
1

Subtyping with Strengthening
Type Invar iants

KOZSIK Tamás

Eötvös Loránd University, Budapest

Dieder ik VAN ARKEL, Rinus PLASMEIJER

"Clean group", University of Nijmegen,

The Netherlands

Supported by OTKA T037742.

Motivation

• Development of safety critical applications

• Integration of
– programming (coding)

– proof of correctness
(reasoning about the code)

• Make it in a usable way
– easy to use

– efficient

2

Vision

• Integrate a proof tool in the Clean
environment
– into the programming environment (IDE)

prove properties while writing the program
(these are often very simploe properties)

– into the run-time environment
reason about programs during run-time
enhance reliability of mobile code

Problem of efficiency

• A proof tool is very resource consuming
e.g. takes a lot of time to complete a proof

• Sometimes a proof can be obtained with the
help of the type system
– Very simple: very fast

– More complex: indecidable (infinite run)
dependent types

– Everything in between

3

Key idea
• Program properties expressed as type

invariants
x: Natural x: Integer with x >= 0

• Propagation of properties: verified by type
system
– If I add two Natural numbers, the result is also a

Natural number

• Polymorphism is gained with subtyping
– Natural is a special Integer, that is

Natural ≤ Integer

Intro to Clean
• Functional programming language

– lazy, pure, polymorphic, higher-order

– semantics based on Term Graph Rewriting Systems

• Program = collection of function definitions +
an expression to evaluate (khmm...)

• No assignment, no "imperative variables", only
"mathematical" ones
– variable: sg. that can hold an arbitrary value of a

certain type

• Program execution: evaluation of the Start
expression

4

Why is it good?
• A program is an executable specification

• Just maths...

• Easy to learn FP, easy to do FP

• Referential transparency: no side effects
– less error-prone

– better quality software: understand/modify/reuse

• Easy to reason about programs formally
– mathematical proofs use referential transparency

Clean is much more than that

• High-level language constructs

• High expressive power

• Fancy syntax (?)

• Efficient

• Large libraries

• Integrated Development Environment, etc.

• Suitable for writing real-world apps

5

Some features
• Predefined type constructs: lists, tuples,

arrays, records, functions

• Functions are first-class citizens
– higher-order

• Flexible type system: algebraic types,
parametric polymorphism, type classes,
type constructors (higher-order types)

• Strictness annotations (evaluation order)

• Uniqueness attributes (destructive updates)

Some more...

• Strong type checking

• Type inference

• Modules

• Block structure

• Abstract data types

• Generic programming

• Dynamic typing

• Object IO for the devel. of graphical apps

6

Example: quicksort
module qsort

qsort [] = []

qsort [x:xs] =

qsort [a \\ a <- xs | a < x]

++ [x] ++

qsort [a \\ a <- xs | a > x]

Start = qsort [42, 33, 100, 15]

Type declaration

qsor t :: [a] -> [a] | < a
qsort [] = []

qsort [x:xs] =

qsort [a \\ a <- xs | a < x]

++ [x] ++

qsort [a \\ a <- xs | x > a]

7

What am I doing?

• Modify the type system of Clean

• Add subtyping with type invariants

• Clean 2.0 compiler offered by KUN
– source code is available

– ... in Clean ... :-)

• Theory + implementation

• Hoping to do sg. useful, practical

What are these subtypes for?

fac :: Int -> Int

fac 0 = 1

fac n = n * fac (n-1)

8

What are these subtypes for?

fac :: Int -> Int // only for non-negative arg.

fac 0 = 1

fac n = n * fac (n-1)

• Here the program aborts for negative
numbers

• Things can be worse
(do harmful computation)

What are these subtypes for?

fac :: Int -> Int fac :: Nat -> Nat

fac 0 = 1

fac n = n * fac (n-1)

• ... but there is no such type in Clean...

9

What are these subtypes for?

fac :: Int -> Int fac :: Nat -> Nat

fac 0 = 1

fac n = n * fac (n-1)

• ... but there is no such type in Clean...

• Add a subtype mark!

fac :: <N> Int -> <N> Int

Subtype marks

• Notations to indicate some properties
(type invariants, extra restrictions)

• The type system should work with them

• "Just" notations, not much more...

• Still, they can be used to derive/prove
properties of code

• Especially propagation of type invariants
– e.g. the identity function preserves any type

invariants...

10

First-order logic in semantics
• We could assign logical formulas to these

subtype marks

N(x) = (x >= 0)

• This is not the business of the type system

• For the type system subtype marks do not have
such meaning: "just notations"

• Handle formulas:
– proof system (mathematical proof of correctness)

– run-time system
(run-time check, like in Alphard or Eiffel)

Currently

• Just the type system, no logical formulas

• They are still good for certain things
– localize dangerous code

fac :: Nat -> Nat

abs :: Int -> Nat

fac (abs x) is not dangerous

11

Later

• Generate code that checks type invariants
run-time, namely before and after
evaluating a function (several examples...)

• Use a proof system to argue about type
invariants
– Special proof system (dedicated to Clean):

Sparkle (formerly Clean Prover System)
• reason about Clean progs, no transformation

• integrated with IDE

Believe-me marks

• Believe me, that this property holds. What
else can you guarantee based on this?

• Maybe prove (sub)type correctness of other
functions...

• Later those believe-me marks should be
investigated by a proof system or a run-time
check

12

For example, sorting...

inser t :: a <S>[a] -> <S!>[a] | < a

insert e [] = [e]
insert e [x:xs] = if (e <= x) [e,x:xs]

[x: insert e xs]

sort :: [a] -> <S>[a] | < a
sort [] = []
sort [x:xs] = insert x (sort xs)

Things not addressed here

• Subtype assertions for algebraic data
constructor symbols

[] :: <S>[a]

• Multiple "standard" types (monomorphic)

plus :: Int Int -> Int
plus :: <N>Int <N>Int -> <N>Int

• Polymorphic subtype marks

plus :: <N a>Int <N a>Int -> <N a>Int

13

Implementation difficulties

• The Clean compiler is written in Clean

• The front-end is about 50.000 lines
(2.500.000 characters)

• Clean programs are shorter than
corresponding C programs
– Rinus says: only one tenth

• Actually, it is not a very nice code...
(hacking, not too much abstraction,
no comments, no documentation)

How I do the implementation

• I need to change about 10 modules heavily

• 10 more modules only a little bit

• I do not know what they do...

14

Main activities

• Scanning

• Parsing

• Collect info
– syntax tree

– symbol tables

• Check visibility, etc.

• Type checking / inferencing (unification)

Interfere with other things
• Overloading polymorphism (type classes)

• Synonym types

• Uniqueness typing

• Built-in type constructors

• Existentially and universally quantified types

• Dynamic types

• Syntactic sugar

• Module system, ADT-s

15

Ideas about implementation

• Type derivation with interaction from the
programmer

• Aspect-oriented approach to add subtypes to
the program
– turn on / turn off

• in editor

• in compiler

– like turning on/off the run-time checks

Future plans

• Not only first-order logic in describing
properties, but also temporal logic
– argue about safety and progress properties

– verify concurrent/distributed applications

• Checking mobile code run-time
– e.g. obtained from Internet

– currently type-checks are being implemented
by the Clean group - we want more!

16

Plans for me

• Finish this implementation (catch up with
theory)

• Increase expressive power

• Eliminate interference with other language
concepts not addressed in theory

• Develop large examples (case studies)

• Integrate with proof tool, do run-time checks

• Get the PhD

