The F# Programming Language
CEFP2009 Warm-Up Session

Pali Gabor Janos
E-mail: pgj@elte.hu

Eo6tvos Lorand University, Faculty of Informatics,
Department of Programming Languages and Compilers

May 23, 2009

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Quick Overview

O Forward Pipe Operator

Q Sequences

Q Lazy Values

Q Objects

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Links for the Session

@ You can find a draft version for the session slides at
http://people.inf.elte. hu/pgj/fsharp/s3d. pdf

@ Please upload your solutions for the exercises at
https://pnyf.inf.elte. hul/cefp-es/

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

http://people.inf.elte.hu/pgj/fsharp/s3d.pdf
https://pnyf.inf.elte.hu/cefp-es/

Forward Pipes

Forward Pipe Operator

@ Perhaps the most important operator.
@ Defined as follows:
let (|>) f x =x f
@ Operator | > is just "function application in reverse".

@ Advantages:

Clarity Allows to perform data transformation and
iterations in a forward-chaining, pipelined
style.

Type inference Allows type information to be flowed from
input objects to the functions manipulating
objects.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes

A Practical Example

@ Take a number, double it, then convert it to a string, then
reverse the string.

| et double x = 2 * Xx
let toStr (x : int) = x.ToString ()
let rev (x : string)
= new String(Array.rev (x.ToCharArray ()))

@ 512 — 1024 — "1024" — "4201"
let result = rev (toStr (double 512))

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes

The Pipeline Syntax

The code is straightforward, but it has a complicated syntax.
We simply want to take the result of one computation and pass
that to the next computation.

l et stepl doubl e 512
| et step2 toStr stepl
let result = rev step2

Let's eliminate the temporary variables, and forward the values
to a function by the | > operator. It is essentially allows to
specify the parameter of a function before the call.

let result = 512 |> double |> toStr |> rev

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Forward Pipes

Exercise

By using pipeline syntax, write an expression that determines
the sum of the first ten even square numbers.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Sequences

Sequences

@ Many programming tasks require iteration, aggregation,
and transformation of data steamed from various sources.

System Col | ecti ons. Generi c. | Enuner abl e<t ype>
aka. seqg<t ype>.

@ seq<t ype> can be iterated, producing results of type on
demand.

@ Sequences can specify infinite series.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Sequences

Sequence Expressions

> Seq.init_infinite (fun x -> x);;

val it : seg<int> =seq [0; 1; 2; 3; ...]
>seq { for x in 0 .. 10 -> (x, X * X) };;
val it : seg<int * int>=seq [(0,0); (1,1); ...]

>seq { for x inO 10 do
if x %3 =0 thenyield (x, x/ 3) };;
val it : seg<int * int>=seq [(0,0); (3,1); ...]

let filelnfo dir =

seq { for file in Directory. GetFiles(dir) do
let creationTinme = File.GetCreationTine(file)
l et |ast AccessTinme = File. CGetLast AccessTine(file)
yield (file,creationTine,l|astAccessTi ne) }

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Sequences

Exercise

Write a function that calculates coordinates for checkerboards

of size n: a coordinate should be yielded if the sum of row and
column is even.

checkerboardCoordi nates : int -> seqg<(int * int)>

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Sequences

A Case Study: Rewriting the Factorial Function

let fi =
(1,1)
| > Seq.unfold (fun (i, x) ->
Some (x, (i + 1, i * XxX)))

| et seqFactorial n = Seq.nth n fi

Seq. unfol d:

@ Return a sequence that contains the elements generated
by the given computation.

@ An initial “state” is passed to the element generator.

@ For each | Enuner at or elements in the stream are
generated on-demand until a None element is returned.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

[R=VAVAVEUTE

Lazy Values

@ A memoizing function is one that avoids recomputing its
results by keeping an internal table, called a lookaside

table.
@ Memoization is a form of caching.
@ Another important variation on caching is a lazy value.

@ Alazy value is a delayed computation of type
M crosoft. FSharp. Control . Lazy<’' a>.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

[R=VAVAVEUTE

Lazy Values Continued

@ Lazy values are explicitly formed by using the keyword
| azy.

@ Lazy values are implemented as thunks holding either a
function value that will compute the result or the actual
computed result.

@ Lazy values will be computed only once, and thus its
effects are executed only once.

@ Lazy values are implemented by a simple data structure
containing a mutable reference cell.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

[R=VAVAVEUTE

Creating and Evaluating Lazy Values

>let x = lazy (printfn "Conputed."; 42);;
val x : Lazy<int>

>let listOX = [x; x; X];;
val listO X : Lazy<int> |ist

> Xx. Force();;
Conput ed.
val it : int = 42

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Getting Started with Objects

@ Static type of a values can be explicitly altered by either
throwing information away, upcasting, or rediscovering it,
downcasting.

@ The type hierarchy start with obj (System Obj ect) at
the top and all its descendants below.

@ An upcast (: >) moves a type up the hierarchy, and a
downcast moves a type the hierarchy.

@ Upcasts are type safe operations since the compiler always
knows all the ancestors of a type through static analysis.

@ Upcasts are required when defining collections that contain
disparate types.

@ Upcast means automical boxing of any value type, so they
can be passed around by reference.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Upcasting Objects

@ Converting a st ri ng to an obj by upcasting:
> let anCbject = ("This is a string" :> obj);;
val anQbject : obj

@ Obijects can be represented as strings as usual:

> anObj ect. ToString ();;
val it : string = "This is a string

@ Adding different type of objects to the same list:
> |let norebjects = [("A string" :> obj)
; (2.0 :> obj)
. (’Z > o0bj) 1;:;
val noreQbjects : obj |ist

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Downcasting Objects

@ Downcast : ?> change a value’s static type to one of its
descendant types, thus recovers information hidden by an
upcast.

@ Downcasting is not safe since the compiler does not have
any way to statically determine compatibility relations
between types.

@ If downcasting does not succeed, it will cause an invalid
cast exception (Syst em | nval i dCast Excepti on) to be
issued at runtime.

@ Because of dangers of downcasting, it is often preferred to
match patterns over .NET types.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Examples on Downcasting

@ Some examples of downcasting:

> | et boxedObj ect = box "abc";;
val boxedObj ect : obj

> | et downcastString = (boxedQoject :?> string);
val downcastString : string = "abc"

> | et invalidCast = (boxedCbject :?> float);;

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Exercise

Determine the types of objects in a list via pattern matching.
The type of the function to be written is as follows:

typeOXbjects : obj list -> string |ist

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Comparison Example Revisited

Previously, we have defined an Or der i ng type that represents
results for comparison:

type Ordering = LT | EQ| GT
We also added a conpar e function to its definition to create
values of such type:

conpare : 'a -> "a -> Ordering

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

An Enhanced Version of compare

But because conpar e uses comparison operators to compare
values, it requires to restrict the type of the arguments to ones
that implement the Syst em | Conpar abl e interface:

| et conpare (x: #System | Conparabl e)
(y: #System | Conparable) =
match () with

| _ when x >y -> GT
| _ when x =y -> EQ
| _ when x <y -> LT

Otherwise it will result in an exception when values of a type
without comparison operators are used.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Records As Objects

@ Itis possible to simulate object-like behaviour by using
record types, because record can have fields that are
functions.

@ Sometimes it is comfortable to use, because only the
function’s type is given in the record definition, so the
implementation can be changed without having to define a
derived class.

@ Create multifunctional records without having to worry
about any unwanted features we might also be inheriting.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Exercise

@ Create a record Shape with fields r eposi ti on and dr aw
with the following types (note that they are functions):
@ reposition : Point -> unit
@ draw : unit -> unit
@ Write a makeShape function that receives an initial
position (a Poi nt) and a drawing function (unit ->
uni t) and creates a record of type Poi nt .

@ Use the nakeShape function to create a circle (ci r cl e),
and a square (squar e). Let the draw function for both of
them is a textual representation, like:

Crcle, with x = 33 and y = 66.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

F# Types with Members

@ A function added to a record can be called using dot
notation, just like a member of a class from a library not
written in F#.

@ This provides a convenient way of working with records
with mutable state, and it is also useful when exposing type
in F# to other .NET languages.

@ To include member definitions in a record, one should add
them to the end of the definition, between wi t h and end
keywords.

@ The definition of the members start with the keyword
menber , followed by:

an identifier that represents the parameter of type,

a dot,

a function name,

any other function parameters.

© 6 6 ©

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Exercise

@ Create a record of type Poi nt with the following mutable
members:

o t op with type of i nt
o | ef t with type of | ef t

@ Add a member called Swap to this record that implements
swapping of the values of the t op and | ef t fields.

@ Create a simple main program to test the implemented
functionality.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Object Expressions

@ Heart of succint object-oriented programming in F#, they
provide a concise syntax to create an object that inherits
from an existing type.

@ This is useful is we want to provide a short implementation
of an abstract class or an interface or want to tweak an
existing class definition.

@ Object expressions allows to provide an implementation of
a class or interface while at the same time creating a new
instance of it.

@ The syntax is similar to the syntax for creating new
instance of record types.

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

Objects

Exercise

@ Create a simple comparer object implementing the
interface Syst em Col | ecti ons. Generi c. | Conpar er.
It compares strings (I Conpar er <st ri ng>) by their
reverse.

@ Create a simple program to the implemented functionality:
create an array (the same way as a list but enclosed in [|
and |] symbols), then call the Array. Sort function with
the comparer instance.

Some sample data

[| "Sandie Shaw'
: "Bucks Fizz"
: "Dana International"; "Abba"
;o "Lordi "]

Pali Gabor The F# Programming Language CEFP2009 Warm-Up Session

	Forward Pipe Operator
	Sequences
	Lazy Values
	Objects

