Subtyping with Strengthening
Type Invariants

KOZSIK Tamas
E6tvos Loradnd University, Budapest

Diederik VAN ARKEL, RinusPLASMEIJER
"Clean group", University of Nijmegen,
The Netherlands

Supported by OTKA T037742.

Motivation

» Development of safety critical applications
* Integration of
— programming (coding)

— proof of correctness
(reasoning about the code)

« Makeit in ausable way

— easy to use
— efficient

Vision

* Integrate a proof tool in the Clean
environment

— into the programming environment (IDE)
prove properties while writing the program
(these are often very simploe properties)

— into the run-time environment
reason about programs during run-time
enhance reliability of mobile code

Problem of efficiency

A proof tool isvery resource consuming
e.g. takes alot of time to complete a proof

» Sometimes a proof can be obtained with the
help of the type system
— Very simple: very fast
— More complex: indecidable (infinite run)

dependent types

— Everything in between

Key idea

» Program properties expressed as type
invariants

x: Natural X: Integer with x >=0
 Propagation of properties: verified by type
system

— If | add two Natural numbers, theresult isalso a
Natura number

 Polymorphism is gained with subtyping

— Natural isaspecia Integer, that is
Natural < Integer

Intro to Clean

Functiona programming language

— lazy, pure, polymorphic, higher-order

— semantics based on Term Graph Rewriting Systems
Program = collection of function definitions +
an expression to evaluate (khmm...)

No assignment, no "imperative variables', only
"mathematical” ones

— variable: sg. that can hold an arbitrary value of a
certain type

Program execution: evaluation of the Start
expression

Why isit good?

A program is an executable specification
Just maths...
Easy to learn FP, easy to do FP

Referential transparency: no side effects

— less error-prone

— better quality software: understand/modify/reuse
Easy to reason about programs formally

— mathematical proofs use referentia transparency

Clean is much more than that

High-level language constructs

High expressive power

Fancy syntax (?)

Efficient

Large libraries

Integrated Devel opment Environment, etc.

Suitable for writing real-world apps

Some features

Predefined type constructs: lists, tuples,
arrays, records, functions

Functions are first-class citizens

— higher-order

Flexible type system: algebraic types,
parametric polymorphism, type classes,
type constructors (higher-order types)

Strictness annotations (evaluation order)
Uniqueness attributes (destructive updates)

Some more...

Strong type checking

Type inference

Modules

Block structure

Abstract data types

Generic programming

Dynamic typing

Object 1O for the devel. of graphical apps

Example: quicksort

module gsort

gsort [] =[]

gsort [X:Xxs] =
gsort [a\la<- xs|a<X]
++ [X] ++
gsort [a\\a<- xs|a>X]

Start = gsort [42, 33, 100, 15]

Type declaration

gsort::[a]->[a] | <a
gsort [] =[]
gsort [X:Xxs] =
gsort [a\la<- xs|a<X]
++ [X] ++
gsort [a\\la<- xs|x >4

What am | doing?

Modify the type system of Clean
Add subtyping with type invariants

Clean 2.0 compiler offered by KUN
— source code is available
—...inClean ... :-)

Theory + implementation
Hoping to do sg. useful, practical

What are these subtypes for?

fac :: Int-> Int
fac0=1
facn=n* fac (n-1)

What are these subtypes for?

fac:: Int->1Int // only for non-negative arg.
fac0=1
facn=n* fac (n-1)

» Here the program aborts for negative
numbers

* Things can be worse
(do harmful computation)

What are these subtypes for?
fac i Int -> Int fac :: Nat -> Nat
fac0=1

facn=n* fac (n-1)

o ... but thereis no such typein Clean...

What are these subtypes for?

fac :: Int-> Int fac :: Nat -> Nat
fac0=1
facn=n* fac (n-1)

o ... but thereis no such typein Clean...
» Add asubtype mark!
fac :: <N>Int -> <N>Int

Subtype marks

 Notations to indicate some properties
(type invariants, extra restrictions)

The type system should work with them
"Just" notations, not much more...

Still, they can be used to derive/prove
properties of code
Especially propagation of type invariants

— e.g. the identity function preserves any type
Invariants...

First-order logic in semantics

We could assign logical formulas to these
subtype marks

N(x) = (x>=0)
Thisis not the business of the type system
For the type system subtype marks do not have
such meaning: "just notations’

Handle formulas:
— proof system (mathematical proof of correctness)
— run-time system

(run-time check, likein Alphard or Eiffel)

Currently
 Just the type system, no logical formulas

» They are still good for certain things
— localize dangerous code

fac :: Nat -> Nat
abs:: Int -> Nat

fac (absx) isnot dangerous

10

L ater

Generate code that checks type invariants
run-time, namely before and after
evaluating afunction (several examples...)

Use a proof system to argue about type
invariants
— Special proof system (dedicated to Clean):
Sparkle (formerly Clean Prover System)
* reason about Clean progs, no transformation
* integrated with IDE

Believe-me marks

Believe me, that this property holds. What
el se can you guarantee based on this?

Maybe prove (sub)type correctness of other
functions...

L ater those believe-me marks should be
investigated by a proof system or arun-time
check

11

For example, sorting...

insert:: a <S[a] -> <S>[a] | <a
inserte [] = [€]
insert e [x:xs] = if (e <=X) [e,x:xs]

[X: Insert e xs]

sort:: [a] -> <S>[a] | <a
sort[] =]
sort [x:xs] = insert x (sort xs)

Things not addressed here

 Subtype assertions for algebraic data
constructor symbols

[1:: <S>[d
» Multiple "standard" types (monomorphic)
plus:: Int Int -> Int
plus:: <N>Int <N>Int -> <N>Int

 Polymorphic subtype marks
plus:: <NaInt <NasInt -> <Na>Int

| mplementation difficulties

» The Clean compiler iswritten in Clean

» Thefront-end is about 50.000 lines
(2.500.000 characters)

» Clean programs are shorter than
corresponding C programs
— Rinus says: only one tenth

« Actually, itisnot avery nice code...

(hacking, not too much abstraction,
no comments, no documentation)

How | do the implementation

* | need to change about 10 modules heavily
» 10 more modules only alittle bit

* | do not know what they do...

13

Main activities

Scanning
Parsing
Collect info

— syntax tree
— symbol tables

Check visibility, etc.
Type checking / inferencing (unification)

Interfere with other things

Overloading polymorphism (type classes)
Synonym types

Uniqueness typing

Built-in type constructors

Existentialy and universally quantified types
Dynamic types

Syntactic sugar

Module system, ADT-s

14

| deas about implementation

» Type derivation with interaction from the
programmer

» Aspect-oriented approach to add subtypesto
the program
— turn on/ turn off
* in editor
* in compiler
— like turning on/off the run-time checks

Future plans

» Not only first-order logic in describing
properties, but also temporal logic
— argue about safety and progress properties
— verify concurrent/distributed applications

» Checking mobile code run-time
— e.g. obtained from Internet

— currently type-checks are being implemented
by the Clean group - we want more!

15

Plans for me

Finish this implementation (catch up with
theory)

Increase expressive power

Eliminate interference with other language
concepts not addressed in theory

Develop large examples (case studies)
Integrate with proof tool, do run-time checks
Get the PhD

16

