
Resource Management for Safe Languages

Grzegorz Czajkowski1 and Jan Vitek2

1 Sun Microsystems Laboratories,
grzegorz.czajkowski@sun.com

2 Purdue University,
jv@cs.purdue.edu

Abstract. Safe programming languages offer safety and security fea-
tures making them attractive for developing extensible environments on
a wide variety of platforms, ranging from large servers all the way down
to hand-held devices. Extensible environments facilitate dynamic host-
ing of a variety of potentially untrusted codes. This requires mechanisms
to guarantee isolation among hosted applications and to control their
usage of resources. While most safe languages provide certain isolation
properties, typically resource management is difficult with the current
standard APIs and existing virtual machines.
This one-day workshop brought together practitioners and researchers
working on various approaches to these problems to share ideas and
experience.

1 Workshop Overview

The workshop consisted of four 90-minute sessions. In the first one Doug Lea
from State University of New York in Oswego delivered an invited talk on the
Application Isolation API proposed as an extension to the JavaTM programming
language [1]. Presentations of accepted position papers were given in the next
two sessions. Each author had 7 minutes to present the main idea of his/her
work. After all of the authors in a given session finished, the presentations were
discussed - this include the time for questions about specific presentations as
well as general remarks and brain-storming.
The last session was a panel discussion, during which the workshop atten-

dants listed a list of open or “really difficult” issues in the discussed domain.
The total of nine presentations were accepted for the workshop, and each of

them was presented. About 25 people attended the workshop, the majority from
Europe, with a few attendees from the US. Most of the participants were from
the academia.

2 Position Paper Summaries

All the papers accepted and presented are available from http://www.ovmj.org/
workshops/resman. The section below contains summaries of the papers, pro-
vided by the authors.

J. Hernández and A. Moreira (Eds.): ECOOP 2002 Workshops, LNCS 2548, pp. 1–14, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



2 Grzegorz Czajkowski and Jan Vitek

2.1 Creating a Resource-aware JDK

Authors Walter Binder (CoCo Software Engineering GmbH, Vienna, Austria),
Vladimir Calderon (University of Geneva, Switzerland)
Contact e-mail w.binder@cocosoftware.com

Accounting and limiting the resource consumption of applications is a prerequi-
site to prevent denial-of-service attacks in mobile code environments. Moreover,
it enables the monitoring and profiling of applications, which may be charged for
their utilization of computing resources. Java has become the de facto standard
for the implementation of mobile code environments. However, current Java run-
time systems do not offer any mechanisms for resource accounting and resource
control.
Prevailing approaches to provide resource control in Java-based platforms

rely on a modified Java Virtual Machine (JVM), on native code libraries, or on
program transformations. The Java resource accounting facility J-RAF is based
completely on program transformations. In this approach the bytecode of appli-
cations is rewritten in order to expose its CPU and memory consumption (CPU
and memory reification). Programs rewritten by J-RAF keep track of the num-
ber of executed bytecode instructions (CPU accounting) and update a memory
account when objects are allocated or reclaimed by the garbage collector.
Resource control with the aid of program transformations offers an important

advantage over the other approaches, because it is independent of a particular
JVM and underlying operating system. It works with standard Java runtime
systems and may be integrated into existing mobile code environments. Further-
more, this approach enables resource control within embedded systems based on
modern Java processors, which provide a JVM implemented in hardware that
cannot be easily modified.
Typically, rewriting the bytecode of an application is not sufficient to account

and control its resource consumption, because Java applications use the com-
prehensive APIs of the Java Development Kit (JDK). Therefore, resource-aware
versions of the JDK classes are necessary in order to monitor the total resource
consumption of an application. Ideally, the same bytecode rewriting algorithm
should be used to rewrite application classes as well as JDK classes. However,
the JDK classes are tightly interwoven with native code of the Java runtime
system, which causes subtle complications for the rewriting of JDK classes.
The authors outline the difficulties of modifying the JDK classes: The native

code of the Java runtime system relies on several low-level assumptions regard-
ing the dependencies of Java methods in certain JDK classes. Thus, program
transformations that are correct for pure Java may break native code in the
runtime system. Unfortunately, these dependencies are not well documented,
which complicates the task of defining transformation rules that work with the
Java class library. Moreover, the transformed JDK classes may seem to work as
desired even with large-scale benchmarks, while the transformation may have
compromised the security model of Java. Such security malfunctions are hard to
detect, as they cannot be perceived when running well behaving applications.



Resource Management for Safe Languages 3

We have experienced that a minor restructuring of the method call sequence
completely breaks several security checks, which are based on stack introspec-
tion and assume a fixed call sequence. Consequently, modifications and updates
of the JDK are highly error-prone.
Having explained the difficulties of rewriting the JDK classes, the authors

present and compare different bytecode transformation schemes that allow to
create resource-aware JDK classes. The distinct rewriting strategies are evalu-
ated based on standard benchmark suites for Java.

2.2 Scoped Memory

Authors Greg Bollella (Sun Mircosystems, Inc.), Kirk Reinholtz (NASA Jet
Propulsion Laboratories)
Contact e-mail greg.bollella@sun.com

The full text of this short position paper is available on the workshop’s Web site.

2.3 Resource Accounting in a J2ME Environment

Authors Walter Binder, Balazs Lichtl (both from CoCo Software Engineering
GmbH, Vienna, Austria)
Contact e-mail w.binder@cocosoftware.com

Nowadays Java has become a common implementation language for applications
which have to be executed in different hardware environments without changes.
With the specification of the Java 2 Micro Edition (J2ME), Sun has created a
standard for embedded applications developed in Java.
Resource accounting and control is getting increasingly important in various

settings. One particularly important case for resource control is the protection of
platforms executing dynamically uploaded applications (mobile code) from faulty
or malicious code, which may overuse the computing resources of the system.
Another interesting setting is the charging of applications for their resource
consumption.
Unfortunately, current standard Java runtime systems do not support re-

source control. Hence, until resource control may become part of future releases
of the Java Development Kit, resource control in Java environments has to be
based either on modified JVMs or on program transformation techniques. So far,
modified JVMs have not been deployed widely, because typically they suffer from
limited portability and from low performance, since usually they do not support
a state-of-the-art JIT compiler as provided by standard Java runtime systems.
Moreover, there are embedded systems based on recent Java processors, which
provide JVMs implemented in hardware that cannot be easily modified to en-
able resource control. Thus, program transformation techniques are an attractive
alternative to modifying the JVM.
Ideally, program transformations for resource control shall be compatible

with existing Java runtime systems, shall cause only moderate overhead, and



4 Grzegorz Czajkowski and Jan Vitek

allow accurate accounting. While the accounting accuracy on a Java 2 Standard
Edition JVM is limited, because of the significant part of native code that is
not accounted for and due to optimizations performed by the JIT compiler,
the accuracy on a Java processor can be much better, as the execution time of
individual bytecode instructions can be measured and only very simple and well
documented optimizations are performed, such as the combination of certain
JVM instructions. However, regarding the accounting overhead, sophisticated
optimizations can be beneficial, and consequently the relative overhead on an
embedded Java processor may be significantly higher than on a JVM with a
modern JIT compiler.
The authors report their initial results from applying program transforma-

tions for resource accounting, which are described in an accompanying work,
to embedded applications running on a Java processor. The authors created a
benchmark suite for the J2ME environment and measured the overhead of CPU
accounting with different rewriting schemes and optimizations.

2.4 JRAF - The Java Resource Accounting Facility

Authors Vladimir Calderon (Computer Science Department, University of Ge-
neva, Switzerland), and Walter Binder (CoCo Software Engineering GmbH, Vi-
enna, Austria)
Contact e-mail caldero6@cuimail.unige.ch

Program transformations are a portable approach to extend existing Java envi-
ronments with resource management functionality [4, 3]. Using such techniques,
the bytecode of Java applications is modified to expose its resource consumption
(resource reification through bytecode rewriting).
In this paper we outline the concept and structure of JRAF1, the Java Re-

source Accounting Facility, which comprises a series of tools for resource reifi-
cation. These tools offer CPU and memory accounting with pluggable account-
ing strategies, bytecode optimizations, calibration mechanisms to fine-tune the
accounting schemes and the accuracy of accounting to particular execution en-
vironments, as well as higher level components that make use of the collected
accounting information. To manage such a huge set of tools, JRAF provides a
powerful and flexible configuration mechanism and controls the application and
proper composition of the separate resource management tools. It has a layered
architecture offering an accounting and a resource control interface.

JRAF Components

Accounting Interface The accounting interface of JRAF manages all resource
reification tools, as well as the structure of the corresponding accounts. Cur-
rently, JRAF supports interfaces for CPU and memory accounting, but it can

1 http://abone.unige.ch/

http://abone.unige.ch/


Resource Management for Safe Languages 5

be easily extended for accounting of additional resources. The accounting inter-
face of JRAF consists of two parts:

– Interfaces for the resource reification tools.
– Interfaces defining the accounts.

Analyzer Tool This is a very important JRAF component. In fact, the analyzer
is an essential tool used by other accounting tools. Its main purpose is to ease
the comprehension of the deep characteristics of the input classes to be reified,
crucial for the rewriting process.

CPU Reification Tool In order to show a more concrete implementation of the
accounting interface we explain the interface to the CPU tool in more detail,
which supports specific features: an interface for optimization algorithms that
help to reduce the overhead of CPU accounting (see [2] for examples of such
optimizations); an interface allowing to associate different accounting weights
with JVM instructions and common initializations for CPU tools.

Memory Reification Tool Another very important resource is the memory. A
memory reification tools was already implemented [5]), we needed then to make
this tool compliant to JRAF. This tool is now fully integrated to JRAF, similarly
to the CPU tool, and can be used within a single JRAF reification process along
with the other tools.

Resource Control Interface The resource control interface comprises all tools
using the accounts, such as resource monitors, schedulers, logging components,
etc. JRAF aims at joining the accounting with these components. It allows to
plug resource control tools to an application through the accounting interface.

JRAF in Action We have successfully applied JRAF on the Java 2D Demo2

to demonstrate the application of JRAF on a general multithreaded application.
In this example, JRAF reifies the CPU consumption of the individual threads
and displays this information in an extra window.
The reader may want to apply JRAF to his own Java applications using

the JRAF demo available at URL http://abone.unige.ch/, which currently
is configured to reify arbitrary applications using one of our CPU tools and to
attach a simple thread monitor.

Conclusion JRAF has a layered architecture, it is extensible and provides an
XML-based configuration mechanism. JRAF manages, coordinates, and com-
bines the application of various bytecode rewriting tools for resource accounting.
It has become a general tool to add different resource management strategies to
arbitrary Java applications. Currently, JRAF includes three different CPU reifi-
cation tools with various optimizations, one memory reification tool, as well as
a graphical monitor and scheduler.
2 The Java2D Demo is available at
http://java.sun.com/products/java-media/2D/samples/index.html.

http://abone.unige.ch/
http://java.sun.com/products/java-media/2D/samples/index.html


6 Grzegorz Czajkowski and Jan Vitek

2.5 Resource Consumption Interfaces for Java Application
Programming - A Proposal

Authors Grzegorz Czajkowski, Stephen Hahn, Glenn Skinner, Pete Soper (all
from Sun Microsystems, Inc.)
Contact e-mail grzegorz.czajkowski@sun.com

Software systems in many circumstances need an awareness of their resource
impact on the underlying executing platform, so they can satisfy externally im-
posed performance requirements. Programs constituting such systems need the
ability to control their consumption of resources provided by the platform. This
document summarizes the current status of a proposal being prepared to define
an extensible, flexible, and widely applicable resource consumption API for the
Java platform. Control over resource consumption is developed using a set of ab-
stractions that allow the statement of reservations and constraints for individual
resources utilized by the executing application.
The Java programming language and its associated runtime environment

have grown beyond their initial goal of writing portable applications. The ad-
vent of the Web, applications servers, and the enterprise and micro editions
of the Java platform has created pressure to make more system programming
features available to programmers, as they develop progressively more sophisti-
cated applications in an increasingly wide range of environments. This document
addresses one such need: the ability to monitor or control the consumption of
resources by an application. The proposed resource consumption interface (RC
API) controls resources available to collections of isolates and, as such, depends
on the availability of the isolate abstraction. (The isolate abstraction is provided
by Java Specification Request (JSR) 121 [1]. However, the RC API is designed
so that new methods need not be added to the Isolate API.
The general goals for the resource consumption API are as follows:

1. Extensibility: The resource consumption interface should support the addi-
tion of new controlled resources.

2. Cross-platform applicability: The interface, as well as its underlying abstrac-
tions, should be applicable to all kinds of Java platforms.

3. Cross-scenario applicability. The interface should support the different forms
of application management supported by the Isolate API, as well as being
meaningful in a single application context.

4. Flexibility. The interface should be able to describe and control a broad
range of resource types.

5. Completeness of abstraction. The interface should hide from applications
whether a given resource is managed by the Java Virtual Machine (JVMTM ),
by a core library, or by an underlying operating system facility.

6. Lack of specialization. The interface should not require an implementation to
depend on specialized support from an operating system or from hardware,
although implementations may take advantage of it if available.

The proposal examines the resource consumption interfaces from the per-
spectives of three classes of developers, each of whom is a participant in resource



Resource Management for Safe Languages 7

management: the application developer, the middleware developer, and the run-
time environment developer.

2.6 Towards Resource Consumption Accounting and Control in
Java: A Practical Experience

Authors Frederic Guidec, Nicolas Le Sommer (both from VALORIA Labora-
tory, University of South Brittany, France)
Contact e-mail Frederic.Guidec@univ-ubs.fr

All software components are not equivalent as far as resource access and con-
sumption are concerned. Some components can do very well with sparse or even
missing resources, while others require guaranteed access to the resources they
need. In order to deal with non-functional requirements pertaining to resource
utilization we propose a contractual approach of resource management and ac-
cess control. This idea is being investigated in the context of project RASC3

(Resource-Aware Software Components). In this project our objective is to pro-
vide software components with means to specify their requirements regarding
hardware and/or software resources, and to design methods and models for uti-
lizing this kind of information at any stage of a component’s life-cycle.
The remaining of this paper gives an overview of two software products whose

development is in progress in the context of project RASC.

Raje: A Resource-aware Java Environment Raje can be perceived as an
extension of the traditional JRE (Java Runtime Environment). This extension
provides means to monitor resource access and consumption at middleware level.
It makes it possible to monitor the usage of “global” resources (CPU, system
memory and swap, network interfaces, etc.) as well as that of the “conceptual”
resources used by Java programs (TCP and UDP sockets, CPU time and memory
consumed by each Java thread, etc.). In Raje all resources are modeled as first-
class Java objects. Information about any kind of resource can thus be gathered
by calling appropriate methods on the Java object modeling this resource.
Since resource objects can be created and destroyed dynamically by Java

programs, Raje implements a resource register, whose role is to identify and to
keep track of resource objects at runtime. By consulting the resource register a
program can locate all the objects that model resources in its name space.
Resource monitoring can be performed in either a synchronous or asyn-

chronous way. Resource monitoring is said to be achieved synchronously when
any attempt to access a given resource can be intercepted and checked imme-
diately. Monitoring a resource asynchronously consists in consulting the state
of this resource explicitly every now and then, in such a way that the time of
the observation does not necessarily coincide with the time of an attempt to
use the resource. Both monitoring models are indeed complementary models. In
any case Raje provides facilities for performing both kinds of monitoring. For
3 http://www.univ-ubs.fr/valoria/Orcade/RASC



8 Grzegorz Czajkowski and Jan Vitek

the programmer, deciding which model should be applied mostly comes down to
making a tradeoff between the precision and the cost of monitoring.
Most of the code included in Raje is pure Java and, as such, is readily

portable. However, part of this code consists of C functions that permit the ex-
traction of information from the underlying OS, and the interaction with inner
parts of the JVM (Java Virtual Machine). To date Raje is implemented un-
der Linux, and the JVM it relies on is a variant of TransVirtual Technology’s
Kaffe 1.0.6.

Jamus: Java Accommodation of Mobile Untrusted Software Jamus is
an experimental platform we develop on top of Raje in order to experiment
with the idea of resource contracting. Jamus supports the deployment of “un-
trusted” software components, provided that these components can specify their
requirements regarding resource utilization in both qualitative (e.g., access rights
to parts of the file system) and quantitative terms (eg read and write quotas).
Emphasis is put on providing a safe and guaranteed runtime environment for
such components.
Resource control in Jamus is based on a contractual approach. Whenever a

software component applies for being deployed on the platform, it must spec-
ify explicitly what resources it will need at runtime, and in what conditions.
The main originality of this approach lies in the fact that a specific contract
must be subscribed between the Jamus platform and each software component
it accommodates. By specifying its requirements regarding resource access and
consumption, the candidate component requests a specific service from the Ja-
mus platform. At the same time it promises to use no other resource than those
mentioned explicitly. In return, whenever the platform accepts a candidate com-
ponent, it promises to provide this component with all the resources it requires.
At the same time it reserves the right to sanction any component that would try
to access other resources than those it required.
Based on this notion of resource contracting, Jamus can provide some level

of quality of service regarding resource availability. It also provides components
with a relatively safe runtime environment, since no component can access or
monopolize resources to the detriment of other components.

Further Readings The development of both Raje and Jamus is still in
progress. Interested readers can refer to [11, 12] for a more detailed descrip-
tion of this work. Up-to-date information about this development (and about
other topics addressed in project RASC) can also be found at http://www.univ-
ubs.fr/valoria/-Orcade/RASC.

2.7 Safe Mobile Code - CPPCC: Certified Proved-Property-
Carrying Code

Author Zoltan Horvath and Tamas Kozsik (both from Department of General
Computer Science, University Eotvos, Lorand, Budapest, Hungary)
Contact e-mail hz@inf.elte.hu



Resource Management for Safe Languages 9

Some systems (e.g. Java virtual machines) make it possible for an application to
download a component over the network, link it dynamically to the application
and execute it. In such cases a safety-critical application may want to get guar-
antees that the downloaded component does no harm: does not use too much
resources, does not read or modify data unauthorised, etc.
The widely-used way to avoid malicious code is that the application accepts

code only from trusted partners who guarantee the expected behaviour. The
identity of the partner can be proved by e.g. public-key cryptography systems or
certificates. But still, there is a danger that the trusted partner makes a mistake,
sends a wrong or an outdated component, or one with a programming error in
it.
The class file verifier mechanism of Java, for example, can prove static and

structural constraints and type correctness when linking the downloaded com-
ponent to the application. These checks ensure that the code is well-formed, and
the applied data-flow analysis guarantees that there will be no operand stack
overflow or underflow, that local variable uses and stores are valid, and that the
arguments of the instructions are of valid types.
Proof-carrying code is a technique for providing further assurances. With

PCC, the code consumer specifies safety requirements, which tell under what
conditions parts of memory can be read or written or how much of a resource
is allowed to use. The code producer must provide a set of program properties
and encoded proofs packed together with the code transmitted, to certify that
the code really satisfies the requirements. Complex methods may be used to
construct the proofs, but their verification should be a simple computation.
It would be very fruitful to include further semantical information to the

code compared to the above approaches. Based on such information the code
consumer could decide more precisely to which extent the obtained code is ap-
propriate for solving a certain specified problem. For example the consumer
could expect a piece of code that can sort a list of integer numbers. Type re-
quirements for such a code would be: take a list of integers and produce a list
of integers. These requirements can be type-checked. Structural constraints can
prescribe that the sorting operation does not perform illegal memory access – the
aforementioned Java class file verifier can make such a guarantee. On the other
hand, the following additional semantic requirement would also be necessary:
the result of the operation is such that every element of the list is either the first
element or an element that is greater than or equal to the previous element. A
safety-critical application must be sure at least that the downloaded code, if it
terminates, satisfies this requirement. (A time-critical application would also set
up a requirement on termination.)
As the requirements made for the downloaded components are getting more

and more complex, the proofs of correctness get longer and harder to verify.
Hence efficiency comes to the front. The goal is to reduce the memory and time
consumption of the technology for communicating safe code. In the solution we
suggest for this problem there are three main parties involved. Here is a summary
of their tasks.



10 Grzegorz Czajkowski and Jan Vitek

1. The code producer packages the machine code with the original source code,
type information, some important properties of the code, and the proof of
these properties designed by the help of a theorem prover.

2. The certifier checks the proofs in respect to the source code and the proper-
ties, then it checks whether the machine code is really the result of a proper
compilation of the source code, and finally it checks whether the type infor-
mation is correct. If every check succeeds, then the machine code, the type
information, the properties and a certificate will be packaged and sent back
to the code producer, which can place it in a library for later use.

3. If an application needs a component available at a mobile code producer,
it can request and receive a certified proved-properties-carrying code, which
can be dynamically linked into the application – of course, after the necessary
safety checks. First the certificate is verified, then the type information and
the carried properties are compared to the type and semantic requirements
specified for the dynamically loaded component.

A prototype system to illustrate the ideas above is being assembled. Its al-
ready developed components are based on the ”dynamic” construct of the Con-
current Clean language and a proof tool specifically designed for Concurrent
Clean.

2.8 Resource Control in Component-Based Systems

Author Jarle Hulaas (Computer Science Department, University of Geneva,
Switzerland), Walter Binder (CoCo Software Engineering GmbH, Vienna, Aus-
tria)
Contact e-mail Jarle.Hulaas@cui.unige.ch

In the approach followed in this position paper, we address various applica-
tions of resource control (RC), like security, Quality-of-Service, and billing, with
an emphasis on the prevention of Denial-of-Service (DoS) attacks. We assume
a multi-threaded component model with resource limits enforced by the (Java-
based) kernel at the level of individual components, in order to confine abnormal
behaviour. Using a general communication facility (e.g., method invocation, mes-
sage passing, tuple space, etc.), a component C (client, caller) may request a
service from another component S (service, callee). The problem addressed here
is:Which component shall be charged for the resources consumed by S while exe-
cuting a request on behalf of C, even when S and C do not trust each other, and
how can the communication model be kept simple while still allowing resource
allocation to be managed efficiently at the application level ?
As already noted by other researchers (e.g. [9]), the range of possible inter-

action patterns between C and S is wide: anonymous, asynchronous, callbacks
or one-to-many service invocations should be supported. We show that the most
secure and comprehensive solution is to resort to an abstraction called resource
container for explicitly transmitting resources between donators and consumers.



Resource Management for Safe Languages 11

Components may then freely decide when to switch from one available resource
container to another.
Resource exhaustion may either stem from malicious or accidental resource

over-use or from intentional resource revocation. Such an event, when occuring in
S, must be signalled to C even when executing asynchronous invocations. S must
also be able to ensure its own consistency and to terminate properly the request
being serviced. To this end, a callback-based notification mechanism is needed.
The API described in Section 2.5 is a good fit. We propose additionally a means
for identifying the specific invocation where the problem occurred to facilitate
the work of the callback; it is indeed a very delicate task for a notification routine
to execute properly in presence of violated resource constraints.
Finally, we notice that non-intrusive monitoring of resource consumption is

a valuable facility that is not supported by other approaches we are aware of.

2.9 Distributed and Multi-type Resource Management

Authors Luc Moreau (Department of Electronics and Computer Science, Uni-
versity of Southampton, UK ) and Christian Queinnec (LIP6, Paris, France)
Contact e-mail L.Moreau@ecs.soton.ac.uk

Dynamic code loading has popularized the idea of Internet servers able to recon-
figure themselves and to extend their capabilities by uploading code dynamically
— examples of such systems can be found in the mobile agent literature. The
full power of this paradigm shift can be achieved if untrusted code can be run in
a safe manner, and in particular if malicious code can be prevented from using
too many resources. This raises the problem of resource management, both for
the provider and the consumer of resources.
In previous work [7, 8], the authors introduced Quantum, a framework gener-

alizing Kornfeld and Hewitt’s group hierarchy [6] and providing a programmatic
interface for managing resources in a distributed setting. Quantum is based on
the notion of energy, an abstract notion denoting a quantity of resources, and
on groups acting as tanks of energy. Groups are organized along a hierarchical
structure. Groups sponsor computations that consume energy from the group
they are directly sponsored by. Two forms of notification are supported: exhaus-
tion of the energy contained in a group and termination of the computation
sponsored by a group. Additionally, Quantum provides a mechanism for pausing
and resuming hierarchies of computations. Notifications are made available to
the programmer and therefore can be arbitrary computations, whose resources
must also be managed: Quantum specifies how such notifications can be inte-
grated in a single framework. Our previous work focused on its formalization [7]
and its implementation in a shared memory [8].
Our present contribution is twofold:

1. the introduction of two different primitives related to distribution — migra-
tion and communications — and their semantics in terms of groups.

2. the support for multiple types of resources.



12 Grzegorz Czajkowski and Jan Vitek

Distributed Resource Management As far as distribution is concerned, we
distinguish the transfer of data between hosts from the transfer of groups between
hosts. The former can easily be expressed by send and receive primitives ‘à la’
π-calculus. The latter is reminiscent of remote procedure calls and migration of
mobile agents.
We introduce the primitive migrate(h, f), which requires two arguments: h

a host name and f a procedure without argument (a thunk). The effect of the
migrate primitive is displayed in Figure 1. The energy (less the cost of migration)
contained in the group that sponsors the migrate primitive is transferred to a
newly created remote group. We require migrate to be executed in a group that
sponsors only one thread.
When a remote group detects the termination of the computation it sponsors,

its energy (less the cost of the return) is transferred back to its parent group.
Exhaustion in the remote group triggers an exhaustion notification in the parent
group; in turn, the latter notification triggers an exhaustion notification in its
parent group, which may be able to transfer energy through the use of the awake
primitive, according to the handler programmed by the user.

Migration

migrate(Host2,f)

f()

Host1 Host2

Host2Host1

group1 e

group1 0 group2 e − Km

Termination

Host1 Host2

Host1 Host2

group1 0 e

e−Kr

group2

group1

Exhaustion

t

t

Host1

Host1 Host2

Host2

0

awake(group2)

0

0

group1

group1

group2

group2

0

Fig. 1. Migration, Return from Migration: (a) Termination — (b) Exhaustion

Management of Multiple Resources While our previous work mainly fo-
cused on processor time, our set of primitives is able to address other kinds of
energies. From an energy system implementor’s viewpoint, there are only three
primitive operations that deal with energy tanks. These operations specify how
energy is

1. merged when a subgroup terminates and gives its energy back to its parent,
2. consumed while a group performs some work (a descriptor tells how much
is consumed) and

3. split between the creating and created groups (a descriptor details the split).

This model allows the user to create his own types of energies and have the same
machinery take care of these energies.



Resource Management for Safe Languages 13

3 Final Session

In the final session a list of open or not yet satisfactorily solved problems related
to resource management for safe languages was created. We have not found
answers to them but the list itself is quite interesting. It is reproduced here in
more or less verbatim form:
Languages vs operating systems?
The entity: thread, isolate, process?
Flexible consumer groupings/hierarchies
Economics/trading (trade disk space for network bandwidth, etc.)
Minimal resources, how to find granularity
Granularity/units
Observing vs controlling
Primitive/basic/minimal complete set of resources
Higher level abstractions vs low-level APIs
Different views of a resource
Synchrony vs Asynchrony
Shared OS resource overhead
Revocation/dynamic behavior
Sharing and termination
Security/compatibility with access control
Resource-aware applications/cost of being resource aware
Enforcing cooperation
Reservations/price prediction
Accuracy vs efficiency
Platform independence
Who’s to blame/charge
Real time issues
Reclamation-when? correct? delay
Resource policies
Scalability
Transactional behavior
Extensibility vs Portability vs Efficiency
Simplicity
Useful and complete minimum set of resources
Taxonomy: renewable vs revocable

4 Workshop Conclusions

The participant concluded that it was a very useful meeting, although still there
are more questions than answers. Perhaps a follow-up workshop will be organized
in conjunction with ECOOP’03, and hopefully some of the issues will have been
addressed by then. Certainly, this area does not suffer from the lack of interest!



14 Grzegorz Czajkowski and Jan Vitek

References

[1] Java Community Process. JSR-121: Application Isolation API Specification.
http://jcp.org/jsr/detail/121.jsp.

[2] Walter Binder, Jarle Hulaas, and Alex Villazón. Resource control in J-SEAL2.
Technical Report Cahier du CUI No. 124, University of Geneva, October 2000.
ftp://cui.unige.ch/pub/tios/papers/TR-124-2000.pdf.

[3] Walter Binder, Jarle Hulaas, Alex Villazón, and Rory Vidal. Portable resource
control in Java: The J-SEAL2 approach. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA-2001), Tampa
Bay, Florida, USA, October 2001.

[4] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A resource accounting
interface for Java. In Proceedings of the 13th Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA-98), volume 33, 10
of ACM SIGPLAN Notices, pages 21–35, New York, USA, October 18–22 1998.
ACM Press.

[5] Alex Villazón and Walter Binder. Portable resource reification in Java-based
mobile agent systems. In Fifth IEEE International Conference on Mobile Agents
(MA-2001), Atlanta, Georgia, USA, December 2001.

[6] William A. Kornfeld and Carl E. Hewitt. The Scientific Community Metaphor.
IEEE Trans. on Systems, Man, and Cybernetics, pages 24–33, January 1981.

[7] Luc Moreau and Christian Queinnec. Design and Semantics of Quantum: a
Language to Control Resource Consumption in Distributed Computing. In
Usenix Conference on Domain-Specific Languages (DSL’97), pages 183–197,
Santa-Barbara, California, October 1997.

[8] Luc Moreau and Christian Queinnec. Distributed Computations Driven by Re-
source Consumption. In IEEE International Conference on Computer Languages
(ICCL’98), pages 68–77, Chicago, Illinois, May 1998.

[9] G. Banga, P. Druschel, and J. Mogul. Resource containers: a new facility for
resource management in server systems. In In Proceedings of the 3rd USENIX
Symposium on Operating system design and implementation, Feb. 1999.

[10] Walter Binder. J-SEAL2 – A secure high-performance mobile agent system. In
IAT’99 Workshop on Agents in Electronic Commerce, Hong Kong, December
1999.

[11] Nicolas Le Sommer and Frederic Guidec. A Contract-Based Approach of
Resource-Constrained Software Deployment. In J. van Leeuwen G. Goos, J. Hart-
manis, editor, Proceedings of the First International IFIP/ACM Working Confer-
ence on Component Deployment (CD’2002, Berlin, Germany), number 2370 in
Lecture Notes in Computer Science, pages 15–30. Springer, June 2002.

[12] Nicolas Le Sommer and Frederic Guidec. JAMUS: Java Accommoda-
tion of Mobile Untrusted Software. In 4th EurOpen/USENIX Confer-
ence (NordU’2002, Helsinki, Finland), February 2002. http://www.univ-
ubs.fr/valoria/Orcade/RASC/Publications/NordU2002.pdf.

ftp://cui.unige.ch/pub/tios/papers/TR-124-2000.pdf

	Workshop Overview
	Position Paper Summaries
	Creating a Resource-aware JDK
	Scoped Memory
	Resource Accounting in a J2ME Environment
	JRAF - The Java Resource Accounting Facility
	Resource Consumption Interfaces for Java Application Programming - A Proposal
	Towards Resource Consumption Accounting and Control in Java: A Practical Experience
	Safe Mobile Code - CPPCC: Certified Proved-Property-Carrying Code
	Resource Control in Component-Based Systems
	Distributed and Multi-type Resource Management

	Final Session
	Workshop Conclusions

