
Breakable Terms1

Tudományos Diákköri Dolgozat

Bárány Vince

témavezetô: Csörnyei Zoltán

ELTE TTK Általános Számítástudományi Tanszék

2002 December 2.

1Partially supported by OTKA T037742



2



Contents

1 Introduction 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Breakability in λ-calculus 13
2.1 How solvable is a term? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 The minimal solvability number . . . . . . . . . . . . . . . . . . . 14
2.2 Breakable terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Breakability and the term formation rules . . . . . . . . . . . . . . 18
2.2.2 Breaking out the inner-most variable . . . . . . . . . . . . . . . . . 19
2.2.3 Towards generalizing breakability . . . . . . . . . . . . . . . . . . 21

3 Conclusion 23
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3



4 CONTENTS



Chapter 1

Introduction

5



6 CHAPTER 1. INTRODUCTION

1.1 Introduction

λ-calculus is one of the simplest formalisms imaginable, which is also suitable to represent
computation as we know it.Solvabilityof λ-terms is a central notion related to the seman-
tics of such representations, and the model theory ofλ-calculus: it is proposed to capture
exactly the "meaningful" terms; and it has a very interesting history:

After the foundation ofλ-calculus by Alonzo Church his student Kleene showed that
of the total numerical functions exactly the recursive functions can beλ-definedover the
Church numerals. Later he also showed that of the partial numerical functions exactly
the partial recursive functions can beλ-defined. In his construction, the natural numbers
were again represented by the Church numerals, while terms without anormal formwere
taken to represent the undefined. Kleene’s construction was implicitly built on the notion
of solvability, which was defined only more than three decades later by H. P. Barendregt.

In 1971 Barendregt ([Bar71]) and Wadsworth independently arrived at the same con-
cept using different approaches. Barendregt’s semantic notion of solvability was proved
to be equivalent to Wadsworth’s syntactic definition of having ahead normal formin λK-
calculus, and to having a normal form inλI -calculus, thus closing the circle. But the role
of solvability in Kleene’s representation1 has remained uncovered.

So the unsolvables were shown to be adequate representations of the undefined, when
λ-defining the partial recursive functions. This already suggest that the unsolvable terms
could map to the bottom element of an appropriate semantic domain ofλ-calculus. In
deed, the Böhm tree model is one such model as proven by famous results as thegener-
icity lemma, the consistent identifiability of all unsolvable terms and the fact that this is a
maximal such set. These facts justify Barendregt’s proposal to equate meaninglessness of
λ-terms with unsolvability.

Motivated by these results joint efforts were made in the 1990’s by Ariola, Kennaway,
Klop, van Oostrom, Sleep and de Vries to grasp a similar notion of meaninglessness in the
more general setting of infinitary term rewriting system. (For reference see [AKKSV94],
[KKSV95], [KOV99]). Independently Kuper studied solvability in typed lambda-calculi.
(See [Kup94], [Kup95], and [Kup97].)

Taking another path, in my investigations I have been considering possible refinements
of the notion of solvability. In this paper we will look at one possible refinement, which I
think is particularly interesting because it partitions solvable terms in just two classes. Thus
we will define and study a subset of solvable terms, which I have collectively baptized
breakable. We will show that breakability is an undecidable property of terms, we will
investigate several examples making a few observations and giving necessary and sufficient
conditions, but the full syntactic characterization of breakability remains an open problem.

1 For a detailed representation of the (partial) recursive functions using Turing’s idea in theλK-calculus and
using Kleene’s original method in theλI -calculus the reader should consult [Bar84] chapters 8 and 9 respectively,
while [Bar92] presents a related and very general result of Statman.
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1.2 Preliminaries

We assume the reader is familiar withλ-calculi and basic concepts of the theory of recursive
functions. A good introduction to the former is [HS86], while [Bar84] is an indispensable
reference on the subject. For the most up to date and thorough presentation of TRSs the
reader should turn to [Ter02], which also contains an introduction toλ-calculus. [Rog67]
is the usual reference on recursive functions.

In the sequel we give a short overview of the concepts and some "well known" results
(without proofs) which we will be using throughout the text.

Let us first formulate some of the basic definitions and fundamental results ofλ-calculus.

Basics

Definition 1.2.1. λK(λI ) -terms

1. x∈Var =⇒ x∈ ΛK(ΛI )

2. M,N ∈ ΛK(ΛI ) =⇒MN ∈ ΛK(ΛI )

3. (a) x∈Var,M ∈ ΛK =⇒ λx.M ∈ ΛK

(b) x∈Var,M ∈ ΛI ,x∈ FV(M) =⇒ λx.M ∈ ΛI

In the following and throughout this thesisM,N,L,P,Q will denoteλK- or λI -terms,
depending on the context.

Definition 1.2.2. (Substitution)

1. x[x := M]≡M

2. y[x := M]≡ y (x 6≡ y)

3. NL[x := M]≡ N[x := M]L[x := M]

4. (λx.N)[y := M]≡

 λx.N (x≡ y)
λx.N[y := M] (x 6≡ y∧x 6∈ FV(M))
λz.N[x := z][y := M] (x 6≡ y∧x∈ FV(M)∧z f resh)

Definition 1.2.3. (Conversion, reduction)

1. λx.M →α λy.M[x := y] (y 6∈ FV(M))

2. (λx.M)N→β M[x := N]

3. λx.Mx→η M

We consider terms as syntactically equivalent (denoted by≡) if they areα-convertible,
and equal (denoted by=) if they areαβ-convertible. This constitutes an intensional cal-
culus, which can be made extensional by addingη-convertibility to equality. This equality
will be denoted by=η. From now on one-step and many-stepβ-reduction is simply denoted
by→ and� respectively.

Remark 1.2.4. (The variable convention)
We will always assume that all variables bound in a term in question are unique, i.e. differ-
ent from all other bound as well as free variables of some terms in the same context. (This
can always be achieved byα-conversion.)

Definition 1.2.5. Normal forms

1. A termM is in normal form (nf) iff it does not contain anyβ(ηδ)-redexes.
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2. A termM is in head normal form (hnf) iff it is of the form M ≡ λ~x.y~N, where both
~x and~N can be empty, andy may or may not be a component of~x.

3. A termM is in weak head normal form (whnf) iff it is of the form M ≡ λx.M′ or
M ≡ y~M.

Remark 1.2.6. In his thesis Kuper observed that a termM is in hnf if it is in whnf and in
case it is of the formλx.M′, thenM′ is in hnf as well. He then defined a fourth normal form
as follows: a termM is in fourth normal form (fnf) iff it is of the form M ≡ λx.M′ where
M′ is arbitrary orM ≡ y~M where every component of~M is in fnf as well. (See [Kup94]
section 6.)

Let N F ,H N F ,W H N F ,F N F denote the sets of terms in nf, hnf, whnf, fnf, re-
spectively. It is easy to see that all of these sets are closed under reduction. We say that a
term has a certain normal form if it can be reduced to a term in that normal form. It can be
easily verified (usingCR ) that this is equivalent to the condition that it can be converted
to a term in that normal form. We will denote the set of terms convertible to one of these
normal forms byN F =

,H N F =
,W H N F =

,F N F =, respectively.

Theorem 1.2.7. (Church-Rosser theorem)
TheλK(I)-calculus is confluent, i.e.∀M,N ∈ ΛK(I) : M = N =⇒∃L ∈ ΛK(I) : M � L � N.

Remark 1.2.8.
Confluent rewriting systems are also said to have theChurch-Rosser property (CR ).

Every confluent rewriting system has the unique normal forms property, i.e. no two
normal forms are convertible. This implies the following

Theorem 1.2.9. (Consistency)
Any confluent rewriting system, with at least two distinct normal forms is consistent. Con-
sequently theλ-calculus is consistent.

Theorem 1.2.10.(Scott’s / Rice’s theorem – cf. [Bar84] 6.6)

1. A ,B ⊂ Λ non empty, closed under equality=⇒ A andB are not recursively sepa-
rable.

2. A ⊂ Λ non trivial (i.e. A 6= /0,Λ), closed under equality=⇒ A is not recursive.

Contexts

Contexts are "special terms" with exactly one occurrence of the special symbol[] (the hole),
occurring anywhere where a variable is allowed. Formally:

Definition 1.2.11. Contexts are defined recursively as follows

1. [] ∈ C

2. M ∈ Λ,C[] ∈ C =⇒M(C[]),(C[])M ∈ C

3. x∈Var,C[] ∈ C =⇒ λx.(C[]) ∈ C

The result of substituting a termM into a contextC[] is a term obtained by replacing the
special symbol[] by M in C[], and is denoted byC[M]. Note that free variable occurrences
in M may become bound inC[M].

The composition of contextsC1[] andC2[] is defined as the context obtained by replac-
ing the hole ofC1[] by the contextC2[], and is denoted byC1[C2[]].
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Remark 1.2.12. We can extendαβ-conversion to contexts, but care has to be taken to
preserve convertibility of terms after substitution, i.eM = N∧C[] = D[] =⇒C[M] = D[N].
For this does not hold in general due to the fact that free variables ofM andN can be bound
by substitution intoC[] andD[]. For example:I = (λx.x[x])I 6= [x] = x so (λx.x[])I and
[] should not be convertible. We can avoid such situations by prohibiting reduction steps
which would modify the set of abstractions which contain[] in their scope. For example
(λxy.x)[]→ λy.[] is forbidden, but(λx.x)[]→ [] is not. It is clear that conversion under these
restrictions is an equivalence relation.

Contexts, as defined above, are also referred to as one-hole contexts. We can define
multi-hole contexts in a similar way: possibly having more, distinguished (e.g. numbered)
holes. Substitution then requires the same number of terms, which replace the holes in
some well defined manner (e.g. according to the numbering of the holes, or just "from left
to right"), and the resulting term is denoted byC[~M].

Solvability

Definition 1.2.13. Solvability in λ-calculi
A termM is solvableiff. ∃~x∈ ~Var,~N ∈~Λ : (λ~x.M)~N = I .
We denote the set of solvable and unsolvable terms byS andU respectively.

Theorem 1.2.14.(Solvability and the normal forms)

1. (Barendregt) In theλI-calculus: a term is solvable iff it has a nf.

2. (Wadsworth) In theλK-calculus: a term is solvable iff it has a hnf.

Theorem 1.2.15.(Genericity Lemma) In theλK-calculus
∀M ∈U∀ context C[] : C[M] = L ∈N F =⇒∀N ∈ Λ : C[N] = L.

Böhm trees

In [Bar84] ch.10. Böhm trees are defined recursively as follows:

Definition 1.2.16.
TheBöhm tree of a termM (BT(M)) is defined as

BT(M) =


⊥ i f M is unsolvable

λ~x.y i f M = λ~x.yM1 . . .Mn

/. . .\
BT(M1) BT(Mn)

Böhm like trees are trees labeled by{⊥}∪ {λ~x.y|~x,y variables}. B denotes the set of
Böhm like trees,BI andBK denote the sets of Böhm trees ofλIandλKterms respectively.

Remark 1.2.17.
Böhm trees can be defined equivalently as normal forms of an extended transfinite calculus
obtained by adjoining the symbol⊥ (bottom) to the alphabet, which can appear everywhere
in terms in place of variables, and introducing a new reduction rule, called the⊥-rule as

M →⊥ ⊥ (∀M ∈U)
λx.⊥ →⊥ ⊥
⊥M →⊥ ⊥ (∀M ∈ Λ)

Terms of this extended transfinite system are called Böhm terms, the reduction (byαβ(η)
and⊥ rules) Böhm reduction, and the normal forms are exactly the Böhm trees as defined
above.
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Definition 1.2.18. BT(M)vBT(N) iff BT(N) agrees withBT(M) in every position where
BT(M) is defined and is not⊥.

Proposition 1.2.19. (B,v) is a coherent algebraic cpo, and compact trees are exactly the
finite ones.

Proposition 1.2.20. (Böhm tree model ofλ-calculus)

M =β N =⇒ BT(M) = BT(N)
M,N ∈N F ,M 6≡ N =⇒ BT(M) 6= BT(N)

HenceBK is a non-trivial model for theλKcalculus.

Finite Böhm like trees are Böhm trees, so every Böhm like tree can be approximated to
any finite depth by a Böhm tree. We will use the following notations.

Definition 1.2.21.

• Let B be a finite Böhm (like) tree. ThenM(B) is the term obtained fromB by
replacing every⊥ by in the tree, and reading it as a term.

• If B is an infinite Böhm like tree, then letB(k) be the Böhm tree obtained fromB
by relabeling every note at depthk by⊥ and letM(k)(B)≡M(B(k)).

• For everyN ∈Λ defineN(k) ≡M(k)(BT(N)) andN[k] to be the term obtained fromN
by performing outermost head reductions on redexes not included in any unsolvable
subterms, until no redexes remain at depth less thank, hence

N(k) v N[k] � N
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1.3 Notations
Sets
N { 0, 1, 2, . . . }
C the set of all contexts
Λ,ΛK the set of allλK-terms
ΛI the set of allλI -terms
Λ0 the set of closedλ-terms
N F terms in normal form
W N weakly normalizing terms
S solvable (inλ-calculus) or usable (generalized) terms
U unsolvable (inλ-calculus) or unusable (generalized) terms
B the set of breakable terms (Definition 2.2.1)
A denotes the complement (depending on context) of the setA

Terms
M~N is a shorthand notation forMN1 . . .Nn

(n≥ 1 is assumed unless explicitely stated otherwise)
λ~x.M is a shorthand notation forλx1 . . .xn.M

(againn≥ 1 is assumed unless stated otherwise)
FkM F0M ≡M;Fk+1M ≡ F(FkM) (taken from [Bar84] 2.1.9)
FM˜k FM˜0 ≡ F ;FM˜k+1 ≡ FM˜kM (taken from [Bar84] 2.1.9)
FV(M) set of free variables inM
BT(M) Böhm tree ofM
M(k) the term associated with thek-initial segment ofBT(M)
M[k] approximation ofBT(M) up to depthk by reduction fromM

(see Definition 1.2.21)

Combinators
I λx.x
K λxy.x
S λxyz.xz(yz)
T λxy.x≡ K
F λxy.y≡ λyx.x
Un

k λx1 . . .xn.xk

Y some fixed point combinator
D λx.xx
B λxyz.x(yz)

DD

Properties
CR the Church-Rosser property, i.e. confluence
NF the normal forms property, i.e.M = N,N ∈N F =⇒M � N

i.e. ~M R~N =⇒∀C[] : C[~M]RC[~N]
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2.1 How solvable is a term?

Recall that aλ-term M is solvable if it has a closureλx1 . . .xk.M and there are terms
N1 . . .Nn (n≥ 0) such that

(λx1 . . .xk.M) N1 . . .Nn = I

or equivalently ifM has a head normal form, i.e.

M = λu1 . . .ul .vP1 . . .Pt

Solvability is a candidate formalization of ’meaningfulness’, however this categorization
of terms can be further refined and elaborated as many interesting questions concerning the
solvability of terms can be asked.

Our current question of interest concerns some sort of quantitative measure of the solv-
ability of terms. We are trying to give an answer in terms of the minimal number of argu-
ments that have to be applied to a given termM (or one of its closures) to obtainI . This
approach will turn out to be fruitful, yielding us the definition of breakability.

Let us first give a formal definition of the minimal solvability number of a term.

2.1.1 The minimal solvability number

Definition 2.1.1. let M be aλ-term, then

S(M) = {n∈ N|∃~x,~N = N1 . . .Nn : (λ~x.M)~N = I}
m(M) = min(S(M)∪{∞}) is its minimal solvability number

Remark 2.1.2. It is obvious thatn∈ S(M) =⇒ n+1∈ S(M) and that
m(M) < ∞ ⇐⇒ M solvable.

Example 2.1.3.The standard combinators

i) m(x) = m(I) = 0
ii) m(F) = m(D) = m(Y) = 1

iii ) m(K) = m(S) = 2
iv) m( ) = ∞

Proof
i), iv) Obvious.
ii) FD = DF = I , butF,D 6= I ; Y(KI ) = KI (Y(KI )) = I , butY 6= I
iii) KI = I andSKI = I , but K can not be solved with just one argument (because it ig-
nores a second), nor canS be solved with less then two (because it is a triple abstraction).

An immediate consequence of our definition is the following

Proposition 2.1.4. M = N =⇒m(M) = m(N)

Proof
SinceM = N =⇒ (λ~x.M)~P = (λ~x.N)~P.

This also means that we can restrict our investigations of the minimal solvability num-
ber to terms in head normal form, since unsolvable terms are uninteresting from this point
of view, and solvable terms have head normal forms which possess the same minimal solv-
ability number. After making a few observations, we will turn our attention towards the
relationship between the minimal solvability number of a term and the structure of its head
normal form.
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Proposition 2.1.5. ∀M ∈ Λ0 ∀x∈Var : m(λx.M) = m(M)+1

Proof
Since M is closed,(λ~yx.M)~YX~N = M~N = (λ~y.M)~Y~N, which implies thatS(λx.M) =
S(M)+1 = {n+1|n∈ S(M)}, i.e. m(λx.M) = m(M)+1.

Corollary 2.1.6. ∀M ∈ Λ0 : m(KM) = m(M)+1

Proof
BecauseKM → λx.M.

It is easy to show (see e.g. [Bar84]), that ifM[~x := ~P] is solvable, then so isM. Using
our notation we can be a little more specific.

Proposition 2.1.7. m(M)≤m(M[x := P])+1

Proof
(λ~y.M[x := P])~Q = I =⇒ (λx~y.M)P~Q = I
and we can conclude the result by definition.

Remark 2.1.8.
Applying the result multiple times we getm(M)≤m(M[~x := ~P])+ |~x|.

Definition 2.1.9. A head normal formλx1 . . .xn.y~N is head closediff y = xi for some
1≤ i ≤ n, otherwise it ishead free(n = 0 is allowed, in which case the head normal form
is automatically head free).

Remark 2.1.10. A closed head normal form is automatically head closed.

Lemma 2.1.11.xN1 . . .Nn 6= y ⇐⇒ n > 0 orx 6= y

Proof
Since reductions can only take place within individualNi-s.

Regarding the relationship between the structural complexity of a term and its minimal
solvability number, we can make the following simple observation.

Proposition 2.1.12. If a termM has a
i) head closed head normal formλx1 . . .xn.xi~N thenn−1≤m(M)≤ n
ii) head free head normal formλx1 . . .xn.y~N thenn≤m(M)≤ n+1
iii) in the special cases ofM ≡ x and M ≡ x~N we have thatm(x) = 0 andm(x~N) = 1
respectively.

Proof
i) (λx1 . . .xn.xiN1 . . .Nk)X1 . . .Xi−1Uk+1

k+1Xi+1 . . .Xn = Uk+1
k+1N′

1 . . .N′
k = I

=⇒m(M)≤ n
(λx1 . . .xn.N)X1 . . .Xn−2 = λxn−1xn.N′ 6= I
=⇒m(M)≥ n−1
ii) Immediate from i) by Lemma 2.1.11 and considering the closureλy.M of M which is a
head closed head normal form.
iii) The first case is obvious, the second follows with the help of Lemma 2.1.11.

Remark 2.1.13. Every solvable term has a huge set of trivial solutions as suggested by the
first part of i) in the proof, namely
(λx1 . . .xn.xiN1 . . .Nk)X1 . . .Xi−1Uk+1

k+1Xi+1 . . .Xn

whereXi are arbitrary terms; and a "canonical" trivial solution :
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(λx1 . . .xn.xiN1 . . .Nk) (1) . . . (i−1)U
k+1
k+1 (i+1) . . . (n)

Of course there might be other solutions ofn arguments in individual cases, but in general
not (as inλ~x.xi( ~x) for example).

As the Examples in 2.1.3 show, this proposition cannot be strengthened but it gives rise
to a refined categorization of solvable terms.

2.2 Breakable terms

Definition 2.2.1. (Breakable terms)
A closed termM having head normal formλx1 . . .xn.xi~N is breakable iff m(M) = n−1 and
unbreakableotherwise. A general term is breakable iff it has a closure which is breakable,
otherwise it is unbreakable. The set of breakable terms is denoted byB.

Remark 2.2.2. on the definition

i) In the light of Remark 2.1.13, another way to put this is as follows: a term is break-
able if and only if it has a "less-than-trivial" solution (one consisting of less argu-
ments than there are top-most abstractions in the term).

ii) Note that all breakable terms are solvable.

iii) Note that due to Proposition 2.1.4m(M) does not depend on the particular head nor-
mal form. From Proposition 2.1.4 it also follows that ifM = N thenM is breakable
if and only if N is breakable.

iv) From iii) and the fact that breakability is non-trivial, it follows by Rice’s theorem
(Theorem 1.2.10) that breakability is undecidable.

Example 2.2.3.Breakability of the standard combinators
i) I ,S,F,B ∈ B

ii) K ,D ∈ S \B
iii) Un

k ∈ B ⇐⇒ n = k
iv) 6∈ B

Let us look at two other simple, but warning examples.

Example 2.2.4.
i) λxz.x(xz) ∈ B

ii) λxz.x(zx) 6∈ B

Proof
i) (λxz.x(xz))(I) = λz.I(Iz) = λz.z= I
ii)

λxz.x(zx) ∈ B ⇐⇒
∃P : λz.P(zP) = I =⇒
∃P∀Q : P(QP) = Q =⇒
(P(IP) = I and Px= P(KxP) = Kx) =⇒
I = P(IP) = K(IP) = KP

which is a contradiction, becausem(K) = 2 (see Example 2.1.3).

Proposition 2.2.5. In all of the following cases we allow~x, but not~N to be empty:
i) λ~xz.z is breakable

ii) λ~xz.z~N is unbreakable
iii) λ~xz.y~N is unbreakable ify 6= z 6∈ FV(~N)
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Proof
Cases i) and iii) are trivial, ii) follows from Lemma 2.1.11.

Corollary 2.2.6. Every fixed-point combinatorY is unbreakable.

Proof
In the next Lemma we will show that every fixed point combinator reduces to a form
λ f . fY∗ which proves our claim using Proposition 2.2.5 ii).

Lemma 2.2.7. ∀F ∈ Λ : YF = F(YF) =⇒ Y � λ f . fY∗

Proof
Y is solvable, in factm(Y)= 1 as seen in Example 2.1.3, so it is of the formY = λx1 . . .xn.yY1 . . .Yk.
We see, that in the above equation even� holds. Moreover 1≤ n≤ 2 by Proposition
2.1.12.
First we show, thatn = 1 andy≡ x1.
We know byCR thatYF andF(YF) have a common reductX. TakeF of order zero ( for
example), that isF 6� λx.F ′. ThenF(YF) � X =⇒ X ≡ FX′, and soYF � FX′, which
is – being F of order zero – hereditarily an application term.
Now supposen = 2. Then sinceYF � λx2. . . ., which is hereditarily an abstraction term,
we would have byCR that it has a reduct which is an application term, which is a contra-
diction.
Son= 1 andY � λx1.yY1 . . .Yk. Suppose now, thaty 6≡ x1. ThenYF = yY′1 . . .Y′

k = F(YF)
and again byCR we have a contradiction.
This proves, thatY � λ f . fY1 . . .Yk. By a similar argument we will now show thatk = 1.
We have thatYF = FY′

1 . . .Y′
k = F(YF) for all F . Now assuming thatF is of order zero, so

it cannot "eat" any of its arguments, we get that in every reduct of the second termF hask
arguments while in every reduct of the third term it has one. Then byCR we get thatk = 1.

We can further generalize this result as follows.

Theorem 2.2.8. ∀Y f ixed point combinator: Y � λ f . f k(Y(k)) where k is an arbitrary
natural number.

Proof
We have seen byCR and the solvability ofY thatY � λ f . fY∗. Now denoteY∗ by Y(1).
Observing thatY(k)[ f := F ] = YF implies thatY(k) is solvable (takeF ≡ KI ) and repeat-
ing the above argument usingCR we can proveY(k) � fY(k+1) andY(k+1)[ f := F ] = YF
again, hence we can prove the claim by induction for everyk∈ N.

Corollary 2.2.9.
All fixed point combinators have the same infinite Böhm tree1 determined by the following
recursive formula:

BT(Y) = λ f . f (BT(Y))

This means that all fixed point combinators can be consistently identified (see also
[Bar84] theorem 19.3.4), because the Böhm tree model ([Bar84] section 18.3) is one such
model in which they are represented by the same object.

1 Note thatBD(B(BD)B) has the same Böhm tree but is not a fixed point combinator (see [Sta93])
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In the remark following Definition 2.2.1, we noted that equal (i.e.β-convertible) terms
are either both breakable or both unbreakable. We have just proven that all fixed point
combinators are unbreakable, while our efforts have lead to proving that they all share the
same Böhm tree (Corollary 2.2.6 and 2.2.9). A simple consequence of Proposition 18.3.4
of [Bar84] is that in general the following connection holds:

Proposition 2.2.10.Let M, N be arbitrary terms. Then
BT(M) = BT(N) =⇒ (M ∈ B ⇐⇒ N ∈ B).

Proof
BT(M) = BT(N) implies by Proposition 18.3.4 of [Bar84] that

BT((λ~x.M)P1 . . .Pk) = BT(M) ·BT(P1) · . . . ·BT(Pk) = BT((λ~x.N)P1 . . .Pk)

for every~x and~P, hence

(λ~x.M)~P = λz.z ⇐⇒
BT((λ~x.M)~P) = BT(λz.z) = λz.z ⇐⇒
BT((λ~x.N)~P) = BT(λz.z) = λz.z ⇐⇒
(λ~x.N)~P = λz.z

and fromBT(M) = BT(N) we also know that any head normal forms ofM andN have the
same leading abstractions, and the result follows by definition.

2.2.1 Breakability and the term formation rules

With respect to substitution, application and abstraction, the following closure properties
are known to hold for solvable and unsolvable terms:

M[x := P] is solvable =⇒M is solvable
M is unsolvable =⇒∀N ∈ Λ : MN is unsolvable
M is solvable ⇐⇒ ∀x : λx.M is solvable

Below we will investigate the relationship between breakability and the term formation
rules obtaining similar results.

Proposition 2.2.11.M[x := P] is breakable=⇒ M is breakable

Proof
The casex 6∈ FV(M) is void, otherwise use Proposition 2.1.7.

Examining the behavior of breakability in connection with application, we find the
following discouraging examples.

Example 2.2.12.(Breakability and application)
I breakable, I breakable II = I breakable
λxz.xKz breakable, I breakable (λxz.xKz)I = λz.Kz= K unbreakable
F breakable, K unbreakable FK = I breakable
I breakable, K unbreakable IK = K unbreakable
K unbreakable, I breakable KI = F breakable
KK unbreakable, I breakable KKI = K unbreakable
D unbreakable, K unbreakable DK = KK unbreakable

All terms in the above examples are closed. For the last case we only have an example with
an open term:
(λx.y) unbreakable, unbreakable (λx.y) = y breakable

Conjectrure 2.2.13. For all M, N closed unbreakable terms MN is unbreakable as well.
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Remark 2.2.14. If it were the case, as I conjecture, that the setU0 of closed unbreakable
terms is closed under application, thenU0 would be a set of terms closed under term
formation rules (see Proposition 2.2.17). One could then ask to find a sufficiently simple
or better yet a minimal generator set forU0 under the term formation rules. Of courseU0

and hence all of its generator sets are not even recursively enumerable.

As hinted by the definition breakability is in some sense all about "keeping the inner-
most abstraction" when solving a term. This is expressed by the next three propositions.

Proposition 2.2.15.Let M ≡ yM1 . . .Mk.
Then for any permutation(i1, . . . , in) of {1, . . . ,n}:
λx1 . . .xnz.M is breakable⇐⇒ λxi1 . . .xinz.M is breakable.

Proof
Since permutations can be inverted, it is sufficient to prove only one direction of implica-
tion, e.g. "=⇒".
Let us first note thatλx1 . . .xnz.M is closed⇐⇒ λxi1 . . .xinz.M is closed. According to this
we consider two cases:
Let us assume first thatλx1 . . .xnz.M is closed. Then by Definition 2.2.1 it is breakable
iff there are termsN1, . . . ,Nn such that(λx1 . . .xnz.M)N1 . . .Nn = I . But now (assuming
by the variable convention, thatx1, . . . ,xn 6∈ FV(N1 . . .Nn)) (λxi1 . . .xinz.M)Ni1 . . .Nin =
(λx1 . . .xnz.M)N1 . . .Nn = I , i.e. (λxi1 . . .xinz.M) is breakable as well.
If the two terms are not closed, then by definition they are breakable iff they have a break-
able closure. So letλ~yx1 . . .xnz.M be a breakable closure ofλx1 . . .xnz.M. Then using the
first case we conclude thatλ~yxi1 . . .xinz.M and thusλxi1 . . .xinz.M is breakable as well.

Remark 2.2.16.The inner-most variablezmust not move, otherwise the proposition would
not hold. For example:K ≡ λxy.x is unbreakable whileF ≡ λyx.x is breakable.

Proposition 2.2.17.For any termM ∈ Λ0 :
M is breakable⇐⇒ λx.M is breakable

Proof
By Definition 2.2.1 and Proposition 2.1.5.

In case of abstraction terms the condition thatM be closed can be dropped.

Proposition 2.2.18.For any termM ∈ Λ :
λy.M is breakable⇐⇒ λxy.M is breakable

Proof
λy.M ∈ B ⇐⇒ (by definition)
∃~u : λ~uy.M ∈ Λ0∩B ⇐⇒ (by Proposition 2.2.17)
∃~u : λx~uy.M ∈ Λ0∩B ⇐⇒ (by Proposition 2.2.15)
∃~u : λ~uxy.M ∈ Λ0∩B ⇐⇒ (by definition)
λxy.M ∈ B.

2.2.2 Breaking out the inner-most variable

Solvable terms in general have a head normal formλ~x.y~N where both~x and~N can be empty.
We have seen that in case~x is not empty, the breakability of the term depends only on the
inner-most abstractionλxn.y~N. This observation leads to the following definition.
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Definition 2.2.19.
We say that a term in hnfλ~x.y~N is in application head normal form (ahnf) iff ~x is empty,
i.e. there are no initial abstractions, i.e. it is of the formy~N.
An application term in ahnfy~N is breakable for (the variable) z iff λz.y~N is breakable.
We denote the set of ahnf terms breakable forz by Bz.

Example 2.2.20.
xy is breakable fory but not forx nor any other variable
x(yx) is not breakable for any variable (Example 2.2.4 proves this fory)
xyzis breakable fory andz only

Using this new notation, we can summarize our results in the following theorem.

Theorem 2.2.21.

1. An abstraction term M (in head normal form)
M ≡ λ~xz.y~N ∈ B ⇐⇒
λz.y~N ∈ B ⇐⇒
y~N ∈ Bz ⇐⇒
∃~P : (y~N)[~y := ~P] � z (where{~y}= FV(y~N)−{z})

2. An application term M (in head normal form)
M ≡ y~N ∈ B ⇐⇒
∃z∈Var : y~N ∈ Bz ⇐⇒
∃z∈Var : λz.y~N ∈ B

The examples in 2.2.4 illustrate that breakability is not a trivial notion at all. For ex-
ample to "break" the termλxz.x(xxz)x, we have to find an appropriate termX, such that
(λxz.x(xxz)x)X = λz.X(XXz)X = λz.z, i.e. X(XXz)X = z. This is very similar to the so
called Böhm-out technique used by Böhm to prove the separability of normal forms. The
Böhm-out technique is described in detail in [Bar84] section 10.3, here we will mention
only one result (Proposition 10.3.7 in [Bar84]) informally: an instance of any subtree of
the Böhm tree of a term can be obtained by an appropriate solving transformation (i.e. by
a sequence of substitutions and applications of variables). When "breaking" a term we
have to do something similar, for example to break the termλxz.x(xxz)x we have to sort
of "Böhm out" the one occurrence ofz appearing in the body of the term, but using more
restricted transformations.

In the sequel we are going to look at some more examples, but first we make a few
simple observations. The following definition is taken from [Bar84] 10.3.5.

Definition 2.2.22. A hnf M ≡ λ~x.y~N is calledhead original if y 6∈ FV(~N).

The advantage of a hnf being head original is that we can freely substitute any term
in its head variable, that is without consequences on any of its other subterms. This is
expressed by the following proposition.

Proposition 2.2.23.If an ahnfM≡ yN1 . . .Nn is head original and∃i : Ni ∈Bz, thenM ∈Bz.

This proposition follows from the next stronger statement.

Proposition 2.2.24.Let M ≡ yN1 . . .Nn. If ∃i : (Ni ∈ Bz∧y 6∈ FV(Ni), thenM ∈ Bz.

Note that forM ≡ yN1 . . .Nn to be breakable forz it is not necessary nor sufficient that
∃i : Ni ∈ Bz. In fact, the above proposition can be strengthen as follows:

Proposition 2.2.25. Let M ≡ yN1 . . .Nn. If ∃i : (Ni = λ~x.N′
i ∧N′

i ∈ Bz∧y 6∈ FV(Ni)), then
M ∈ Bz.
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Proof
Let FV(N′

i )\{z,~x}= {u1, . . . ,uk} andFV(N1 . . .Nn)\FV(N′
i ) = {v1, . . . ,vl}. Then by as-

sumption, there are terms~X,~U (we can also assume that they are closed) such thatN′
i [~u :=

~U ][~x :=~X] = (Ni [~u := ~U ])~X = z. LetV1, . . . ,Vl be arbitrary terms andY≡ λw1 . . .wn.wiX1 . . .Xm.
ThenM[~u := ~U ][~v :=~V][y :=Y] = YN′1 . . .N′

i−1(Ni [~u := ~U ])N′
i+1 . . .N′

n = (Ni [~u := ~U ])~X = z,
and soM ∈ Bz.

Head originality is of course a very strong condition. To break terms which are not head
original, we need more sophisticated techniques. Let us see some more intricate examples.

Example 2.2.26.
i) ∀∆ ∈ Λ0 : λxz.x∆(xz),λxz.x(xz)(x∆),λxz.x(xxz)∆ ∈ B

ii) λxz.x(xx)(zx),λxz.x(zz),λxz.x(xx)(zz),λxz.x(xz∆) 6∈ B

Proof
i) In the following [, ] denotes pairing, i.e.[U,V] = λ f . fUV
Let X = λv.[U,v], andU = U3

2. Then
(λxz.x∆(xz))X = λz.X∆′(Xz) = λz.[U,∆′][U,z] =
λz.[U,z]U∆′ = λz.UUz∆′ = λz.z
Let X = λv.[U,v], andU = λpqr.rF . Then
(λxz.x(xz)(x∆))X = λz.X(Xz)(X∆′) = λz.X[U,z][U,∆′] =
λz.[U, [U,z]][U∆′] = λz.[U,∆′]U [U,z] = λz.UU∆′[U,z] = λz.z
Let X = λuv.u[U,v], andU = U3

3. Then
(λxz.x(xxz)∆)X = λz.X(XXz)∆′ = λz.X(X[U,z])∆′ = λz.X[U,z][U,∆′] =
λz.[U,z][U, [U,∆′]] = λz.[U, [U,∆′]]Uz= λz.UU [U,∆′]z= λz.z
ii)

λxz.x(xx)(zx) ∈ B ⇐⇒
∃P∀Q : P(PP)(QP) = Q =⇒
I = P(PP)(IP) = P(PP)(KPP) = KP, contradiction

λxz.x(zz) ∈ B ⇐⇒
∃P∀Q : P(QQ) = Q =⇒
I = P(II ) = P(KI (KI )) = KI , contradiction

λxz.x(xx)(zz) ∈ B ⇐⇒
∃P∀Q : P(PP)(QQ) = Q =⇒
I = P(PP)(II ) = P(PP)(KI (KI )) = KI , contradiction

Example 2.2.27.x(xz∆) 6∈ Bz

Proof
Suppose thatM ≡ x(xz∆) is breakable forz by [x := X]. ThenX is solvable, i.e.X has
a hnf λu1 . . .un.v~N, which has to be head closed, meaningn > 0. It is easy to see, that if
n > 1 thenM[x := X]≡ λu2 . . .un.M′ 6= z. We have proved thatX = λu.u~N. Now substitut-
ing it into M we getM[x := X]≡ (λu.u~N)((λu.u~N)z∆′) = ((λu.u~N)z∆′)~N = z~N∆′~N 6= zby
Lemma 2.1.11, contradiction.

2.2.3 Towards generalizing breakability

So far we have been examining breakability through syntactical properties of terms. But
breakability is no less a semantical notion as solvability. As suggested by the previous
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examples, there is a correspondence between the breakability of a given ahnf for a given
variable and a particular instance of a class of problems. Another way to look at breakabil-
ity is the following:

M(≡ y~N) ∈ Bz ⇐⇒
∃~x,~P (|~x|= |~P|) : (λ~xz.M)~P = I ⇐⇒
∃~x,~P : (λz.(M[~x := ~P])) = I ⇐⇒
∃M∗ instance o f M: (λz.M∗)z= z ⇐⇒
∃λz.M∗ instance o fλz.M : (λz.M∗)z= z ⇐⇒
∃λz.M∗ instance o fλz.M : z is a f ixed point o fλz.M∗

There are different ways of generalizing this, giving the following classes of problems
(belowM∗ always denotes an instance ofM, i.e. M∗ = M[x := N] for somex andN):

• givenQ find anM s.t. MQ = Q
(trivial: takeM = I ; also note that ifM is closed,MQ = Q then∀Q∗ : MQ∗ = Q∗)

• givenQ find anM s.t. MP = P ⇐⇒ ∃Q∗ = P

• givenQ andM find an instanceM∗ s.t. M∗Q = Q

• givenQ andM find M∗ s.t. M∗P = P ⇐⇒ ∃Q∗ = P

Note that as viewed above, breakability is a special case of the last problem class, with
Q≡ z.

We are not going to address these problems in this paper, just mentioned them as inter-
esting questions for the curious mind.
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3.1 Summary

In this paper we have looked at one possible refinement of solvability inλ-calculus arriving
at the notion of breakability.

• We have proven basic results in connection with the term formation rules similar to
those known for solvability.

• We have presented several examples to illustrate the difficulties of "breaking" a term.

• We showed that no universal method exists to break every breakable term, as break-
ability is undecidable.

• The major open question remaining: is there a syntactic equivalent of breakability
similar to Wadsworth theorem equating solvable terms and terms having a head nor-
mal form? In other words is there recursive enumeration of breakable terms similar
to head reduction? This question is still to be answered.
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