Safe Mobile Code — CPPCC:
Certified Proved-Property-Carrying Code

*

Zoltdn Horvath, Tamds Kozsik
hzQ@inf.elte.hu, kto@elte.hu
Department of General Computer Science
University Eotvos Lorand, Budapest, Hungary

Abstract

We propose a hybrid model of safe mobile code exchange. The receiver
needs a guarantee that the properties of the received code correspond to
certain requirements. The safest solution is to verify run-time just before
the execution of the code that the requirements are satisfied. The other
extreme is to trust in the sender of the code unconditionally or, using a
certificate mechanism, to check merely the identity of the code producer.
The first approach is safe, but very resource-consuming, the latter, on the
other hand, is fairly effective, but does not provide the required level of
safety. We propose an architecture that possesses the advantages of both
approaches.

1 Introduction

Languages that support some sort of mobile code have become wide-spread
recently. Such languages are e.g. Java, Emerald [9], Dynamic ML [3] and Clean
[8]-

When an application runs a piece of code received via the net, the applica-
tion may want to get guarantees that this piece of code does no harm: does not
use too much resources, does not read or modify data unauthorised, etc. Proof-
carrying code [6] is a technique for providing such assurances. With PCC, the
code consumer specifies safety requirements, which tell under what conditions
parts of memory can be read or written or how much of a resource is allowed to
use. The code producer must also provide a set of program properties and an en-
coded proof packed together with the code transmitted, to certify that the code
really satisfies these conditions. Complex methods may be used to construct
these proofs [7, 5], but their verification should be a simple computation.

Java, for example, makes it possible to download code over the internet and
execute it on a client machine. This technology, offered by class loading (like in

*Position paper. Supported by the OTKA T37742 and the OMFB 01548 ”DemoGRID”
projects.



case of applets) and object serialization is supported by the abstract machine ap-
proach that Java utilizes. The whole concept is not bound to the object-oriented
paradigm. In the functional programming domain the Concurrent Clean system
applies a similar concept of mobile code in the form of ”dynamics”.

In both examples the compiler packages type information with the code. The
receiver run-time system can check this type information due to its dynamic
typing possibilities. Java’s class file verifier mechanism (of which the most
complicated phase is performed by the so-called Bytecode Verifier) can prove
static and structural constraints and type correctness during linking time —
which, in fact, is run-time from the point of view of the overall execution of the
program. (In the following we will refer to this as ” dynamic-time” as opposed to
"static-time”.) These checks ensure that the code is well-formed, and the applied
data-flow analysis guarantees that there will be no operand stack overflow or
underflow, that local variable uses and stores are valid, and that the arguments
of the instructions are of valid types. This mechanism does not provide full
semantic checking, moreover the data-flow analysis is expensive. Due to this
latter, some restrictions have been introduced, e.g. the code size, the number
of methods, variables or constants, the size of operand stack, etc. are limited.

The dynamic linker and the run-time system of Concurrent Clean trusts in
the integrity of the code and the associated type information. Clean performs
run-time type checking (pattern matching) based on this type information when
evaluating dynamically loaded code.

It would be very fruitful to include further semanctical information to the
code compared to the above approach. This additional information would de-
scribe the run-time behaviour of the code and the receiver would be able to
decide to which extent is the obtained code appropriate for solving a certain
specified problem. For example the receiver could expect a piece of code that
can sort a list of integer numbers. Type requirements for such a code would
be: take a list of integers and produce a list of integers. These requirements
can be type-checked. Structural constraints can prescribe that the sorting op-
eration does not perform illegal memory access — the aforementioned Bytecode
Verifier can make such a guarantee. On the other hand the following additional
semantic requirement would also be necessary: the result of the operation is
such that every element of the list is either the first element or an element that
is greater than or equal to the previous element. A safety-critical application
must be sure at least that the dynamically linked code, if it terminates, satisfies
this requirement. (A time-critical application would also set up a requirement
on termination.)

The widely-used way to avoid malicious code is that we accept code only from
trusted partners who guarantee the expected behaviour. The identity of the
partner can be proved by e.g. public-key cryptography systems or certificates.
But our problem remains: we still do not know whether the trusted partner has
made a mistake or not while implementing the code. It is possible that the code
does not perform sorting in certain cases due to a programming error.

Higher confidence could be achieved, if we kept the idea of needing to check
the properties of the code upon receiving, but, in contrast to the Java model,



we would check all required semantical properties. For example, we could verify
that the list became sorted after performing the dynamically obtained code, or
we could verify that the code really implements a sorting algorithm.

To avoid the heavy dynamic-time overhead introduced by an operational
analysis of the code or a run-time check of the postcondition we may use proof-
carrying code. The code producer develops proofs about some specified prop-
erties of the code static-time. This process may be very complicated and may
require a lot of time to complete. The proof will then be packaged with the
code. The receiver only has to check the proof — and this can be performed
fairly efficiently.

In this paper we propose a technology which uses minimal run-time overhead
but still makes it sure that the receiver will use code which is proved correct.

2 The Certified Proved-Property-Carrying Code
architecture (CPPCCQC)

In this section we describe how to transmit code in a secure way. There are three
main parties involved in the scenario. First, there is the producer of the mobile
code, who also produces proofs of properties of the developed code. Then, there
is the receiver who receives the code from the code producer and executes it
— but only after certain safety checks which ensure that the code satisfies the
requirements specified in the receiver’s code. Finally, there is the certifying
authority between the two, whose task is to reduce the work-load of the receiver
by performing the most resource-consuming parts of the checks static-time. The
overall view of the protocol, illustrated in figure 1, is the following;:

Source code
Code
Type code
Properties
Proof

Type code
Properties

Certificate Certifier

R P

Figure 1: Secure transmission of code — Overview



1. The code producer packages the code with the original source code, type
information (type code), some important properties of the code, and the
proof of theses properties produced by the help of a (semi)automatic the-
orem prover.

2. The certifier checks the proofs in respect to the source code and the prop-
erties, then it checks whether the abstract code is really the result of a
proper compilation of the source code, and finally it checks whether the
type information is correct. If everything succeeds, then a certificate is
added. The certified code can be placed in a library for further use.

3. The receiver checks dynamic-time the certificate, compares the proper-
ties and type information with requirements and accepts or refuses the
application of the code.

Certain properties of programs can be very well expressed by attaching ”in-
variants” to types [4]. The propagation of such type invariants can be admin-
istrated by the type system. This approach leads to increased efficiency, since
less verification is needed by a first-order logic based proof system.

2.1 Production of mobile code

The production of the mobile code (see figure 2) starts from an annotated source
code. The intended global properties of the component are added to the program

Operational definition Type definitions Properties

Compiler Proof system

v

Type Abstract Source Properties Pivciats
code | machine code code (in a coded form )

Figure 2: The production of mobile code

text in form of annotations. Type declarations may be obligatory or produced by
type inference. The compiler and the theorem prover produce an output, if the
properties are valid in respect to the source code. The result contains the original
source with the annotated global properties, the proof of these properties (as



an encoded sequence of verification steps), type information inferred and the
generated abstract machine code. All these pieces of information are needed to
perform certification.

2.2 Certification of code

The results from the previous step are sent to a certifying authority whose task
is to perform as many checks as possible. Figure 3 demonstrates this idea. The

Type Abstract Source Properties Proofs
code | machine code code (in a coded form)

Compilation checker | Correctness checker

Certifier

v

Type Abstract Properties
code machine code (in a coded form)

Certificate

Figure 3: Certification of mobile code

certifier checks the proof in respect of the given properties and the source code.
This task is easy to automatize, there is no need for human intelligence, which
may be required to support the construction of proofs. After the check is done,
the source code is not needed any more, moreover we do not need the proof
either. The proved properties are sufficient for the future dynamic-time checks.
The other task of the certifier is to check the abstract machine code, whether
it is originated from the source. We drop the source, so this is the last moment
for such a test to perform. If all checks succeed, the certifier adds a certificate
to the abstract machine code, the type code and the encoded properties, and
sends these data back to the mobile code producer.

2.3 Checks performed by the receiver of the code

If an application needs a component available at a mobile code producer, it can
request and receive a certified proved-properties-carrying code, which can be
dynamically linked into the application — of course, after the necessary safety
checks. This scenario is presented in figure 4. First, the receiver checks the cer-
tificate. If the certificate is valid, the type information and carried properties are
compared to the type and semantic requirements specified for the dynamically



Type Ab?tract Certificate Properties
code machine code (in a coded form)

Receiving l Authentitication

program N v
Require- Dynamic linker Aut}n'izntion

ments
Application

Type unifier

Type
patterns

i

Figure 4: Using the mobile code in the receiver

loaded component. If all these requirements are satisfied, the receiver accepts
the code, links it to the application and executes it.

The matching of requirements and properties can be hard in general. To
preserve efficiency (by avoiding the use of a resource-consuming proof system
for this purpose) the receiver will in most cases make a decision to refuse code
whose specified properties are not close enough to the requirements. Thus it
will be the responsibility of the mobile code producer to supply the appropriate
properties with the code.

This approach can make use of incremental extension of certified proved-
properties-carrying-code with further properties.

References

[1] Lindholm, T., Yellin, F.: The Java Virtual Machine Specification.
Addison-Wesley, 1996.

[2] Horvath Z. et al.: Verification of the Temporal Properties of Dynamic
Clean Processes. In Proceedings of the 11th International Workshop
on Implementation of Functional Languages, Lochem, The Netherlands,
IFL’99., pp. 203-218.

[3] Gilmore, S., Kirli, D., Walton, C.: Dynamic ML without Dynamic
Types. Technical Report ECS-LFCS-97-378, Laboratory for Foundations

of Computer Science, Department of Computer Science, The University
of Edinburgh, 1997.

[4] Kozsik T., van Arkel, D., Plasmeijer R.: Subtyping with Strengthening
Type Invariants. In Proceedings of the 12th International Workshop on



Implementation of Functional Languages, Aachener Informatik-Berichte,
Aachen, Germany, September 2000, pp. 315-330.

[5] de Mol, M., van Eekelen, M.: A Proof Tool Dedicated to Clean. In Se-
lected papers of Applications of Graph Transformations with Industrial
Relevance, AGTIVE’99, Kerkrade, The Netherlands, Springer-Verlag, to
appear in LNCS.

[6] Necula, G.: Proof-carrying code. In Proceedings of the ACM Symposium
on Principles of Programming Languages, 1997.

[7] Owre, S., Rushby, J., Shankar, N.: PVS: a prototype verification system.
In Proc. 11th Intl. Conf. on Automated Deduction, Springer LNCS wol.
607, pages 748-752, 1992.

[8] Pil, M.R.C.: Dynamic types and type dependent functions. Proc. of Im-
plementation of Functional Languages, IFL’98, London, LNCS 1595, pp.
169-185, 1999.

[9] Hutchinson, N.: The Emerald Distributed Programming Language.
http://www.cs.ubc.ca/nest /dsg/emerald.html

[10] Plasmeijer, R., van Eekelen, M.: Concurrent Clean Version 2.0 Language
Report, 2001. http://www.cs.kun.nl/"clean/Manuals/manuals.html



