
Erlang Introduction 1.

László Lövei

Department of Programing Languages and Compilers
Faculty of Informatics

Eötvös Loránd University

May 21, 2009

Outline

Introduction

Erlang basics
Simple functions
Using data structures
Modules

Working with Erlang

Exercises

Background

Erlang/OTP has been created by Ericsson “to provide a better way
of programming telephony applications.”

I Highly concurrent: 100,000 simultaneous transactions
I Highly reliable: 99.999% availability
I Soft real-time: react within a certain time
I Distributed over several computers
I Interaction with hardware
I Very large software with complex functionality

Features

I Functional language
I No destructive assignments
I Programs consist of function definitions

I Concurrency oriented programming
I Not pure: there are expressions with side effects
I No static type checking
I Features critical for telecom software:

I Fault tolerance
I Hot code loading
I Distributed operation
I Soft real-time characteristics
I External interfaces
I Portability

Function syntax

Simple functions

double(Number) -> 2 * Number.

quad(X) -> 2 * double(X).
hello() -> io:put_chars("Hello!\n").

I Function identifiers start with a lower case letter

I Variable identifiers start with an upper case letter
I Functions are terminated with a full stop
I Functions in the same module call each other using their name
I External function calls include a module name qualifier

Function syntax

Simple functions

double(Number) -> 2 * Number.

quad(X) -> 2 * double(X).
hello() -> io:put_chars("Hello!\n").

I Function identifiers start with a lower case letter
I Variable identifiers start with an upper case letter

I Functions are terminated with a full stop
I Functions in the same module call each other using their name
I External function calls include a module name qualifier

Function syntax

Simple functions

double(Number) -> 2 * Number.

quad(X) -> 2 * double(X).
hello() -> io:put_chars("Hello!\n").

I Function identifiers start with a lower case letter
I Variable identifiers start with an upper case letter
I Functions are terminated with a full stop

I Functions in the same module call each other using their name
I External function calls include a module name qualifier

Function syntax

Simple functions

double(Number) -> 2 * Number.
quad(X) -> 2 * double(X).

hello() -> io:put_chars("Hello!\n").

I Function identifiers start with a lower case letter
I Variable identifiers start with an upper case letter
I Functions are terminated with a full stop
I Functions in the same module call each other using their name

I External function calls include a module name qualifier

Function syntax

Simple functions

double(Number) -> 2 * Number.
quad(X) -> 2 * double(X).
hello() -> io:put_chars("Hello!\n").

I Function identifiers start with a lower case letter
I Variable identifiers start with an upper case letter
I Functions are terminated with a full stop
I Functions in the same module call each other using their name
I External function calls include a module name qualifier

Pattern matching and guards

Functions may have more clauses, the first clause with a matching
pattern and a true guard is executed.

Factorial function

fact(0) -> 1;
fact(N) -> N*fact(N-1).

I A constant pattern matches only that constant

I A variable pattern binds a value to the variable
I Other conditions may be specified as guards
I When no clauses are selected, a run time error occurs
I Guards are rather limited to prevent side effects

Pattern matching and guards

Functions may have more clauses, the first clause with a matching
pattern and a true guard is executed.

Factorial function

fact(0) -> 1;
fact(N) -> N*fact(N-1).

I A constant pattern matches only that constant
I A variable pattern binds a value to the variable

I Other conditions may be specified as guards
I When no clauses are selected, a run time error occurs
I Guards are rather limited to prevent side effects

Pattern matching and guards

Functions may have more clauses, the first clause with a matching
pattern and a true guard is executed.

Factorial function

fact(0) -> 1;
fact(N) when N>0 -> N*fact(N-1).

I A constant pattern matches only that constant
I A variable pattern binds a value to the variable
I Other conditions may be specified as guards

I When no clauses are selected, a run time error occurs
I Guards are rather limited to prevent side effects

Pattern matching and guards

Functions may have more clauses, the first clause with a matching
pattern and a true guard is executed.

Factorial function

fact(0) -> 1;
fact(N) when N>0 -> N*fact(N-1).

I A constant pattern matches only that constant
I A variable pattern binds a value to the variable
I Other conditions may be specified as guards
I When no clauses are selected, a run time error occurs

I Guards are rather limited to prevent side effects

Pattern matching and guards

Functions may have more clauses, the first clause with a matching
pattern and a true guard is executed.

Factorial function

fact(0) -> 1;
fact(N) when N>0 -> N*fact(N-1).

I A constant pattern matches only that constant
I A variable pattern binds a value to the variable
I Other conditions may be specified as guards
I When no clauses are selected, a run time error occurs
I Guards are rather limited to prevent side effects

Other basic concepts

Square root by Newton iteration

newton(A) -> newton(A, A).
newton(A, X) -> newton(A, X, (X+A/X)/2).
newton(_, X, Next) when abs(X-Next) < 0.0001 -> Next;
newton(A, _, Next) -> newton(A, Next).

I Functions with different arities may have the same name

I Underscore patterns mean “I don’t care about this value”
I Variables starting with an underscore do not give a warning

when unused
I Unqualified built-in functions are implemented by the emulator
I Some BIFs may be used in guards

Other basic concepts

Square root by Newton iteration

newton(A) -> newton(A, A).
newton(A, X) -> newton(A, X, (X+A/X)/2).
newton(_, X, Next) when abs(X-Next) < 0.0001 -> Next;
newton(A, _, Next) -> newton(A, Next).

I Functions with different arities may have the same name
I Underscore patterns mean “I don’t care about this value”

I Variables starting with an underscore do not give a warning
when unused

I Unqualified built-in functions are implemented by the emulator
I Some BIFs may be used in guards

Other basic concepts

Square root by Newton iteration

newton(A) -> newton(A, A).
newton(A, X) -> newton(A, X, (X+A/X)/2).
newton(_A, X, Next) when abs(X-Next) < 0.0001 -> Next;
newton(A, _X, Next) -> newton(A, Next).

I Functions with different arities may have the same name
I Underscore patterns mean “I don’t care about this value”
I Variables starting with an underscore do not give a warning

when unused

I Unqualified built-in functions are implemented by the emulator
I Some BIFs may be used in guards

Other basic concepts

Square root by Newton iteration

newton(A) -> newton(A, A).
newton(A, X) -> newton(A, X, (X+A/X)/2).
newton(_A, X, Next) when abs(X-Next) < 0.0001 -> Next;
newton(A, _X, Next) -> newton(A, Next).

I Functions with different arities may have the same name
I Underscore patterns mean “I don’t care about this value”
I Variables starting with an underscore do not give a warning

when unused
I Unqualified built-in functions are implemented by the emulator

I Some BIFs may be used in guards

Other basic concepts

Square root by Newton iteration

newton(A) when is_float(A);
is_integer(A) -> newton(A, A).

newton(A, X) -> newton(A, X, (X+A/X)/2).
newton(_A, X, Next) when abs(X-Next) < 0.0001 -> Next;
newton(A, _X, Next) -> newton(A, Next).

I Functions with different arities may have the same name
I Underscore patterns mean “I don’t care about this value”
I Variables starting with an underscore do not give a warning

when unused
I Unqualified built-in functions are implemented by the emulator
I Some BIFs may be used in guards

Tuples

I Fixed size sequence of arbitrary Erlang data
I Constant time element access by index
I Cannot be modified in any way
I May be empty, upper size is not limited (only by the available

memory)
I Syntax: {El1, El2, ..., ElN}

Tuple example

There are a number of BIFs for handling tuples:

Complex numbers

add(A, B) when is_tuple(A), size(A) == 2,
is_tuple(B), size(B) == 2 ->

{element(1, A) + element(1, B),
element(2, A) + element(2, B)}.

conj(A) when is_tuple(A), size(A) == 2 ->
setelement(2, A, -element(2, A)).

test() -> add({1, 0}, conj({0, 1})).

Tuple example

It is much more common to use pattern matching:

Complex numbers

add({ReA, ImA}, {ReB, ImB}) -> {ReA + ReB, ImA + ImB}.
conj({Re, Im}) -> {Re, -Im}.
test() -> add({1, 0}, conj({0, 1})).

I A tuple pattern only matches a tuple of the same size
I Elements are also matched recursively

Atoms

I Atoms are character sequences used mainly as labels
I No string operations, only matching
I Function and module names are atoms
I Atoms with funny characters need quotes around them

I hello is the same as ’hello’
I ’What\’s this?’ is also an atom

Tagged tuples

Atoms are frequently used to distinguish between different “types”:

File reading

read(Name) -> read1(file:read_file(Name)).
read1({ok, Text}) -> Text;
read1({error, Reason}) -> throw(Reason).

I read_file always returns a pair of values

I When the first element is ok, it means reading has been
successful and the contents of the file is returned

I error means reading has failed
I throw inhibits normal function return, and throws an

exception that can be caught later

Tagged tuples

Atoms are frequently used to distinguish between different “types”:

File reading

read(Name) -> read1(file:read_file(Name)).
read1({ok, Text}) -> Text;
read1({error, Reason}) -> throw(Reason).

I read_file always returns a pair of values
I When the first element is ok, it means reading has been

successful and the contents of the file is returned

I error means reading has failed
I throw inhibits normal function return, and throws an

exception that can be caught later

Tagged tuples

Atoms are frequently used to distinguish between different “types”:

File reading

read(Name) -> read1(file:read_file(Name)).
read1({ok, Text}) -> Text;
read1({error, Reason}) -> throw(Reason).

I read_file always returns a pair of values
I When the first element is ok, it means reading has been

successful and the contents of the file is returned
I error means reading has failed

I throw inhibits normal function return, and throws an
exception that can be caught later

Tagged tuples

Atoms are frequently used to distinguish between different “types”:

File reading

read(Name) -> read1(file:read_file(Name)).
read1({ok, Text}) -> Text;
read1({error, Reason}) -> throw(Reason).

I read_file always returns a pair of values
I When the first element is ok, it means reading has been

successful and the contents of the file is returned
I error means reading has failed
I throw inhibits normal function return, and throws an

exception that can be caught later

Pattern matching expressions

Branching based on patterns is not restricted to function clauses:

Branching expression

case file:read_file(Name) of
{ok, Text} -> {ok, process(Text)};
{error, _} -> error

end

I The result of the expression is matched on the patterns
I The first clause with a matching pattern is executed
I Guards can be used as well

Pattern matching expressions

Pattern matching may be used without branching as well:

Simple pattern match

process_file(Name) ->
{ok, Text} = file:read_file(Name),
process(Text).

I Works as an assertion
I Generates a run time error when the pattern does not match
I Alternative (error prone) style:

Text = element(2, file:read_file(Name))

Lists

I Traditional functional lists built using [Head|Tail] and []
I A single list cell cannot be modified, but building a new list by

prepending an element is very efficient
I Better suited to storing variable length data than tuples in

spite of linear time element access
I Syntactic sugar:

I [El1, ..., ElN] means [El1, [..., [ElN|[]]]]
I [El1, El2 | Tail] can also be used

I BIFs: length, hd, tl

Sum of numbers

Selector style

sum(L) when L == [] -> 0;
sum(L) -> hd(L) + tl(L).

Pattern matching style

sum([]) -> 0;
sum([Hd|Tl]) -> Hd + sum(Tl).

I The latter is preferred

Special types

Fun Unnamed function (lambda expression)
Binary A sequence of uninterpreted bytes

I Special syntax for pattern matching
I Sometimes used to store strings

Pid Identifier for Erlang processes
Port Identifier for an external connection (e.g. hardware

driver)
Ref An opaque identifier uniquely generated by make_ref

Strings

I The canonical representation is a list of integers (character
codes)

I Syntactic sugar:
I "ABC" means [65,66,67]
I [$A, $B, $C] means the same

I Extensive library support (modules lists and strings)
I Deep strings: ["A", ["BC", ["D"], "E"]]

I Efficient concatenation
I Library support: the io module prints it as ABCDE
I lists:flatten converts it to flat string

I String representation of Erlang data: io_lib:format
I io_lib:format("˜p", [AnyData])
I io_lib:format("˜b, ˜f, ˜c", [Int, Float, Char])
I Direct printing: io:format("˜s˜n", [TextOrAtom])

Booleans

I Conventional representation: atoms true and false
I Comparison operators (==, /=, =:=, =/=, <, >, =<, >=) return

these atoms
I Boolean operators expect and return these atoms (and, or)
I Library functions use these atoms (e.g. lists:any,

lists:all, lists:filter)
I Shortcut boolean operators: andalso, orelse

I The second argument may be anything, it is simply returned

Module syntax

complex.erl

-module(complex).
-export([add/2, conj/1, test/0]).
add({ReA, ImA}, {ReB, ImB}) -> {ReA + ReB, ImA + ImB}.
conj({Re, Im}) -> {Re, -Im}.
test() -> add({1, 0}, conj({0, 1})).

I Module name must match the file name

I Only the exported functions may be called externally
I Every attribute and function is terminated by a full stop

Module syntax

complex.erl

-module(complex).
-export([add/2, conj/1, test/0]).
add({ReA, ImA}, {ReB, ImB}) -> {ReA + ReB, ImA + ImB}.
conj({Re, Im}) -> {Re, -Im}.
test() -> add({1, 0}, conj({0, 1})).

I Module name must match the file name
I Only the exported functions may be called externally

I Every attribute and function is terminated by a full stop

Module syntax

complex.erl

-module(complex).
-export([add/2, conj/1, test/0]).
add({ReA, ImA}, {ReB, ImB}) -> {ReA + ReB, ImA + ImB}.
conj({Re, Im}) -> {Re, -Im}.
test() -> add({1, 0}, conj({0, 1})).

I Module name must match the file name
I Only the exported functions may be called externally
I Every attribute and function is terminated by a full stop

The Erlang shell

I Started by erl (Unix) or werl (Windows)
I Evaluates expressions interactively
I Functions and modules cannot be defined on the fly
I Compilation and module loading easily accessible
I Many tools can be started from the shell: graphical debugger,

process monitor, profiler, error analyser, documentation
generator, etc.

Example session

$ erl
Erlang (BEAM) emulator version 5.6.3 [source] [hipe] ...

Eshell V5.6.3 (abort with ^G)
1> c(complex).
ok,complex
2> complex:test().
{1,-1}
3> halt().

1. Compile and load complex.erl

2. Call a function, the return value is displayed
3. Stop the emulator

Example session

$ erl
Erlang (BEAM) emulator version 5.6.3 [source] [hipe] ...

Eshell V5.6.3 (abort with ^G)
1> c(complex).
ok,complex
2> complex:test().
{1,-1}
3> halt().

1. Compile and load complex.erl

2. Call a function, the return value is displayed

3. Stop the emulator

Example session

$ erl
Erlang (BEAM) emulator version 5.6.3 [source] [hipe] ...

Eshell V5.6.3 (abort with ^G)
1> c(complex).
ok,complex
2> complex:test().
{1,-1}
3> halt().

1. Compile and load complex.erl

2. Call a function, the return value is displayed
3. Stop the emulator

Useful shell commands

I help(). gives help
I cd(Path). changes the working directory
I pwd(). prints the working directory
I ls(). lists the files in the working directory
I v(N). returns the result of the nth expression
I f(V). clears the binding of shell variable V
I f(). clears the binding of every shell variable

Exercises

Write an Erlang function that...
1. calculates the nth Fibonacci number (try large numbers!)
2. returns the maximal element from a list of integers
3. counts the words in a string
4. calculates every Pythagorean triple below a given limit
5. converts the upper case letters to lower case in a string
6. calculates the first n rows of Pascal’s triangle

	Introduction
	Erlang basics
	Simple functions
	Using data structures
	Modules

	Working with Erlang
	Exercises

