
Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

The F# Programming Language

Mónika Mészáros
E-mail: bonnie@inf.elte.hu

Department of Programming Languages and Compilers
ELTE

May 22, 2009

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Outline of the presentation

1 Introduction to F#

2 Characteristics of F#

3 Standard Developer Tools

4 Language Basics

5 Lists

6 Higher-Order Functions

7 Tuples

8 Records

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Introduction to F#

F# is a
Functional
Imperative and
Object-oriented

programming language.

F# is "OCaml for .NET"

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Introduction to F#

F# is a
Functional
Imperative and
Object-oriented

programming language.

F# is "OCaml for .NET"

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Notable features

Strongly typed

Type inference

Performance profile like that of C#

Easy access to entire range of powerful .NET libraries

Speed of native code execution on the concurrent,
portable, and distributed .NET Framework

Option of a top-rate Visual Studio integration

Cross-compiling core shared with the OCaml language

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Other features

An F# program consists of type, class and function
definitions and expressions

Computation means evaluation of all the expressions one
by one

F# uses strict evaluation

F# is not pure (programs may contain side-effects)

Off-side rule only in "lightweight" syntax, which can be
turned on by #light ("hash-light") compiler directive (it is
recommended to keep #light on)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Other features

An F# program consists of type, class and function
definitions and expressions

Computation means evaluation of all the expressions one
by one

F# uses strict evaluation

F# is not pure (programs may contain side-effects)

Off-side rule only in "lightweight" syntax, which can be
turned on by #light ("hash-light") compiler directive (it is
recommended to keep #light on)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Other features

An F# program consists of type, class and function
definitions and expressions

Computation means evaluation of all the expressions one
by one

F# uses strict evaluation

F# is not pure (programs may contain side-effects)

Off-side rule only in "lightweight" syntax, which can be
turned on by #light ("hash-light") compiler directive (it is
recommended to keep #light on)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Other features

An F# program consists of type, class and function
definitions and expressions

Computation means evaluation of all the expressions one
by one

F# uses strict evaluation

F# is not pure (programs may contain side-effects)

Off-side rule only in "lightweight" syntax, which can be
turned on by #light ("hash-light") compiler directive (it is
recommended to keep #light on)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Other features

An F# program consists of type, class and function
definitions and expressions

Computation means evaluation of all the expressions one
by one

F# uses strict evaluation

F# is not pure (programs may contain side-effects)

Off-side rule only in "lightweight" syntax, which can be
turned on by #light ("hash-light") compiler directive (it is
recommended to keep #light on)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Standard Developer Tools

Basically, standard developer environments for F# are as
follows:

F# Interactive

Microsoft Visual Studio integration via an Add-In

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Standard Developer Tools

Basically, standard developer environments for F# are as
follows:

F# Interactive

Microsoft Visual Studio integration via an Add-In

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

F# Interactive: Read-Eval-Print

In spirit of LISP or Haskell functional programming languages,
F# also offers an opportunity for interactive software
development.
This is called F# Interactive or FSI for short.

Console application

Every feature is available

Ideal for brainstorming

Structure and behavior of programs can be analyzed

Expressions must be terminated with ";;"

Runs over Mono

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Some Easy Expressions

Launch the F# Interactive

Try the following expressions:

> let square x = x * x;;
> square 4;;
> let numbers = [1 .. 10];;
> let squares = List.map square numbers;;
> squares;;
> List.map square numbers;;

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Visual Development: Microsoft Visual F#

Recent F# distributions (1.9.6.2 CTP, September 2008) include
an Add-In for the Microsoft Visual Studio 2008 Development
Environment.
It offers the following additional advantages:

Syntax highlighting

Showing derived types in tooltips

Support for debugging

Every other service of the Visual Studio Ecosystem is
available

Microsoft Visual Studio 2010 includes complete support

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

A Very Simple Visual F# Project

Create a new Project, use the F# Application template.

Insert the following into the empty code editor:

#light
let rec factorial n =
match n with
| 0 -> 1
| n when n > 0 -> n * (factorial (n - 1))

printfn "5! = %A" (factorial 5)
System.Console.ReadKey () |> ignore

Press F5 to build and run the program.

Note: recursive functions denoted by "let rec"

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

A Very Simple Visual F# Project

Create a new Project, use the F# Application template.

Insert the following into the empty code editor:

#light
let rec factorial n =
match n with
| 0 -> 1
| n when n > 0 -> n * (factorial (n - 1))

printfn "5! = %A" (factorial 5)
System.Console.ReadKey () |> ignore

Press F5 to build and run the program.

Note: recursive functions denoted by "let rec"

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

A Very Simple Visual F# Project

Create a new Project, use the F# Application template.

Insert the following into the empty code editor:

#light
let rec factorial n =
match n with
| 0 -> 1
| n when n > 0 -> n * (factorial (n - 1))

printfn "5! = %A" (factorial 5)
System.Console.ReadKey () |> ignore

Press F5 to build and run the program.

Note: recursive functions denoted by "let rec"

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

A Very Simple Visual F# Project

Create a new Project, use the F# Application template.

Insert the following into the empty code editor:

#light
let rec factorial n =
match n with
| 0 -> 1
| n when n > 0 -> n * (factorial (n - 1))

printfn "5! = %A" (factorial 5)
System.Console.ReadKey () |> ignore

Press F5 to build and run the program.

Note: recursive functions denoted by "let rec"

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Type Inference

The F# compiler figures the type information out for the
programmer.

In case of aritmetic operators, F# defaults to int, a signed
32-bit integer.

> let square x = x * x;;
val square : int -> int

It is possible to add "type annotations" for function
parameters and return values.

> let concat (x: string) y = x + y;;
val concat : string -> string -> string

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Type Inference

The F# compiler figures the type information out for the
programmer.

In case of aritmetic operators, F# defaults to int, a signed
32-bit integer.

> let square x = x * x;;
val square : int -> int

It is possible to add "type annotations" for function
parameters and return values.

> let concat (x: string) y = x + y;;
val concat : string -> string -> string

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Type Inference

The F# compiler figures the type information out for the
programmer.

In case of aritmetic operators, F# defaults to int, a signed
32-bit integer.

> let square x = x * x;;
val square : int -> int

It is possible to add "type annotations" for function
parameters and return values.

> let concat (x: string) y = x + y;;
val concat : string -> string -> string

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Type Inference

The F# compiler figures the type information out for the
programmer.

In case of aritmetic operators, F# defaults to int, a signed
32-bit integer.

> let square x = x * x;;
val square : int -> int

It is possible to add "type annotations" for function
parameters and return values.

> let concat (x: string) y = x + y;;
val concat : string -> string -> string

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Pattern Matching

Wildcard "_" matches anything.

Arbitrary expression can be executed to determine if the
pattern is matched.

Dynamic type tests are possible too.
Syntax:

match <expression> with
| <pattern1> -> <expression1>
| <pattern2> -> <expression2>
...

Pattern Guards (when <logical expression> -
between <pattern> and "->")

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Pattern Matching

Wildcard "_" matches anything.

Arbitrary expression can be executed to determine if the
pattern is matched.

Dynamic type tests are possible too.
Syntax:

match <expression> with
| <pattern1> -> <expression1>
| <pattern2> -> <expression2>
...

Pattern Guards (when <logical expression> -
between <pattern> and "->")

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Pattern Matching

Wildcard "_" matches anything.

Arbitrary expression can be executed to determine if the
pattern is matched.

Dynamic type tests are possible too.
Syntax:

match <expression> with
| <pattern1> -> <expression1>
| <pattern2> -> <expression2>
...

Pattern Guards (when <logical expression> -
between <pattern> and "->")

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Pattern Matching

Wildcard "_" matches anything.

Arbitrary expression can be executed to determine if the
pattern is matched.

Dynamic type tests are possible too.
Syntax:

match <expression> with
| <pattern1> -> <expression1>
| <pattern2> -> <expression2>
...

Pattern Guards (when <logical expression> -
between <pattern> and "->")

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Pattern Matching

Wildcard "_" matches anything.

Arbitrary expression can be executed to determine if the
pattern is matched.

Dynamic type tests are possible too.
Syntax:

match <expression> with
| <pattern1> -> <expression1>
| <pattern2> -> <expression2>
...

Pattern Guards (when <logical expression> -
between <pattern> and "->")

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Interoperability with .NET

F# is built on top of .NET, any .NET library can be called:

System.Console.ReadKey ()

.NET namespaces can be opened and their types are
brought into scope:

open System

Console.ReadKey ()

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Interoperability with .NET

F# is built on top of .NET, any .NET library can be called:

System.Console.ReadKey ()

.NET namespaces can be opened and their types are
brought into scope:

open System

Console.ReadKey ()

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Interoperability with .NET

F# is built on top of .NET, any .NET library can be called:

System.Console.ReadKey ()

.NET namespaces can be opened and their types are
brought into scope:

open System

Console.ReadKey ()

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercises

1. Write a function which determines whether the
argument is odd or not
Hint: modulo function: %, logical values: true, false
Signature: odd : int -> bool

2. Write a function which computes xy

Rules: n0
= 1, nm

= n ∗ nm−1

Signature: power : int -> int -> int

Test the functions!

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf

Mónika Mészáros The F# Programming Language

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf


Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercises

1. Write a function which determines whether the
argument is odd or not
Hint: modulo function: %, logical values: true, false
Signature: odd : int -> bool

2. Write a function which computes xy

Rules: n0
= 1, nm

= n ∗ nm−1

Signature: power : int -> int -> int

Test the functions!

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf

Mónika Mészáros The F# Programming Language

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf


Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercises

1. Write a function which determines whether the
argument is odd or not
Hint: modulo function: %, logical values: true, false
Signature: odd : int -> bool

2. Write a function which computes xy

Rules: n0
= 1, nm

= n ∗ nm−1

Signature: power : int -> int -> int

Test the functions!

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf

Mónika Mészáros The F# Programming Language

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf


Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercises

1. Write a function which determines whether the
argument is odd or not
Hint: modulo function: %, logical values: true, false
Signature: odd : int -> bool

2. Write a function which computes xy

Rules: n0
= 1, nm

= n ∗ nm−1

Signature: power : int -> int -> int

Test the functions!

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf

Mónika Mészáros The F# Programming Language

http://people.inf.elte.hu/bonnie/cefp/fsharp.pdf


Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Solutions

let odd n =
match (n%2) with
| 1 -> true
| _ -> false

let rec power n m =
match m with
| 0 -> 1
| m -> n * (power n (m-1))

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Solutions

let odd n =
match (n%2) with
| 1 -> true
| _ -> false

let rec power n m =
match m with
| 0 -> 1
| m -> n * (power n (m-1))

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Lists

Quick syntax introduction for using lists

Define a list:

let letters = [’e’; ’i’; ’o’; ’u’]

Attach item to front (cons):

let cons = ’a’ :: letters

Concat two lists:

let more_letters = letters @ [’y’; ’z’]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Lists

Quick syntax introduction for using lists

Define a list:

let letters = [’e’; ’i’; ’o’; ’u’]

Attach item to front (cons):

let cons = ’a’ :: letters

Concat two lists:

let more_letters = letters @ [’y’; ’z’]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Lists

Quick syntax introduction for using lists

Define a list:

let letters = [’e’; ’i’; ’o’; ’u’]

Attach item to front (cons):

let cons = ’a’ :: letters

Concat two lists:

let more_letters = letters @ [’y’; ’z’]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Lists

Quick syntax introduction for using lists

Define a list:

let letters = [’e’; ’i’; ’o’; ’u’]

Attach item to front (cons):

let cons = ’a’ :: letters

Concat two lists:

let more_letters = letters @ [’y’; ’z’]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Pattern Matching for Lists

Patterns on lists:

• [] - empty list

• x::xs - list with at least 1 element

• [x] - list with only one element

• etc.

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercise

3. Find the maximum of the list
Signature: maximum : ’a list -> ’a
Hint: use the max : ’a -> ’a -> ’a function!

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Solution

let rec maximum l =
match l with
| [x] -> x
| x::xs -> max x (maximum xs)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Higher-Order Functions

There can be also anonymous functions ("lambda
expressions") defined, like:

(fun x -> x % 2 = 0)

Higher order functions
example
List.map : (’a -> ’b) -> ’a list -> ’b list

Putting them together:

> List.map (fun x -> x % 2 = 0) [1 .. 5];;
val it : bool list
= [false; true; false; true; false]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Higher-Order Functions

There can be also anonymous functions ("lambda
expressions") defined, like:

(fun x -> x % 2 = 0)

Higher order functions
example
List.map : (’a -> ’b) -> ’a list -> ’b list

Putting them together:

> List.map (fun x -> x % 2 = 0) [1 .. 5];;
val it : bool list
= [false; true; false; true; false]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Higher-Order Functions

There can be also anonymous functions ("lambda
expressions") defined, like:

(fun x -> x % 2 = 0)

Higher order functions
example
List.map : (’a -> ’b) -> ’a list -> ’b list

Putting them together:

> List.map (fun x -> x % 2 = 0) [1 .. 5];;
val it : bool list
= [false; true; false; true; false]

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Higher-Order Functions

exists : (’a -> bool) -> ’a list -> bool

let rec exists p l =
match l with
| [] -> false
| x :: xs when p x -> true
| x :: xs -> exists p xs

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercises

4. filter: selecting elements satisfying a property
Signature:
filter : (’a -> bool) -> ’a list -> ’a list

5. map: function applied elementwise (length is preserved)
Signature:
map : (’a -> ’b) -> ’a list -> ’b list
Apply a function (first parameter) to all element in the list
(second parameter)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Exercises

4. filter: selecting elements satisfying a property
Signature:
filter : (’a -> bool) -> ’a list -> ’a list

5. map: function applied elementwise (length is preserved)
Signature:
map : (’a -> ’b) -> ’a list -> ’b list
Apply a function (first parameter) to all element in the list
(second parameter)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Solutions

let rec filter p l =
match l with
| [] -> []
| x :: xs when p x -> x :: (filter p xs)
| x :: xs -> filter p xs

let rec map f l =
match l with
| [] -> []
| x :: xs -> (f x) :: (map f xs)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Solutions

let rec filter p l =
match l with
| [] -> []
| x :: xs when p x -> x :: (filter p xs)
| x :: xs -> filter p xs

let rec map f l =
match l with
| [] -> []
| x :: xs -> (f x) :: (map f xs)

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

A tuple is an ordered collection of values treated like an
atomic unit.

Allows to keep things organized by grouping related values
together without introducing a new type.

Functions can even take tuples as arguments.

Sometimes tuples are used for communication with .NET
libraries.

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Using Tuples

Definition of a tuple:

> let tuple = (1, false, "text");;
val tuple : int * bool * string

Function accepting a tuple:

> let printBlogInfo (title, url)
= printfn "%s blog is at ’%s’"

owner title url;;
val printBlogInfo : string * string -> unit

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Using Tuples

Definition of a tuple:

> let tuple = (1, false, "text");;
val tuple : int * bool * string

Function accepting a tuple:

> let printBlogInfo (title, url)
= printfn "%s blog is at ’%s’"

owner title url;;
val printBlogInfo : string * string -> unit

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Records are for declaring a type with public properties.

Through type inference, the compiler will figure out the
type of the record by setting its values.

Records can be "cloned".

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Basic Record Usage

Definition of a record type:

type Person =
{ Name: string
; DateOfBirth: System.DateTime }

Construction of record values by record labels:

> { Name = "Bill"
; DateOfBirth
= new System.DateTime(1962,09,02) };;

val it : Person
= { Name="Bill"; DateOfBirth = 09/02/1962 }

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Basic Record Usage

Definition of a record type:

type Person =
{ Name: string
; DateOfBirth: System.DateTime }

Construction of record values by record labels:

> { Name = "Bill"
; DateOfBirth
= new System.DateTime(1962,09,02) };;

val it : Person
= { Name="Bill"; DateOfBirth = 09/02/1962 }

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Cloning Records

There is a convenient syntax to clone all the values in the
record, creating a new value, with some values replaced.

type Point3D = { X: float; Y: float; Z: float }
let p1 = { X = 3.0; Y = 4.0; Z = 5.0 }

> let p2 = { p1 with Y = 0.0; Z = 0.0 };;
val p2 : Point3D

The definition of p2 is identical to this:

let p2 = { X = p1.X; Y = 0.0; Z = 0.0 }

This expression from does not mutate the values of a record.

Mónika Mészáros The F# Programming Language



Contents Introduce Characteristics Developer Tools Basics Lists Higher-Order Functions Tuples Records

Dynamic Type Test via Patterns

let getType (x : obj) =
match x with
| :? string -> "x is a string"
| :? int -> "x is an int"
| :? Exception -> "x is an exception"

Mónika Mészáros The F# Programming Language


	Contents
	Introduction to F#
	Characteristics of F#
	Standard Developer Tools
	Language Basics
	Lists
	Higher-Order Functions
	Tuples
	Records

