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The goal of ObjectIO
● interactive objects

● windows
● menus
● timers
● receivers
● tools for drawing

● interactive processes
● communication with channels
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The structure of interactive objects
● every interactive object is located in the I/O state
●ls is the user-defined local state of the 
component

●together they form the process state

:: *IOSt st
:: PSt l
 = { ls : !l
   , io : !*IOSt l
   }
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The structure of interactive objects
● the objects themselves are represented as 
algebraic data types
● the most trivial is Void
● the names of the type constructors and the data 
constructors are the same

:: ButtonControl ls pst
 = ButtonControl
     String
     [ControlAttribute *(ls, pst)]
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The structure of interactive objects
● an object is interactive if it has an effect

● e.g. a button can be pressed
● when the effect is invoked, a callback function 
is called, which makes the state change as 
(ls, pst) ↦ (ls, pst)

● these are often attributes of the object

:: ControlAttribute st
 = ... | ControlFunction (st -> st)
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The structure of interactive objects
● it is possible to glue objects together

● composite objects can be formed
● user interfaces are made this way
● universal glue

:: :+: t1 t2 ls pst
 = (:+:) infixr 9
         (t1 ls pst) (t2 ls pst)
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The structure of interactive objects
● it is possible to glue objects together

● you can define which objects can be glued 
using type constructor classes

● the following enables gluing Controls together

instance Controls
  ButtonControl,
  ...
  :+: c1 c2 | Controls c1 &
              Controls c2
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The life cycle of interactive objects
● opening an interactive object

class Dialogs ddef where
  openDialog ::
    .ls
    !(ddef .ls !(PSt .l)) !(PSt .l) ->
    (!ErrorReport, !PSt .l)
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The life cycle of interactive objects
●  opening an interactive object

(error, new_process_state)
 = openDialog
     local_dialog_state
     (Dialog
       “Title”
       (TextControl “Text”

                     [])
       [])
     previous_process_state
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The life cycle of interactive objects
● modifying an interactive object

● the object to be modified has to be identified

(error, new_process_state)
 = openDialog
     local_dialog_state
     (Dialog
       “Title”
       (TextControl “Text”

                     [ControlId cId]) [])
     previous_process_state
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The life cycle of interactive objects
● modifying an interactive object

● we perform the modification by a function of 
type (IOSt l) -> (IOSt l)

● should we need to also change the local state, 
we would use (PSt l) -> (PSt l)

changeText process_state=:{io}
 = {process_state &
    io=setControlText cId
                      “Example 2”
                      io}
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The World
● I/O programs are of type *World -> *World
● in order to have an interactive object to work 
with, we have to create it using startIO

:: IdFun st :== st -> st
:: ProcessInit pst :== IdFun st

startIO :: !DocumentInterface
           !.l (ProcessInit (PSt .l))
           [(ProcessAttribute (PSt .l)]
           !*World -> *World



  

ObjectIO
Clean Warm-Up

module helloWorld
import StdEnv, StdIO

Start w = startIO NDI Void init [] w
where
  init pst
  # (e, pst) = openDialog Void hello pst
  | e <> NoError = closeProcess pst
  | otherwise = pst

  hello = Dialog “” (TextControl “HW” [])
                [WindowClose (noLS closeProcess)]
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The World
● the interactive process has to be closed, too 

closeProcess :: !(PSt .l) ->
                !(PSt .l)
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More on object identification
● before they can be used, the identifiers have to 

be created

openId  ::      !*env -> (!Id   !*env)
openIds :: !Int !*env -> (![Id] !*env)

● there are also receiver IDs and 
receiving/answering ones

● World, IOSt .l and PSt .l are identifier 
instances
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More on object identification
● two strategies for creating IDs

● create IDs, then pass them on to the callback
● store the created IDs in a record, then 
reference the record from the callback
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Drawing
● the environment of drawing is a *Picture

● it has a coordinate system

viewDomainRange :==
  { corner1 = {x=0-(2^30), y=0-(2^30)}
  , corner2 = {x=   2^30 , y=   2^30 }
  }

● it uses a pen, which defines the position, colour 
and font of the figure to be drawn
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Drawing

class Drawables figure where
  draw   ::         !figure !*Picture -> *Picture
  drawAt :: !Point2 !figure !*Picture -> *Picture
undraw   ::         !figure !*Picture -> *Picture
undrawAt :: !Point2 !figure !*Picture -> *Picture

// Fillables and Hilites are similar

● all of the above : boxes, rectangles
● above two : ovals, curves, polygons
● only Drawables : strings, vectors, bitmaps



  

ObjectIO
Clean Warm-Up

Drawing

:: PenAttribute = PenSize Int
                | PenPos Point2
                | PenColour Colour
                | PenBack Colour
                | PenFont Font         

:: Point2 = {x :: !Int, y :: !Int}

instance zero Point2 where
  zero = { x = 0, y = 0 }

:: Colour = Black | ... | RGB RGBColour
:: RGBColour ={ r :: !Int, g :: !Int , b :: !Int}
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Drawing

:: FontDef = { fName   :: !FontName
             , fStyles :: ![FontStyle]
             , fSize   :: !FontSize
             }        

openFont :: !FontDef !*Picture
         -> ( !( !Bool, !Font ), !*Picture )

openDefaultFont :: !*Picture -> (!Font,!*Picture)
openDialogFont  :: !*Picture -> (!Font,!*Picture)

● Bool: was the font found? if not, closest match
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Drawing

openBitmap :: !{#Char} !*env
           -> ( !Maybe Bitmap, !*env )

| FileSystem env
         

resizeBitmap  :: !Size !Bitmap -> Bitmap
getBitmapSize ::       !Bitmap -> Size

● it is possible to make only “temporary changes” 
instead of permanent drawing

appXorPicture :: !.(IdFun *Picture) *Picture
              -> *Picture
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Drawing

● if we need only part of a picture, it can be easier 
to draw the whole picture, and clip out the rest

class toRegion area :: !area -> Region

instance toRegion Rectangle
instance toRegion [r]         | toRegion r
instance toRegion (:^: r1 r2) | toRegion r1 &
                                toRegion r2

appClipPicture :: !Region !.(IdFun *Picture)
                  !*Picture     -> *Picture
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Making windows

● there are two basic types of windows, similar in 
construction: windows and dialogues

:: Window c ls pst
   = Window Title ( c ls pst )
            [WindowAttribute *( ls, pst )]

:: Dialog c ls pst
   = Dialog Title ( c ls pst )
            [WindowAttribute *( ls, pst )]
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Making windows

● creating and closing dialogues and windows

class Windows wdef where
 openWindow ::
   .ls !(wdef .ls !(PSt .l)) !(PSt .l) ->
   (!ErrorReport, !PSt .l)

closeWindow ::   !Id !(PSt .l) -> PSt .l
closeActiveWindow :: !(PSt .l) -> PSt .l

●remember: WindowClose (noLS closeActiveWindow)
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Making windows

● windows have multiple layers
● low level: the document to be displayed
● connection in between: controls
● top level: the window frame

● there are two ways to change the contents of the 
window
● indirect method: change the document, and it 
changes the visible part of its Picture

● direct method: change the Picture itself
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Making windows
● indirect drawing

:: WindowAttribute = ...
                   | WindowLook       Bool Look
                   | WindowViewDomain ViewDomain
:: Look :== SelectState -> UpdateState ->
            *Picture -> *Picture

:: UpdateState = { oldFrame :: !ViewFrame
                 , newFrame :: !ViewFrame
                 , updArea  :: !UpdateArea }
:: ViewFrame :== Rectangle
:: UpdateArea :== [ViewFrame]
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Making windows
● indirect drawing

● the Look callback renders the window

setWindowLook ::
  !Id !Bool !(!Bool, !Look) !(IOSt .l) -> IOSt .l

getWindowLook ::
  !Id !(IOSt .l) -> (!Maybe (Bool, Look), IOSt .l)

● direct drawing

appWindowPicture ::
  !Id !.(IdFun *Picture) !(IOSt .l) -> IOSt .l



  

ObjectIO
Clean Warm-Up

Handling control events

● window attributes include controls for keyboard 
and mouse events

● keyboard events

:: KeyboardState
     = CharKey Char KeyState
     | SpecialKey SpecialKey Keystate Modifiers
     | KeyLost

:: KeyState = KeyDown Bool
            | KeyUp
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Handling control events
● mouse events

:: MouseState = MouseMove Point2 Modifiers
              | MouseDown Point2 Modifiers
              | MouseDrag Point2 Modifiers Int
              | MouseUp Point2 Modifiers
              | MouseLost
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Modal dialogues
● blocking dialogue: the user has to fully handle 
the dialogue before proceeding

class Dialogs ddef where
 openModalDialog ::
      .ls  !(ddef .ls !(PSt .l))  !(PSt .l)
    -> (!(!ErrorReport, !Maybe .ls), !PSt .l)
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Controls
● ButtonControl

● CustomButtonControl
● CheckControl
● EditControl
● PopUpControl
● RadioControl
● SliderControl
● TextControl

● organising the controls
● LayoutControl
● CompoundControl
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Controls
●  putting controls together

● :+:
●  lists can be more appropriate

:: ListLS t ls cs = ListLS [t ls cs]
:: NilLS    ls cs = NilLS
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Layout
●  layout is defined with attributes

● at fixed positions : (Fix, position)
● in a corner: LeftTop, RightTop,

LeftBottom, RightBottom
● along lines: Left, Center, Right
● relative to the previous object: (X, position), 
where X is RightToPrev, LeftOfPrev, 
AbovePrev or BelowPrev

● the above can be modified by offsets
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Menus
●  opening menus

● pop-up menus cannot have submenus

class Menus mdef where
  openMenu :: .ls (!mdef .ls (PSt .l)) !(PSt .l)
           -> ( !ErrorReport, !PSt .l )

instance Menus (Menu      m)| MenuElements      m
instance Menus (PopUpMenu m)| PopUpMenuElements m

:: Menu m ls pst = Menu Title (m ls pst)
[MenuAttribute *(ls, pst)]

:: PopUpMenu m ls pst = PopUpMenu (m ls pst)
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Menus
●  menu attributes

:: MenuAttribute st
 = MenuId Id
 | MenuSelectState SelectState
 | MenuIndex Int
 | MenuInit (IdFun st)
 | MenuFunction (IdFun st)
 | MenuMarkState    MarkState
 | MenuModsFunction (ModifiersFunction st)
 | MenuShortKey Char
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Menus
●  constructing the menu

:: MenuItem ls pst
   = MenuItem Title [MenuAttribute *(ls, pst)]

:: MenuSeparator ls pst
   = MenuSeparator [MenuAttribute *(ls, pst)]

:: SubMenu m ls pst
   = SubMenu Title (m ls pst)
             [MenuAttribute *(ls, pst)]

... also: menu glue :+: and  NilLS and ListLS
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