
Forward Pipes Sequences Lazy Values Objects

The F# Programming Language
CEFP2009 Warm-Up Session

Páli Gábor János
E-mail: pgj@elte.hu

Eötvös Loránd University, Faculty of Informatics,
Department of Programming Languages and Compilers

May 23, 2009

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Quick Overview

1 Forward Pipe Operator

2 Sequences

3 Lazy Values

4 Objects

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Links for the Session

You can find a draft version for the session slides at
http://people.inf.elte.hu/pgj/fsharp/s3d.pdf

Please upload your solutions for the exercises at
https://pnyf.inf.elte.hu/cefp-es/

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

http://people.inf.elte.hu/pgj/fsharp/s3d.pdf
https://pnyf.inf.elte.hu/cefp-es/

Forward Pipes Sequences Lazy Values Objects

Forward Pipe Operator

Perhaps the most important operator.

Defined as follows:

let (|>) f x = x f

Operator |> is just "function application in reverse".

Advantages:
Clarity Allows to perform data transformation and

iterations in a forward-chaining, pipelined
style.

Type inference Allows type information to be flowed from
input objects to the functions manipulating
objects.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

A Practical Example

Take a number, double it, then convert it to a string, then
reverse the string.

let double x = 2 * x
let toStr (x : int) = x.ToString ()
let rev (x : string)
= new String(Array.rev (x.ToCharArray ()))

512 → 1024 → ”1024” → ”4201”

let result = rev (toStr (double 512))

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

The Pipeline Syntax

The code is straightforward, but it has a complicated syntax.
We simply want to take the result of one computation and pass
that to the next computation.

let step1 = double 512
let step2 = toStr step1
let result = rev step2

Let’s eliminate the temporary variables, and forward the values
to a function by the |> operator. It is essentially allows to
specify the parameter of a function before the call.

let result = 512 |> double |> toStr |> rev

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Exercise

By using pipeline syntax, write an expression that determines
the sum of the first ten even square numbers.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Sequences

Many programming tasks require iteration, aggregation,
and transformation of data steamed from various sources.

System.Collections.Generic.IEnumerable<type>
aka. seq<type>.

seq<type> can be iterated, producing results of type on
demand.

Sequences can specify infinite series.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Sequence Expressions

> Seq.init_infinite (fun x -> x);;
val it : seq<int> = seq [0; 1; 2; 3; ...]

> seq { for x in 0 .. 10 -> (x, x * x) };;
val it : seq<int * int> = seq [(0,0); (1,1); ...]

> seq { for x in 0 .. 10 do
if x % 3 = 0 then yield (x, x / 3) };;

val it : seq<int * int> = seq [(0,0); (3,1); ...]

let fileInfo dir =
seq { for file in Directory.GetFiles(dir) do
let creationTime = File.GetCreationTime(file)
let lastAccessTime = File.GetLastAccessTime(file)
yield (file,creationTime,lastAccessTime) }

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Exercise

Write a function that calculates coordinates for checkerboards
of size n: a coordinate should be yielded if the sum of row and
column is even.

checkerboardCoordinates : int -> seq<(int * int)>

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

A Case Study: Rewriting the Factorial Function

let fi =
(1,1)

|> Seq.unfold (fun (i, x) ->
Some (x, (i + 1, i * x)))

let seqFactorial n = Seq.nth n fi

Seq.unfold:

Return a sequence that contains the elements generated
by the given computation.

An initial “state” is passed to the element generator.

For each IEnumerator elements in the stream are
generated on-demand until a None element is returned.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Lazy Values

A memoizing function is one that avoids recomputing its
results by keeping an internal table, called a lookaside
table.

Memoization is a form of caching.

Another important variation on caching is a lazy value.

A lazy value is a delayed computation of type
Microsoft.FSharp.Control.Lazy<’a>.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Lazy Values Continued

Lazy values are explicitly formed by using the keyword
lazy.

Lazy values are implemented as thunks holding either a
function value that will compute the result or the actual
computed result.

Lazy values will be computed only once, and thus its
effects are executed only once.

Lazy values are implemented by a simple data structure
containing a mutable reference cell.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Creating and Evaluating Lazy Values

> let x = lazy (printfn "Computed."; 42);;
val x : Lazy<int>

> let listOfX = [x; x; x];;
val listOfX : Lazy<int> list

> x.Force();;
Computed.
val it : int = 42

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Getting Started with Objects

Static type of a values can be explicitly altered by either
throwing information away, upcasting, or rediscovering it,
downcasting.

The type hierarchy start with obj (System.Object) at
the top and all its descendants below.

An upcast (:>) moves a type up the hierarchy, and a
downcast moves a type the hierarchy.

Upcasts are type safe operations since the compiler always
knows all the ancestors of a type through static analysis.

Upcasts are required when defining collections that contain
disparate types.

Upcast means automical boxing of any value type, so they
can be passed around by reference.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Upcasting Objects

Converting a string to an obj by upcasting:

> let anObject = ("This is a string" :> obj);;
val anObject : obj

Objects can be represented as strings as usual:

> anObject.ToString ();;
val it : string = "This is a string"

Adding different type of objects to the same list:

> let moreObjects = [("A string" :> obj)
; (2.0 :> obj)
; (’Z’ :> obj)];;

val moreObjects : obj list

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Downcasting Objects

Downcast :?> change a value’s static type to one of its
descendant types, thus recovers information hidden by an
upcast.

Downcasting is not safe since the compiler does not have
any way to statically determine compatibility relations
between types.

If downcasting does not succeed, it will cause an invalid
cast exception (System.InvalidCastException) to be
issued at runtime.

Because of dangers of downcasting, it is often preferred to
match patterns over .NET types.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Examples on Downcasting

Some examples of downcasting:

> let boxedObject = box "abc";;
val boxedObject : obj

> let downcastString = (boxedObject :?> string);;
val downcastString : string = "abc"

> let invalidCast = (boxedObject :?> float);;

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Exercise

Determine the types of objects in a list via pattern matching.
The type of the function to be written is as follows:

typeOfObjects : obj list -> string list

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Comparison Example Revisited

Previously, we have defined an Ordering type that represents
results for comparison:

type Ordering = LT | EQ | GT

We also added a compare function to its definition to create
values of such type:

compare : ’a -> ’a -> Ordering

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

An Enhanced Version of compare

But because compare uses comparison operators to compare
values, it requires to restrict the type of the arguments to ones
that implement the System.IComparable interface:

let compare (x: #System.IComparable)
(y: #System.IComparable) =

match () with
| _ when x > y -> GT
| _ when x = y -> EQ
| _ when x < y -> LT

Otherwise it will result in an exception when values of a type
without comparison operators are used.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Records As Objects

It is possible to simulate object-like behaviour by using
record types, because record can have fields that are
functions.

Sometimes it is comfortable to use, because only the
function’s type is given in the record definition, so the
implementation can be changed without having to define a
derived class.

Create multifunctional records without having to worry
about any unwanted features we might also be inheriting.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Exercise

Create a record Shape with fields reposition and draw
with the following types (note that they are functions):

reposition : Point -> unit
draw : unit -> unit

Write a makeShape function that receives an initial
position (a Point) and a drawing function (unit ->
unit) and creates a record of type Point.

Use the makeShape function to create a circle (circle),
and a square (square). Let the draw function for both of
them is a textual representation, like:

Circle, with x = 33 and y = 66.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

F# Types with Members

A function added to a record can be called using dot
notation, just like a member of a class from a library not
written in F#.
This provides a convenient way of working with records
with mutable state, and it is also useful when exposing type
in F# to other .NET languages.
To include member definitions in a record, one should add
them to the end of the definition, between with and end
keywords.
The definition of the members start with the keyword
member, followed by:

an identifier that represents the parameter of type,
a dot,
a function name,
any other function parameters.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Exercise

Create a record of type Point with the following mutable
members:

top with type of int
left with type of left

Add a member called Swap to this record that implements
swapping of the values of the top and left fields.

Create a simple main program to test the implemented
functionality.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Object Expressions

Heart of succint object-oriented programming in F#, they
provide a concise syntax to create an object that inherits
from an existing type.

This is useful is we want to provide a short implementation
of an abstract class or an interface or want to tweak an
existing class definition.

Object expressions allows to provide an implementation of
a class or interface while at the same time creating a new
instance of it.

The syntax is similar to the syntax for creating new
instance of record types.

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes Sequences Lazy Values Objects

Exercise

Create a simple comparer object implementing the
interface System.Collections.Generic.IComparer.
It compares strings (IComparer<string>) by their
reverse.
Create a simple program to the implemented functionality:
create an array (the same way as a list but enclosed in [|
and |] symbols), then call the Array.Sort function with
the comparer instance.
Some sample data:

[| "Sandie Shaw"
; "Bucks Fizz"
; "Dana International"; "Abba"
; "Lordi" |]

Páli Gábor The F# Programming Language CEFP2009 Warm-Up Session

	Forward Pipe Operator
	Sequences
	Lazy Values
	Objects

