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Overview

e Mobile expressions (functional code) in Clean - dynamics

e Proving properties of functional programs - dedicated theorem
prover: Sparkle

e Property carrying code architecture, type and semantical
checks
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Clean dynamics

e static type system extended with type Dynamic

e conversion to type Dynamic by function dynamic, example:
dynamic 3::Int

e conversion from Dynamic to static type using pattern match,
example: unpackInt :: Dynamic -> Int;
unpackInt (n::Int) = n; unpackInt = = abort "not an integer"

e Mobile code, persistent data: SendDynamic, ReceiveDynamic,
ReadDynamic, WriteDynamic
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module f
import StdDynamic, StdEnv
:: Tree b = Node b (Tree b) (Tree b) | Leaf
Start world
#! (ok,world) = writeDynamic (p +++ "function")
DynamicDefaultOptions dt world
| not ok = abort "could not write dynamic"
= (dt,world)
where
dt = dynamic count_leafs
p = "C:\\hz\\Clean 2.0\\Examples\\Dynamic\\"
count_leafs :: (Tree Int) -> Real
count_leafs tree = toReal (count tree 0)
where count :: (Tree Int) Int -> Int
count Leaf n_leafs = inc n_leafs
count (Node _ left right) n_leafs =
count left (count right n_leafs)
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module v
import StdDynamic, StdEnv
:: Tree a = Node a (Tree a) (Tree a) | Leaf
Start world
#! (ok,world)= writeDynamic (p +++ "value")
DynamicDefaultOptions dt world
| not ok = abort "could not write dynamic"
= (dt,world)
where dt = dynamic (Node 99 tree2 tree2)
tree2 = (Node 2 (Node 1 Leaf Leaf) Leaf)
p = "C:\\hz\\Clean 2.0\\Examples\\Dynamic\\"
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module apply
import StdDynamic, StdEnv

:: Tree a = Node a (Tree a) (Tree a) | Leaf
Start world
# (ok,f,world) = readDynamic (p +++ "function") world
| not ok = abort " could not read"
# (ok,v,world) = readDynamic (p +++ "value") world
| not ok = abort " could not read"

# result = apply f v;
= (result, world);
where

apply (f :: (Tree Int) -> Real) (v :: (Tree Int)) = f v

apply _ _ = abort '"unmatched"

p = "C:\\hz\\Clean 2.0\\Examples\\Dynamic\\"
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Verification of functional programs

e dedicated theorem prover of Clean : Sparkle - part of IDE
e referential trancparency, equational reasoning possible

e example: Vn € Int,Va,Vzs € [a] :
n *= undef — take n xs + +drop n rs = xs

take :: Int !'[a] -> [a]

tane n [x:xs] drop n [x:xs]
| n > 0 = [x: take (n-1) xs] | n>0 = drop (n-1) xs
| otherwise = [] | otherwise = [x:xs]

take n [1 = [] drop n [1 = []

e Proof: using 8 tactics of 42: structural induction on Xs,
introduce (deduction rule for implication), reduce (substitution
of definition), reflexivity, split cases, definedness (contradiction
with definedness), rewrite goal (using hypothesis), contradiction
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Property carrying code architecture

Requirements: mobile code does not use to much resources,
read or modify data unauthorised, etc. Does do its task.

e Full dynamic-time code verification just before the application
of the code
(static, structural and type correctness verification: well-
formedness, data-flow analysys for illegal memory access,
type of instruction arguments, etc.) ,

e trusting the code producer unconditionally (with using a
certificate mechanism, to check identity),

e trusting code integrity and performing run time pattern
match for types.

e A hybrid model of safe mobile code exchange: Certified
Proven Property Carrying Code. Minimal run-time overhead
but proved correct code.
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Further semantic requirements, examples

Insertion into a sorted list (safety-critical, time-critical):

e the result of the operation is such that every element of the
list is either the first element or an element that is greater
than or equal to the previous element,

e termination
e upper bound for memory usage

e upper bound for execution time
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T he Certified Proved-Property-Carrying Code architecture
(CPPCC) Three main parties involved in the scenario:

1. producer of the mobile code, adds proofs of properties

2. receiver, executes code only after safety checks which ensure
that the code satisfies the requirements specified in the
receiver’'s code,

3. certifying authority, reduce the work-load of the receiver,
does static-time.
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