Safe Functional Mobile Code — CPPCC:
Certified Proved-Property-Carrying Code

Zoltan Horvath

University EOtvos Lorand, Budapest, Hungary
Department of General Computer Science
E-mail: hzQ@inf.elte.hu

Z. Horvath: Safe functional mobil code. Wien, May 2003

Overview

e Mobile expressions (functional code) in Clean - dynamics

e Proving properties of functional programs - dedicated theorem
prover: Sparkle

e Property carrying code architecture, type and semantical
checks

Z. Horvath: Safe functional mobil code. Wien, May 2003

Clean dynamics

e static type system extended with type Dynamic

e conversion to type Dynamic by function dynamic, example:
dynamic 3::Int

e conversion from Dynamic to static type using pattern match,
example: unpackInt :: Dynamic -> Int;
unpackInt (n::Int) = n; unpackInt = = abort "not an integer"

e Mobile code, persistent data: SendDynamic, ReceiveDynamic,
ReadDynamic, WriteDynamic

Z. Horvath: Safe functional mobil code. Wien, May 2003 3

module f
import StdDynamic, StdEnv
:: Tree b = Node b (Tree b) (Tree b) | Leaf
Start world
#! (ok,world) = writeDynamic (p +++ "function")
DynamicDefaultOptions dt world
| not ok = abort "could not write dynamic"
= (dt,world)
where
dt = dynamic count_leafs
p = "C:\\hz\\Clean 2.0\\Examples\\Dynamic\\"
count_leafs :: (Tree Int) -> Real
count_leafs tree = toReal (count tree 0)
where count :: (Tree Int) Int -> Int
count Leaf n_leafs = inc n_leafs
count (Node _ left right) n_leafs =
count left (count right n_leafs)

Z. Horvath: Safe functional mobil code. Wien, May 2003

module v
import StdDynamic, StdEnv
:: Tree a = Node a (Tree a) (Tree a) | Leaf
Start world
#! (ok,world)= writeDynamic (p +++ "value")
DynamicDefaultOptions dt world
| not ok = abort "could not write dynamic"
= (dt,world)
where dt = dynamic (Node 99 tree2 tree2)
tree2 = (Node 2 (Node 1 Leaf Leaf) Leaf)
p = "C:\\hz\\Clean 2.0\\Examples\\Dynamic\\"

Z. Horvath: Safe functional mobil code. Wien, May 2003

module apply
import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf
Start world
(ok,f,world) = readDynamic (p +++ "function") world
| not ok = abort " could not read"
(ok,v,world) = readDynamic (p +++ "value") world
| not ok = abort " could not read"

result = apply f v;
= (result, world);
where

apply (f :: (Tree Int) -> Real) (v :: (Tree Int)) = f v

apply _ _ = abort '"unmatched"

p = "C:\\hz\\Clean 2.0\\Examples\\Dynamic\\"

Z. Horvath: Safe functional mobil code. Wien, May 2003

Verification of functional programs

e dedicated theorem prover of Clean : Sparkle - part of IDE
e referential trancparency, equational reasoning possible

e example: Vn € Int,Va,Vzs € [a] :
n *= undef — take n xs + +drop n rs = xs

take :: Int !'[a] -> [a]

tane n [x:xs] drop n [x:xs]
| n > 0 = [x: take (n-1) xs] | n>0 = drop (n-1) xs
| otherwise = [] | otherwise = [x:xs]

take n [1 = [] drop n [1 = []

e Proof: using 8 tactics of 42: structural induction on Xs,
introduce (deduction rule for implication), reduce (substitution
of definition), reflexivity, split cases, definedness (contradiction
with definedness), rewrite goal (using hypothesis), contradiction

Z. Horvath: Safe functional mobil code. Wien, May 2003 7

Property carrying code architecture

Requirements: mobile code does not use to much resources,
read or modify data unauthorised, etc. Does do its task.

e Full dynamic-time code verification just before the application
of the code
(static, structural and type correctness verification: well-
formedness, data-flow analysys for illegal memory access,
type of instruction arguments, etc.) ,

e trusting the code producer unconditionally (with using a
certificate mechanism, to check identity),

e trusting code integrity and performing run time pattern
match for types.

e A hybrid model of safe mobile code exchange: Certified
Proven Property Carrying Code. Minimal run-time overhead
but proved correct code.

Z. Horvath: Safe functional mobil code. Wien, May 2003 8

Further semantic requirements, examples

Insertion into a sorted list (safety-critical, time-critical):

e the result of the operation is such that every element of the
list is either the first element or an element that is greater
than or equal to the previous element,

e termination
e upper bound for memory usage

e upper bound for execution time

Z. Horvath: Safe functional mobil code. Wien, May 2003 9

T he Certified Proved-Property-Carrying Code architecture
(CPPCC) Three main parties involved in the scenario:

1. producer of the mobile code, adds proofs of properties

2. receiver, executes code only after safety checks which ensure
that the code satisfies the requirements specified in the
receiver’'s code,

3. certifying authority, reduce the work-load of the receiver,
does static-time.

Z. Horvath: Safe functional mobil code. Wien, May 2003 1 1

— Network

Source code
Code

Type code
¢ Cods ? Properties

Type code Proof
Properties

Certificate

Z. Horvath: Safe functional mobil code. Wien, May 2003 12

Operational definition Type definitions Properties

———————

Compiler Proof system

A

Z. Horvath: Safe functional mobil code. Wien, May 2003 13

Compilation checker | Correctness checker
Certifier

Type Abstract Properties
code machine code (in a coded form)

Certificate

Z. Horvath: Safe functional mobil code. Wien, May 2003 14

Type Abstract Certificate Properties

code machine code (in a coded form)

Authentitication

AR

l Dynamic linker Authorization

Type unifier

Type

patterns

Application

Z. Horvath: Safe functional mobil code. Wien, May 2003 15

