

Write a new ic1 file, containing

@ type synonyms Length for integer! Create a Start function
to test it.

Gobi Attila CLEAN



Synonyms

Solution — Synonyms

: Length :== Int

Gobi Attila CLEAN



Point2D
Point 3D

(Int, Int)
(Int, Int, Int)

Using tuples
mirror

mirror (x,

.o
.
.o
|
| \

Point2D —> Point2D
Y) (YI _X)

Gobi Attila CLEAN




Tuples elements of different types

BagElement :== (String, Int)
Bag [BagElement]
insertBag :: Bag String -> Bag
insertBag [] string = [ (string, 1) ]
insertBag [ (item,mult) :xs] string
| item == string = [(item, mult+l) :xs]
| otherwise =

[ (item, mult) : (insertBat xs string) ]

Gobi Attila CLEAN




Excercise — Tuples

Write a new ic1 file, containing
@ The previously declared Bag type.
@ Write a function with the following signature:
multiplicity :: Bag String -> Int
returns the multiplicity of the given string or zero.
@ A Start function to test it:
Start = multiplicity [("a", 1), ("b",2)] "g"

Gobi Attila CLEAN



Solution — Tuples

multiplicity :: Bag String —-> Int
multiplicity [] _ =0
multiplicity [(item,mult) :xs] string

| item == string = mult

| otherwise = multiplicity xs string

Gobi Attila CLEAN



Records

Example

Declaration

Referencing

x1l :: Int
xl = pl.x

Gobi Attila CLEAN



Records

Comparison with tuple

With record

Point = { x Int
;, ¥ ot Int
}
norml :: Point —-> Int
norml point = point.x + point.y

Point :== (Int, Int)
norml :: Point —-> Int
norml (x,y) = X + ¥y

Gobi Attila CLEAN



Records

Records can be ‘updated’

projectX :: Point —-> Point
projectX point = { point & x = 0 }

@ No need to refer to other fields’ values

@ Makes the usage of records flexible (fields can be added
later without having to rewrite all functions)

Gobi Attila CLEAN



Records

Exercise — Records

Define new records for pieces of different shapes:
@ Square
@ and Circle

Use type Length!

Gobi Attila CLEAN



Records

Solution

Square = { side :: Length }
Circle = { radius :: Length }

Gobi Attila CLEAN



Algebraic Types

Example — Direction

Direction = Left | Right

mirror :: Direction —-> Direction
mirror Left = Right
mirror Right = Left

Gobi Attila CLEAN



Algebraic Types

Example — Point

Point = Point Int Int

Point :: Point -> Int
norml Point x y = X + vy

Point :== (Int, Int)
norml :: Point -> Int
norml (x,y) = xXx + y

Gobi Attila CLEAN



Algebraic Types

Example — Nat

Nat = Succ Nat | Zero
One = Succ Zero
Two = Succ One

pred :: Nat —-> Nat
pred (Succ n) = n

double :: Nat —-> Nat

// 2% (1l+n) = 1+1+(2%n)

double (Succ n) = Succ (Succ (double n))
double Zero =0

Gobi Attila CLEAN



Algebraic Types

Composite matching

Nat = Succ Nat | Zero
even :: Nat -> Bool
even Zero = True
even (Succ Zero) = False
even (Succ (Succ n)) = even n

Gobi Attila CLEAN



Algebraic Types

Example — BiNat

BiNat = One | Double BiNat |
DoublePlusOne BiNat
six = Double ( DoublePlusOne One )
succ One = Double One
succ (Double n) = DoublePlusOne n
// 1 + (2n+1l) = 2% (n+1)
succ (DoublePlusOne n) = Double (succ n) )

Gobi Attila CLEAN



Algebraic Types

Parametric

Tree a = Node a (Tree a) (Tree a) | Leaf
height :: Tree a —-> Nat
height Leaf =1

height Node 1 r = max (height 1) (height r)

Notation:
@ Type constructor: Tree
@ Data constructor: Node

Gobi Attila CLEAN



Algebraic Types

Preorder traversal

Tree a = Node a

Tree a —>

[]

preorder
preorder Leaf =
preorder Node 1 r =

[a]

(Tree a)

[a]

++
++

(Tree a) |

(preorder 1)
(preorder r)

Leaf

Gobi Attila CLEAN




Algebraic Types

Algebraic Types — Excercise

@ Write an algebraic type Color which contains 4 different
colours!

@ Write a function that can calculate the number of the
leaves in a given tree!

@ Write a postorder traversal on the type Tree and save it a
list.

Gobi Attila CLEAN



Algebraic Types

Algebraic Types — Solution

Color = Black | White | Red | Yellow

length :: Tree a —> Int
length Leaf =1
length Node 1 r = (length 1) + (length r)

Gobi Attila CLEAN



Algebraic Types

Algebraic Types — Solution (cont)

preorder :: Tree a —> [a]
preorder Leaf = []
preorder Node 1 r = (preorder 1) ++

(preorder r) ++ [a]

Gobi Attila CLEAN



Uniqueness typing

Benefits of unique types

@ Normally destructive updates can’t be done in Clean,
because it violates referential transparency.
@ Sometimes a destructive update is needed:

@ user interactions
o writing files or on screen
o etc.

@ We can’t refer to a unigness type twice, so we can safely
update it.

@ When a unique variable is updated, it is destroyed and a
new one created.

@ Memory can be reused.

Gobi Attila CLEAN



Uniqueness typing

Input/Output

When we read a file it has a side-effect of changing the current
position in the file. The next read from the file will return
different value, so it violates referential transparency.

If the read function returns a new file (with changed current
position) we can make the original file unique.

writel?2
# £ open ("test.txt")
# £f2 = fwritec "a’ £
— 1l

Gobi Attila CLEAN



@ Contiguous blocks in memory
@ Increases efficiency (constant time element selection)
@ Increases risk of run-time errors

Gobi Attila CLEAN



Lazy vs. Strict Arrays

@ Lazy: elements are evaluated only when directly referred at
LazyArray a :== {a}

@ Strict: elements are evaluated when the array is being
referred at

StrictArray a :== {!a}

Gobi Attila CLEAN



Boxed arrays

Only pointers to elements are stored in array itself

:: BoxedArray a :== {a}
names :: BoxedArray
names = {"Tom", "Jerry", "Toffee"}
nanes
0 1 2
Y \ Y
" Tont "Jer ry" " TOff ee"

Gobi Attila CLEAN



Unboxed Arrays

Elements are stored directed in array itself

:: UnboxedArray a :== {#a}
numbers :: UnboxedArray
numbers = {1, 2, 3, 5, 7, 11}

nunber s 1 2 3 5 7 11

Gobi Attila CLEAN



Array elements

Fields can be referred at directly by their indices
(first index is 0):

thirdElement array = array.[2]

Array comprehension

{ element \\ element <-: array }

Gobi Attila CLEAN



Unique arrays can be updated:

uniqueArray :: *x{Int} —-> x{Int}
uniqueArray x = { x & [4] = 3, [3] = 4 }

Gobi Attila CLEAN



Excercise — Arrays

@ Create an array EmptyArray, the size of 6 and contains
only zeros!

@ Write a function, addamount, which takes an array, the
amount of paint needed, and index, that indicates which
colour’s amount should be modified and updates the array
respectively!

Gobi Attila CLEAN



Solution — Arrays

EmptyArray = { 0.0 \\ i <-= [0..NumOfColors-1] }

addAmount array amount index
# (value, array) = uselect array index
{ array & [index] = value + amount }

// A bad solution. Two references to array
addAmount array amount index
= { array & [index] = amount + array.[index] }

Gobi Attila CLEAN



Abstract data types

Declaration

The type’s interface is placed in a separate definition module;
user of the type sees only this module

stack.dcl

definition module stack

Stack a

Push :: a (Stack a) —-> Stack a
Pop :: (Stack a) —> Stack a
top :: (Stack a) —> a

Empty :: Stack a

Gobi Attila CLEAN



Abstract data types

Implementation

Representation of type and implementation of functions is
hidden from user of the module (hence the name abstract)

implementation module stack
Stack a :== [a]
Push e S = [ e s ]
Pop [ e s ] = S
top [ e s ] = e
Empty = [] )

Gobi Attila CLEAN



Abstract data types

Representation and implementation can be changed without
affecting the modules using this type

module stack_user
import stack

Start = top (Push 1 Empty)

Gobi Attila CLEAN



Abstract data types

Abstract Types — Excercise

@ Define and implement an abstract type Queue for
queueing any types (a queue is a first in first out
data-structure)! It has to have the following functions:

@ EmptyQueue

@ insertItem

@ getFirstItem

@ removeFirstItem

@ Write a start expression to test the new queue!

Gobi Attila CLEAN



Abstract data types

Abstract Types — Solution

definition module queue

::Queue a

EmptyQueue :: Queue a

insertItem :: (Queue a) a —> (Queue a)
getFirstItem :: (Queue a) -> a
removeFirstItem :: (Queue a) —-> (Queue a)

Gobi Attila CLEAN



Abstract data types

Abstract Types — Solution

implementation module queue
import StdList
Queue a :== [a]
EmptyQueue = []
insertItem queue item = queue ++ [item]

getFirstItem queue = hd queue
removeFirstItem queue = tl queue

Gobi Attila CLEAN



Abstract data types

Abstract Types — Solution (cont)

import queue

Start = ( getFirstItem
( insertItem
( insertItem
( insertItem EmptyQueue 8 )

Gobi Attila CLEAN



Classes

‘Ad hoc’ polymorphism: we need the same set of functions for
different types, but implementation depends on type

class PrettyPrint a
where

format :: a —-> String

concat :: a a —> String

concat al a2 = (format al) ++ ",
" ++ (format a2)

Gobi Attila CLEAN



Classes

@ We have to instantiate the class for all types we'd like to
use it for

@ Instantiation can differ from type to type

Instatiation for Int
instance PrettyPrint Int

where
format :: Int -> String
format i = "Integer: " ++ toChar 1

Gobi Attila CLEAN



Classes

Instantiation for Point

instance PrettyPrint Point

where
format :: Point -> String
format p = "Point: (x: " ++ (toChar p.x)
++ ", y: " ++ (toChar p.y)
++ ")

Gobi Attila CLEAN



Classes

@ Member concat was derived from format

@ Usage: user has to indicate that an instantiation of a
particular class is needed

printList :: [a] —-> String | PrettyPrint a
printList [ x : xs ] = (format x)
++ printList xs

Gobi Attila CLEAN



Classes

Classes — Excercise

@ Write a type class, Measures a that has to functions:

@ circumference
@ surfacel!

@ Instantiate the class to both types of pieces!

@ Add afield price to each type of pieces! Does it affect the
functions you’ve just implemented?

Gobi Attila CLEAN



Classes

Classes — Solution

class Measures a

where
circumference :: a -> Real
surface :: a -> Real

instance Measures Square

where
circumference square = fromInt (square.side * 4)
surface square = fromInt (square.side x square.side)

Gobi Attila LEAN



Classes

Classes — Solution (cont)

instance Measures Circle
where
circumference circle
= fromInt (2 * circle.radius) = 3.14
surface circle
= 3.14 % fromInt (circle.radius = circle.radius)

Square = { side :: Length
, s_color :: Color, s_price :: Int
}

Circle = { radius :: Length
, c_color :: Color, c_price :: Int

Gobi Attila



	Synonyms
	Tuples
	Records
	Algebraic Types
	Uniqueness typing
	Arrays
	Abstract data types
	Classes

