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Funs

Funs are function objects which may be used as any other data.

Fun expression

lists:filter(fun (N) when N rem 2 == 0 -> true;
(_) -> false

end,
[1,2,3,4,5,6])

I The example function returns true for even numbers
I There may be any number of arguments
I There may be any number of clauses (at least one)
I Named functions may be referred too: fun add/2



Calling funs

Using funs

filter(F, []) -> [];
filter(F, [Hd|Tl]) ->

case F(Hd) of
true -> [Hd | filter(F, Tl)];
_ -> filter(F, Tl)

end.

I Call syntax for funs is the same as for named functions

I Guards for funs:
I is_function(F)
I is_function(F, Arity)
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Exercises

1. Implement the map function! It has two arguments: F, a fun,
and L, a list. It should return a list that consist of the results
of calling F on the elements of L.

2. Generalize the sum function! It should get a new argument,
which specifies the operation to be used instead of addition.



Tail recursion

Tail call example

filter(F, [Hd|Tl]) ->
case F(Hd) of

true -> [Hd | filter(F, Tl)];
_ -> filter(F, Tl)

end.

I A tail call is a function call in the last position of a function

I Other calls grow the runtime stack, because the caller function
must be continued

I Tail calls are optimized in Erlang: they do not use stack space
I Recursive tail calls are important in long-running server code
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Tail recursion

Factorial function

fact(0) -> 1;
fact(N) when N>0 -> N*fact(N-1).

I Not tail recursive: the result has to be processed



Tail recursion

Factorial function

fact(N) when N>=0 -> fact(N, 1).
fact(0, F) -> F;
fact(N, F) -> fact(N-1, N*F).

I The usual solution is the introduction of an accumulator



Exercises

1. Create a tail recursive variant of the map function!
2. Create an Erlang function that

I reads lines from the keyboard (see io:get_line),
I prints the number of words for every line, and
I stops when an empty line is entered.

Make sure the function is tail recursive!



Record motivation

Using structured data

new(Name, Age, Phone) -> Name, Age, Phone.
is_adult({_Name, Age, _Phone}) ->

Age >= 18.
new_phone({Name, Age, _Phone}, NewPhone) ->

{Name, Age, NewPhone}.

I Tuples can be used to store structured data, but they are
clumsy

I Easy to make mistakes
I Hard to extend the structure
I Large tuples are very inconvenient



Record usage

Using structured data

-record(person, name, age, phone).
new(Name, Age, Phone) ->

#person{name=Name, age=Age, phone=Phone}.
is_adult(#person{age=Age}) -> Age >= 18.
new_phone(P=#person{}, NewPhone) ->

P#person{phone=NewPhone}.

I The record definition contains the record name and field names

I Constructors take the field values
I Fields are usually accessed by pattern matching
I Updating fields has its own syntax
I Records are turned into tagged tuples at compile time
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Exercises

1. Define a record representation for complex numbers!
2. Create functions for complex number operations like addition,

conjugation, absolute value!



List comprehensions

Squares of even numbers

[A*A || A <- lists:seq(1, 10), A rem 2 == 0]

I Generators match a pattern on every element of a list

I Filters evaluate conditions
I When the patterns match and the conditions are true, an

expression is evaluated
I The result if the list of the evaluation results
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Exercises

Write a list comprehension that
1. calculates every Pythagorean triple below a given limit!
2. converts the upper case letters to lower case in a string!



Binaries

I Binary data is an uninterpreted sequence of bytes
I Binary constructor syntax: <<1,2,3>>
I Character data may be specified: <<"ABC">> yields

<<65,66,67>>
I Field size can be specified in bits: <<1:32>> yields

<<0,0,0,1>>
I Field type can be specified: <<0.5/float>> yields

<<63,224,0,0,0,0,0,0>>
I Embedded binaries may be used to concatenate them:

<<A/binary, B/binary>>



Binary patterns

Sum of 32 bit signed integers

sum32(<<First:32/signed, Tail/binary>>) ->
First + sum32(Tail);

sum32(<< >>) -> 0;
sum32(_) -> throw(bad_align).

I Read the first 32 bits

I Continue with the rest of the data
I Stop when there is no more data
I Signal an error if the last data chunk is not 32 bit long
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Exercise

Create a function that reads the contents of a file into a binary (see
file:read_file), and counts the lines in the text!
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