

ObjectIO
Clean Warm-Up

The goal of ObjectIO
● interactive objects

● windows
● menus
● timers
● receivers
● tools for drawing

● interactive processes
● communication with channels

ObjectIO
Clean Warm-Up

The structure of interactive objects
● every interactive object is located in the I/O state
●ls is the user-defined local state of the
component

●together they form the process state

:: *IOSt st
:: PSt l
 = { ls : !l
 , io : !*IOSt l
 }

ObjectIO
Clean Warm-Up

The structure of interactive objects
● the objects themselves are represented as
algebraic data types
● the most trivial is Void
● the names of the type constructors and the data
constructors are the same

:: ButtonControl ls pst
 = ButtonControl
 String
 [ControlAttribute *(ls, pst)]

ObjectIO
Clean Warm-Up

The structure of interactive objects
● an object is interactive if it has an effect

● e.g. a button can be pressed
● when the effect is invoked, a callback function
is called, which makes the state change as
(ls, pst) ↦ (ls, pst)

● these are often attributes of the object

:: ControlAttribute st
 = ... | ControlFunction (st -> st)

ObjectIO
Clean Warm-Up

The structure of interactive objects
● it is possible to glue objects together

● composite objects can be formed
● user interfaces are made this way
● universal glue

:: :+: t1 t2 ls pst
 = (:+:) infixr 9
 (t1 ls pst) (t2 ls pst)

ObjectIO
Clean Warm-Up

The structure of interactive objects
● it is possible to glue objects together

● you can define which objects can be glued
using type constructor classes

● the following enables gluing Controls together

instance Controls
 ButtonControl,
 ...
 :+: c1 c2 | Controls c1 &
 Controls c2

ObjectIO
Clean Warm-Up

The life cycle of interactive objects
● opening an interactive object

class Dialogs ddef where
 openDialog ::
 .ls
 !(ddef .ls !(PSt .l)) !(PSt .l) ->
 (!ErrorReport, !PSt .l)

ObjectIO
Clean Warm-Up

The life cycle of interactive objects
● opening an interactive object

(error, new_process_state)
 = openDialog
 local_dialog_state
 (Dialog
 “Title”
 (TextControl “Text”

 [])
 [])
 previous_process_state

ObjectIO
Clean Warm-Up

The life cycle of interactive objects
● modifying an interactive object

● the object to be modified has to be identified

(error, new_process_state)
 = openDialog
 local_dialog_state
 (Dialog
 “Title”
 (TextControl “Text”

 [ControlId cId]) [])
 previous_process_state

ObjectIO
Clean Warm-Up

The life cycle of interactive objects
● modifying an interactive object

● we perform the modification by a function of
type (IOSt l) -> (IOSt l)

● should we need to also change the local state,
we would use (PSt l) -> (PSt l)

changeText process_state=:{io}
 = {process_state &
 io=setControlText cId
 “Example 2”
 io}

ObjectIO
Clean Warm-Up

The World
● I/O programs are of type *World -> *World
● in order to have an interactive object to work
with, we have to create it using startIO

:: IdFun st :== st -> st
:: ProcessInit pst :== IdFun st

startIO :: !DocumentInterface
 !.l (ProcessInit (PSt .l))
 [(ProcessAttribute (PSt .l)]
 !*World -> *World

ObjectIO
Clean Warm-Up

module helloWorld
import StdEnv, StdIO

Start w = startIO NDI Void init [] w
where
 init pst
 # (e, pst) = openDialog Void hello pst
 | e <> NoError = closeProcess pst
 | otherwise = pst

 hello = Dialog “” (TextControl “HW” [])
 [WindowClose (noLS closeProcess)]

ObjectIO
Clean Warm-Up

The World
● the interactive process has to be closed, too

closeProcess :: !(PSt .l) ->
 !(PSt .l)

ObjectIO
Clean Warm-Up

More on object identification
● before they can be used, the identifiers have to

be created

openId :: !*env -> (!Id !*env)
openIds :: !Int !*env -> (![Id] !*env)

● there are also receiver IDs and
receiving/answering ones

● World, IOSt .l and PSt .l are identifier
instances

ObjectIO
Clean Warm-Up

More on object identification
● two strategies for creating IDs

● create IDs, then pass them on to the callback
● store the created IDs in a record, then
reference the record from the callback

ObjectIO
Clean Warm-Up

Drawing
● the environment of drawing is a *Picture

● it has a coordinate system

viewDomainRange :==
 { corner1 = {x=0-(2^30), y=0-(2^30)}
 , corner2 = {x= 2^30 , y= 2^30 }
 }

● it uses a pen, which defines the position, colour
and font of the figure to be drawn

ObjectIO
Clean Warm-Up

Drawing

class Drawables figure where
 draw :: !figure !*Picture -> *Picture
 drawAt :: !Point2 !figure !*Picture -> *Picture
undraw :: !figure !*Picture -> *Picture
undrawAt :: !Point2 !figure !*Picture -> *Picture

// Fillables and Hilites are similar

● all of the above : boxes, rectangles
● above two : ovals, curves, polygons
● only Drawables : strings, vectors, bitmaps

ObjectIO
Clean Warm-Up

Drawing

:: PenAttribute = PenSize Int
 | PenPos Point2
 | PenColour Colour
 | PenBack Colour
 | PenFont Font

:: Point2 = {x :: !Int, y :: !Int}

instance zero Point2 where
 zero = { x = 0, y = 0 }

:: Colour = Black | ... | RGB RGBColour
:: RGBColour ={ r :: !Int, g :: !Int , b :: !Int}

ObjectIO
Clean Warm-Up

Drawing

:: FontDef = { fName :: !FontName
 , fStyles :: ![FontStyle]
 , fSize :: !FontSize
 }

openFont :: !FontDef !*Picture
 -> (!(!Bool, !Font), !*Picture)

openDefaultFont :: !*Picture -> (!Font,!*Picture)
openDialogFont :: !*Picture -> (!Font,!*Picture)

● Bool: was the font found? if not, closest match

ObjectIO
Clean Warm-Up

Drawing

openBitmap :: !{#Char} !*env
 -> (!Maybe Bitmap, !*env)

| FileSystem env

resizeBitmap :: !Size !Bitmap -> Bitmap
getBitmapSize :: !Bitmap -> Size

● it is possible to make only “temporary changes”
instead of permanent drawing

appXorPicture :: !.(IdFun *Picture) *Picture
 -> *Picture

ObjectIO
Clean Warm-Up

Drawing

● if we need only part of a picture, it can be easier
to draw the whole picture, and clip out the rest

class toRegion area :: !area -> Region

instance toRegion Rectangle
instance toRegion [r] | toRegion r
instance toRegion (:^: r1 r2) | toRegion r1 &
 toRegion r2

appClipPicture :: !Region !.(IdFun *Picture)
 !*Picture -> *Picture

ObjectIO
Clean Warm-Up

Making windows

● there are two basic types of windows, similar in
construction: windows and dialogues

:: Window c ls pst
 = Window Title (c ls pst)
 [WindowAttribute *(ls, pst)]

:: Dialog c ls pst
 = Dialog Title (c ls pst)
 [WindowAttribute *(ls, pst)]

ObjectIO
Clean Warm-Up

Making windows

● creating and closing dialogues and windows

class Windows wdef where
 openWindow ::
 .ls !(wdef .ls !(PSt .l)) !(PSt .l) ->
 (!ErrorReport, !PSt .l)

closeWindow :: !Id !(PSt .l) -> PSt .l
closeActiveWindow :: !(PSt .l) -> PSt .l

●remember: WindowClose (noLS closeActiveWindow)

ObjectIO
Clean Warm-Up

Making windows

● windows have multiple layers
● low level: the document to be displayed
● connection in between: controls
● top level: the window frame

● there are two ways to change the contents of the
window
● indirect method: change the document, and it
changes the visible part of its Picture

● direct method: change the Picture itself

ObjectIO
Clean Warm-Up

Making windows
● indirect drawing

:: WindowAttribute = ...
 | WindowLook Bool Look
 | WindowViewDomain ViewDomain
:: Look :== SelectState -> UpdateState ->
 *Picture -> *Picture

:: UpdateState = { oldFrame :: !ViewFrame
 , newFrame :: !ViewFrame
 , updArea :: !UpdateArea }
:: ViewFrame :== Rectangle
:: UpdateArea :== [ViewFrame]

ObjectIO
Clean Warm-Up

Making windows
● indirect drawing

● the Look callback renders the window

setWindowLook ::
 !Id !Bool !(!Bool, !Look) !(IOSt .l) -> IOSt .l

getWindowLook ::
 !Id !(IOSt .l) -> (!Maybe (Bool, Look), IOSt .l)

● direct drawing

appWindowPicture ::
 !Id !.(IdFun *Picture) !(IOSt .l) -> IOSt .l

ObjectIO
Clean Warm-Up

Handling control events

● window attributes include controls for keyboard
and mouse events

● keyboard events

:: KeyboardState
 = CharKey Char KeyState
 | SpecialKey SpecialKey Keystate Modifiers
 | KeyLost

:: KeyState = KeyDown Bool
 | KeyUp

ObjectIO
Clean Warm-Up

Handling control events
● mouse events

:: MouseState = MouseMove Point2 Modifiers
 | MouseDown Point2 Modifiers
 | MouseDrag Point2 Modifiers Int
 | MouseUp Point2 Modifiers
 | MouseLost

ObjectIO
Clean Warm-Up

Modal dialogues
● blocking dialogue: the user has to fully handle
the dialogue before proceeding

class Dialogs ddef where
 openModalDialog ::
 .ls !(ddef .ls !(PSt .l)) !(PSt .l)
 -> (!(!ErrorReport, !Maybe .ls), !PSt .l)

ObjectIO
Clean Warm-Up

Controls
● ButtonControl

● CustomButtonControl
● CheckControl
● EditControl
● PopUpControl
● RadioControl
● SliderControl
● TextControl

● organising the controls
● LayoutControl
● CompoundControl

ObjectIO
Clean Warm-Up

Controls
● putting controls together

● :+:
● lists can be more appropriate

:: ListLS t ls cs = ListLS [t ls cs]
:: NilLS ls cs = NilLS

ObjectIO
Clean Warm-Up

Layout
● layout is defined with attributes

● at fixed positions : (Fix, position)
● in a corner: LeftTop, RightTop,

LeftBottom, RightBottom
● along lines: Left, Center, Right
● relative to the previous object: (X, position),
where X is RightToPrev, LeftOfPrev,
AbovePrev or BelowPrev

● the above can be modified by offsets

ObjectIO
Clean Warm-Up

Menus
● opening menus

● pop-up menus cannot have submenus

class Menus mdef where
 openMenu :: .ls (!mdef .ls (PSt .l)) !(PSt .l)
 -> (!ErrorReport, !PSt .l)

instance Menus (Menu m)| MenuElements m
instance Menus (PopUpMenu m)| PopUpMenuElements m

:: Menu m ls pst = Menu Title (m ls pst)
[MenuAttribute *(ls, pst)]

:: PopUpMenu m ls pst = PopUpMenu (m ls pst)

ObjectIO
Clean Warm-Up

Menus
● menu attributes

:: MenuAttribute st
 = MenuId Id
 | MenuSelectState SelectState
 | MenuIndex Int
 | MenuInit (IdFun st)
 | MenuFunction (IdFun st)
 | MenuMarkState MarkState
 | MenuModsFunction (ModifiersFunction st)
 | MenuShortKey Char

ObjectIO
Clean Warm-Up

Menus
● constructing the menu

:: MenuItem ls pst
 = MenuItem Title [MenuAttribute *(ls, pst)]

:: MenuSeparator ls pst
 = MenuSeparator [MenuAttribute *(ls, pst)]

:: SubMenu m ls pst
 = SubMenu Title (m ls pst)
 [MenuAttribute *(ls, pst)]

... also: menu glue :+: and NilLS and ListLS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

