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Background

Erlang/OTP has been created by Ericsson “to provide a better way
of programming telephony applications.”

I Highly concurrent: 100,000 simultaneous transactions
I Highly reliable: 99.999% availability
I Soft real-time: react within a certain time
I Distributed over several computers
I Interaction with hardware
I Very large software with complex functionality



Features

I Functional language
I No destructive assignments
I Programs consist of function definitions

I Concurrency oriented programming
I Not pure: there are expressions with side effects
I No static type checking
I Features critical for telecom software:

I Fault tolerance
I Hot code loading
I Distributed operation
I Soft real-time characteristics
I External interfaces
I Portability



Function syntax

Simple functions

double(Number) -> 2 * Number.

quad(X) -> 2 * double(X).
hello() -> io:put_chars("Hello!\n").

I Function identifiers start with a lower case letter

I Variable identifiers start with an upper case letter
I Functions are terminated with a full stop
I Functions in the same module call each other using their name
I External function calls include a module name qualifier
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Pattern matching and guards

Functions may have more clauses, the first clause with a matching
pattern and a true guard is executed.

Factorial function

fact(0) -> 1;
fact(N) -> N*fact(N-1).

I A constant pattern matches only that constant

I A variable pattern binds a value to the variable
I Other conditions may be specified as guards
I When no clauses are selected, a run time error occurs
I Guards are rather limited to prevent side effects
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Other basic concepts

Square root by Newton iteration

newton(A) -> newton(A, A).
newton(A, X) -> newton(A, X, (X+A/X)/2).
newton(_, X, Next) when abs(X-Next) < 0.0001 -> Next;
newton(A, _, Next) -> newton(A, Next).

I Functions with different arities may have the same name

I Underscore patterns mean “I don’t care about this value”
I Variables starting with an underscore do not give a warning

when unused
I Unqualified built-in functions are implemented by the emulator
I Some BIFs may be used in guards
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Tuples

I Fixed size sequence of arbitrary Erlang data
I Constant time element access by index
I Cannot be modified in any way
I May be empty, upper size is not limited (only by the available

memory)
I Syntax: {El1, El2, ..., ElN}



Tuple example

There are a number of BIFs for handling tuples:

Complex numbers

add(A, B) when is_tuple(A), size(A) == 2,
is_tuple(B), size(B) == 2 ->

{element(1, A) + element(1, B),
element(2, A) + element(2, B)}.

conj(A) when is_tuple(A), size(A) == 2 ->
setelement(2, A, -element(2, A)).

test() -> add({1, 0}, conj({0, 1})).



Tuple example

It is much more common to use pattern matching:

Complex numbers

add({ReA, ImA}, {ReB, ImB}) -> {ReA + ReB, ImA + ImB}.
conj({Re, Im}) -> {Re, -Im}.
test() -> add({1, 0}, conj({0, 1})).

I A tuple pattern only matches a tuple of the same size
I Elements are also matched recursively



Atoms

I Atoms are character sequences used mainly as labels
I No string operations, only matching
I Function and module names are atoms
I Atoms with funny characters need quotes around them

I hello is the same as ’hello’
I ’What\’s this?’ is also an atom



Tagged tuples

Atoms are frequently used to distinguish between different “types”:

File reading

read(Name) -> read1(file:read_file(Name)).
read1({ok, Text}) -> Text;
read1({error, Reason}) -> throw(Reason).

I read_file always returns a pair of values

I When the first element is ok, it means reading has been
successful and the contents of the file is returned

I error means reading has failed
I throw inhibits normal function return, and throws an

exception that can be caught later
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Pattern matching expressions

Branching based on patterns is not restricted to function clauses:

Branching expression

case file:read_file(Name) of
{ok, Text} -> {ok, process(Text)};
{error, _} -> error

end

I The result of the expression is matched on the patterns
I The first clause with a matching pattern is executed
I Guards can be used as well



Pattern matching expressions

Pattern matching may be used without branching as well:

Simple pattern match

process_file(Name) ->
{ok, Text} = file:read_file(Name),
process(Text).

I Works as an assertion
I Generates a run time error when the pattern does not match
I Alternative (error prone) style:

Text = element(2, file:read_file(Name))



Lists

I Traditional functional lists built using [Head|Tail] and []
I A single list cell cannot be modified, but building a new list by

prepending an element is very efficient
I Better suited to storing variable length data than tuples in

spite of linear time element access
I Syntactic sugar:

I [El1, ..., ElN] means [El1, [..., [ElN|[]]]]
I [El1, El2 | Tail] can also be used

I BIFs: length, hd, tl



Sum of numbers

Selector style

sum(L) when L == [] -> 0;
sum(L) -> hd(L) + tl(L).

Pattern matching style

sum([]) -> 0;
sum([Hd|Tl]) -> Hd + sum(Tl).

I The latter is preferred



Special types

Fun Unnamed function (lambda expression)
Binary A sequence of uninterpreted bytes

I Special syntax for pattern matching
I Sometimes used to store strings

Pid Identifier for Erlang processes
Port Identifier for an external connection (e.g. hardware

driver)
Ref An opaque identifier uniquely generated by make_ref



Strings

I The canonical representation is a list of integers (character
codes)

I Syntactic sugar:
I "ABC" means [65,66,67]
I [$A, $B, $C] means the same

I Extensive library support (modules lists and strings)
I Deep strings: ["A", ["BC", ["D"], "E"]]

I Efficient concatenation
I Library support: the io module prints it as ABCDE
I lists:flatten converts it to flat string

I String representation of Erlang data: io_lib:format
I io_lib:format("˜p", [AnyData])
I io_lib:format("˜b, ˜f, ˜c", [Int, Float, Char])
I Direct printing: io:format("˜s˜n", [TextOrAtom])



Booleans

I Conventional representation: atoms true and false
I Comparison operators (==, /=, =:=, =/=, <, >, =<, >=) return

these atoms
I Boolean operators expect and return these atoms (and, or)
I Library functions use these atoms (e.g. lists:any,

lists:all, lists:filter)
I Shortcut boolean operators: andalso, orelse

I The second argument may be anything, it is simply returned



Module syntax

complex.erl

-module(complex).
-export([add/2, conj/1, test/0]).
add({ReA, ImA}, {ReB, ImB}) -> {ReA + ReB, ImA + ImB}.
conj({Re, Im}) -> {Re, -Im}.
test() -> add({1, 0}, conj({0, 1})).

I Module name must match the file name

I Only the exported functions may be called externally
I Every attribute and function is terminated by a full stop
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The Erlang shell

I Started by erl (Unix) or werl (Windows)
I Evaluates expressions interactively
I Functions and modules cannot be defined on the fly
I Compilation and module loading easily accessible
I Many tools can be started from the shell: graphical debugger,

process monitor, profiler, error analyser, documentation
generator, etc.



Example session

$ erl
Erlang (BEAM) emulator version 5.6.3 [source] [hipe] ...

Eshell V5.6.3 (abort with ^G)
1> c(complex).
ok,complex
2> complex:test().
{1,-1}
3> halt().

1. Compile and load complex.erl

2. Call a function, the return value is displayed
3. Stop the emulator
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Useful shell commands

I help(). gives help
I cd(Path). changes the working directory
I pwd(). prints the working directory
I ls(). lists the files in the working directory
I v(N). returns the result of the nth expression
I f(V). clears the binding of shell variable V
I f(). clears the binding of every shell variable



Exercises

Write an Erlang function that...
1. calculates the nth Fibonacci number (try large numbers!)
2. returns the maximal element from a list of integers
3. counts the words in a string
4. calculates every Pythagorean triple below a given limit
5. converts the upper case letters to lower case in a string
6. calculates the first n rows of Pascal’s triangle
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