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6 CHAPTER 1. INTRODUCTION

1.1 Introduction

A-calculus is one of the simplest formalisms imaginable, which is also suitable to represent
computation as we know iSolvabilityof A-terms is a central notion related to the seman-
tics of such representations, and the model theo-cdlculus: it is proposed to capture
exactly the "meaningful" terms; and it has a very interesting history:

After the foundation of\-calculus by Alonzo Church his student Kleene showed that
of the total numerical functions exactly the recursive functions cak-tefinedover the
Church numerals Later he also showed that of the partial numerical functions exactly
the partial recursive functions can hedefined. In his construction, the natural numbers
were again represented by the Church numerals, while terms withmarnzal formwere
taken to represent the undefined. Kleene’s construction was implicitly built on the notion
of solvability, which was defined only more than three decades later by H. P. Barendregt.

In 1971 Barendregt[([Bar71]) and Wadsworth independently arrived at the same con-
cept using different approaches. Barendregt's semantic notion of solvability was proved
to be equivalent to Wadsworth’s syntactic definition of havirtgead normal formn AK-
calculus, and to having a normal formAh-calculus, thus closing the circle. But the role
of solvability in Kleene’s representati&}‘nas remained uncovered.

So the unsolvables were shown to be adequate representations of the undefined, when
A-defining the partial recursive functions. This already suggest that the unsolvable terms
could map to the bottom element of an appropriate semantic domaircafculus. In
deed, the Béhm tree model is one such model as proven by famous resultsgas¢he
icity lemma the consistent identifiability of all unsolvable terms and the fact that this is a
maximal such set. These facts justify Barendregt's proposal to equate meaninglessness of
A-terms with unsolvability.

Motivated by these results joint efforts were made in the 1990’s by Ariola, Kennaway,
Klop, van Oostrom, Sleep and de Vries to grasp a similar notion of meaninglessness in the
more general setting of infinitary term rewriting system. (For reference_see [AKKSV94],
[KKSV95], [KOV99]). Independently Kuper studied solvability in typed lambda-calculi.
(See|[Kup94],/[Kup9ph], and [Kup97].)

Taking another path, in my investigations | have been considering possible refinements
of the notion of solvability. In this paper we will look at one possible refinement, which |
think is particularly interesting because it partitions solvable terms in just two classes. Thus
we will define and study a subset of solvable terms, which | have collectively baptized
breakable We will show that breakability is an undecidable property of terms, we will
investigate several examples making a few observations and giving necessary and sufficient
conditions, but the full syntactic characterization of breakability remains an open problem.

1 For a detailed representation of the (partial) recursive functions using Turing’s ideaXi thalculus and
using Kleene's original method in thé-calculus the reader should consLlt [B2r84] chapters 8 and 9 respectively,
while [Bar92] presents a related and very general result of Statman.
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1.2 Preliminaries

We assume the reader is familiar witkcalculi and basic concepts of the theory of recursive
functions. A good introduction to the former is [H$86], while [Bdr84] is an indispensable
reference on the subject. For the most up to date and thorough presentation of TRSs the
reader should turn té [Ter02], which also contains an introductiordalculus. [Rog67]
is the usual reference on recursive functions.

In the sequel we give a short overview of the concepts and some "well known" results
(without proofs) which we will be using throughout the text.

Let us first formulate some of the basic definitions and fundamental resaksal€ulus.

Basics
Definition 1.2.1. AK(Al) -terms
1. xeVar= xe Ac(/\)
2. M,N e Ac(A1) = MN e Ac(A)

3. (a) xeVarM e Ak = Ax.M € A\
(b) xeVarM € Aj,xe FV(M) = AxM € A,

In the following and throughout this thedig,N, L, P,Q will denote AK- or Al-terms,
depending on the context.

Definition 1.2.2. (Substitution)
1. xx:=M]=M
2. yx:i=M]=y (x#Y)
3. NL[x:=M] = N[x:= M]L[x:= M]

AX.N (x=vy)
4. MN)ly:=M]= { MN[y = M] (XZYAXZFV(M))
AzN[x:=Z[y:=M] (XZYyAxeFV(M)Az fresh

Definition 1.2.3. (Conversion, reduction)
1. AXM =g Ay M[x:=y] (Y€ FV(M))
2. (AXXM)N —g M[x:= N]
3. AX.MX —n M

We consider terms as syntactically equivalent (denotestfaf they area-convertible,
and equal (denoted by) if they areaf-convertible. This constitutes an intensional cal-
culus, which can be made extensional by addjrgpnvertibility to equality. This equality
will be denoted by=,. From now on one-step and many-sfegeduction is simply denoted
by — and— respectively.

Remark 1.2.4. (The variable convention)

We will always assume that all variables bound in a term in question are unique, i.e. differ-
ent from all other bound as well as free variables of some terms in the same context. (This
can always be achieved loyconversion.)

Definition 1.2.5. Normal forms

1. AtermM is in normal form (nf) iff it does not contain anf(nd)-redexes.
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2. AtermM is in head normal form (hnf) iff it is of the form M = AX.yN, where both
X andN can be empty, angmay or may not be a componentf

3. AtermM is in weak head normal form (whnf) iff it is of the form M = Ax.M’ or
M =yM.

Remark 1.2.6. In his thesis Kuper observed that a tekfris in hnf if it is in whnf and in
case itis of the fornAx.M’, thenM’ is in hnf as well. He then defined a fourth normal form
as follows: a ternM is in fourth normal form (fnf) iff it is of the form M = Ax.M’ where
M’ is arbitrary orM = yM where every component &f is in fnf as well. (See[[KupS94]
section 6.)

Let NNF , HNF, WHNF,FANF denote the sets of terms in nf, hnf, whnf, fnf, re-
spectively. It is easy to see that all of these sets are closed under reduction. We say that a
term has a certain normal form if it can be reduced to a term in that normal form. It can be
easily verified (usingCR ) that this is equivalent to the condition that it can be converted
to a term in that normal form. We will denote the set of terms convertible to one of these
normal forms byN F —, HNF~, WHNF , FNF , respectively.

Theorem 1.2.7. (Church-Rosser theorem)
TheAgy-calculus is confluent, i.6/M,N € Ag(j) : M =N = 3L € Ag():M — L« N.

Remark 1.2.8.
Confluent rewriting systems are also said to havedharch-Rosser property (CR ).

Every confluent rewriting system has the unique normal forms property, i.e. no two
normal forms are convertible. This implies the following

Theorem 1.2.9. (Consistency)
Any confluent rewriting system, with at least two distinct normal forms is consistent. Con-
sequently tha-calculus is consistent.

Theorem 1.2.10.(Scott’s / Rice’s theorem — cf. [BarB84] 6.6)

1. 4,8 C A non empty, closed under equalis- 4 and B are not recursively sepa-
rable.

2. 4 Cc A nonftrivial (i.e. 4 # 0,M), closed under equality= 4 is not recursive.

Contexts

Contexts are "special terms" with exactly one occurrence of the special sjjr(tbelhole),
occurring anywhere where a variable is allowed. Formally:

Definition 1.2.11. Contexts are defined recursively as follows
l.Jec
2. MeAClle€= M(C[]),(C[)M e ¢
3. xeVarClle €= M.(C])) e €

The result of substituting a terM into a context|] is a term obtained by replacing the
special symbol] by M in C[], and is denoted bg[M]. Note that free variable occurrences
in M may become bound iG[M].

The composition of contextS; [| andC;|] is defined as the context obtained by replac-
ing the hole ofC4[] by the contex€;,[], and is denoted b1 [Cy|]].
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Remark 1.2.12. We can extendxf3-conversion to contexts, but care has to be taken to
preserve convertibility of terms after substitution,Me= N AC[] = D[] = C[M] = D|N].

For this does not hold in general due to the fact that free variablsaofdN can be bound

by substitution intcC[] andD[]. For example:l = (Ax.x[X])l # [x] = x so (Ax.x[])| and

[| should not be convertible. We can avoid such situations by prohibiting reduction steps
which would modify the set of abstractions which contgim their scope. For example
(Axy:x)[] — Ay.[] is forbidden, butAx.x)[] — [] is not. Itis clear that conversion under these
restrictions is an equivalence relation.

Contexts, as defined above, are also referred to as one-hole contexts. We can define
multi-hole contexts in a similar way: possibly having more, distinguished (e.g. numbered)
holes. Substitution then requires the same number of terms, which replace the holes in
some well defined manner (e.g. according to the numbering of the holes, or just "from left
to right"), and the resulting term is denoted(bWI].

Solvability

Definition 1.2.13. Solvability in A-calculi
AtermM is solvableiff. 3xeVar,N € A: AXM)N =1,
We denote the set of solvable and unsolvable terms agd U respectively.

Theorem 1.2.14.(Solvability and the normal forms)
1. (Barendregt) In thal-calculus: a term is solvable iff it has a nf.
2. (Wadsworth) In thaK-calculus: a term is solvable iff it has a hnf.
Theorem 1.2.15.(Genericity Lemma) In theK-calculus

VM e uvcontextf]: CM]=Le ALF = VN e A:C[N|=L.

B6hm trees

In [Bar84] ch.10. Bohm trees are defined recursively as follows:

Definition 1.2.16.
TheBohm tree of atermM (BT(M)) is defined as

1 if M is unsolvable
BT(M) = )/\Y.y\ if M=AXyM;...My

BT(M1) BT(Mn)

Bohm like trees are trees labeled bfL} U {AXy|X,y variableg. B denotes the set of
Bohm like trees®B| and®Bk denote the sets of Bohm treesddandAKterms respectively.

Remark 1.2.17.

Bohm trees can be defined equivalently as normal forms of an extended transfinite calculus
obtained by adjoining the symbal (botton) to the alphabet, which can appear everywhere

in terms in place of variables, and introducing a new reduction rule, calledl-#fude as

)\XJ_ _>J_J‘
M —, 1 (YMeA)

Terms of this extended transfinite system are called B6hm terms, the reductiof(fipy
and_L rules) Béhm reduction, and the normal forms are exactly the Bohm trees as defined
above.
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Definition 1.2.18. BT(M) C BT(N) iff BT(N) agrees wittBBT (M) in every position where
BT(M) is defined and is nat..

Proposition 1.2.19. (%,C) is a coherent algebraic cpo, and compact trees are exactly the
finite ones.

Proposition 1.2.20. (Béhm tree model ok-calculus)

M =g N — BT (M) = BT(N)
M,N € AF M %N = BT(M) #BT(N)

HenceB is a non-trivial model for théaKcalculus.

Finite Bohm like trees are Bohm trees, so every Béhm like tree can be approximated to
any finite depth by a Bohm tree. We will use the following notations.

Definition 1.2.21.

e Let B be a finite Bohm (like) tree. TheNll(B) is the term obtained fronB by
replacing everyl bymin the tree, and reading it as a term.

e If Bis an infinite Bohm like tree, then le#%) be the Bohm tree obtained frofh
by relabeling every note at depiiby L and letM® (B) = M(B1).

e For everyN e A defineN® = M®(BT(N)) andN¥ to be the term obtained froid
by performing outermost head reductions on redexes not included in any unsolvable
subterms, until no redexes remain at depth less khaence

NOCNK « N
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1.3 Notations

Sets
N {0,1,2,...}
¢ the set of all contexts
VAWAV the set of alhNK-terms
N the set of ali\I-terms
NO the set of closed-terms
NF terms in normal form
WN weakly normalizing terms
S solvable (inA-calculus) or usable (generalized) terms
u unsolvable (im-calculus) or unusable (generalized) terms
B the set of breakable terms (Definition 2]2.1)
a denotes the complement (depending on context) of thd set
Terms
MN is a shorthand notation foN; ... N,

(n> 1is assumed unless explicitely stated otherwise)
AXM is a shorthand notation foix; ... x,.M

(againn > 1 is assumed unless stated otherwise)
Fkm FOM = M;F*IM = F(FKM) (taken from[Bar84] 2.1.9)
FM™ FM?O =F;FM™**! = FM*M (taken from[[Bar84] 2.1.9)
FV (M) set of free variables iM
BT(M) Bohm tree oM
MK the term associated with theinitial segment oBT (M)
MK approximation oBT (M) up to depthk by reduction fromv

(see Definitiof 1.2.31)

Combinators

AX.X

AXY.X
AXyzxz(yz)
AxXyx =K
AXY.Y = AyxX
AX1 ... Xn. Xk
some fixed point combinator
AX.XX
AXyzX(y2)
DD

BEomo<CcTnm—HwnXxX—
=5

Properties

CR the Church-Rosser property, i.e. confluence

NF the normal forms property, i.8d =N,Ne A’F =—= M —-» N
i.e. MRN = V¥CJ[] : C[M]RC[N]
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2.1 How solvable is a term?

Recall that aA-term M is solvable if it has a closur&x;...x.M and there are terms
Nj...Np (n>0) such that

(AX1...Xc-M) Ni...Np =1
or equivalently ifM has a head normal form, i.e.

M=Au;...u.vh...R

Solvability is a candidate formalization of 'meaningfulness’, however this categorization
of terms can be further refined and elaborated as many interesting questions concerning the
solvability of terms can be asked.

Our current question of interest concerns some sort of quantitative measure of the solv-
ability of terms. We are trying to give an answer in terms of the minimal number of argu-
ments that have to be applied to a given tévit{or one of its closures) to obtain This
approach will turn out to be fruitful, yielding us the definition of breakability.

Let us first give a formal definition of the minimal solvability number of a term.

2.1.1 The minimal solvability number
Definition 2.1.1. let M be aA-term, then

SM)= {neNFXLN=N;...Ny: AXM)N =1}
m(M) = min(S(M)U{e}) isitsminimal solvability number

Remark 2.1.2. Itis obvious thah € SM) = n+ 1 € S(M) and that
m(M) < o <= M solvable

Example 2.1.3. The standard combinators

i) mx)=m(l)=0

i) mF)=mD)=m(Y)=1

i) mK)=m(S)=2

iv) m(m)=oo
Proof
i), iv) Obvious.
i) FD=DF =1, butF,D#1; Y(KI ) =KI (Y(KI )) =1, butY #
iii) Kim=1 andSKI =1, butK can not be solved with just one argument (because it ig-
nores a second), nor c&be solved with less then two (because it is a triple abstraction).
O

An immediate consequence of our definition is the following
Proposition 2.1.4. M =N = m(M) = m(N)

Proof B
SinceM = N = (AXM)P = (AX.N)P. O

This also means that we can restrict our investigations of the minimal solvability num-
ber to terms in head normal form, since unsolvable terms are uninteresting from this point
of view, and solvable terms have head normal forms which possess the same minimal solv-
ability number. After making a few observations, we will turn our attention towards the
relationship between the minimal solvability number of a term and the structure of its head
normal form.
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Proposition 2.1.5.YM € A% ¥x € Var: m(Ax.M) = m(M) + 1

Proof
SinceM is closed, AyxM)Y XN = MN = (A\y.M)YN, which implies thatSAx.M) =
SM)+1={n+1ne M)}, i.e.mAx.M) =m(M)+1. O

Corollary 2.1.6. YM € A®: m(KM) = m(M) +1

Proof
Becaus&KM — Ax.M. O

Itis easy to show (see e.d. [Bar84]), thamfx := PJ is solvable, then so 1. Using
our notation we can be a little more specific.

Proposition 2.1.7. m(M) < m(M[x:=P]) +1

Proof B .

AYMX:=P))Q=1 = AY.M)PQ =1

and we can conclude the result by definition. O
Remark 2.1.8.

Applying the result multiple times we get(M) < m(M[%:= P]) +|x|.

Definition 2.1.9. A head normal fornv\xl...xn.yN is head closediff y = x; for some
1 <i < n, otherwise it ishead free(n = 0 is allowed, in which case the head normal form
is automatically head free).

Remark 2.1.10. A closed head normal form is automatically head closed.
Lemma 2.1.11.xN;...Ny #Yy <= n>00rx#£y

Proof
Since reductions can only take place within individNal. O

Regarding the relationship between the structural complexity of a term and its minimal
solvability number, we can make the following simple observation.

Proposition 2.1.12.If atermM has a

i) head closed head normal fomy ... X,.xN thenn—1 < m(M) <n

i) head free head normal forix; ... x,.yN thenn < m(M) <n+1

iii) in the special cases dfl = x andM = xN we have tham(x) = 0 andm(xN) = 1
respectively.

Proof

i) Az Xa XN N)Xe L X U X X = URTING NG = |

= mM) <n

(AXg. .. Xn-N)Xp ... Xn—2 = A1 N #£ |

= mM)>n-1

ii) Immediate from i) by Lemm@ 2.1.11 and considering the closiyr®! of M which is a
head closed head normal form.

iii) The first case is obvious, the second follows with the help of Lefnma 2.1.11. [

Remark 2.1.13. Every solvable term has a huge set of trivial solutions as suggested by the
first part of i) in the proof, namely

(AXg . X XN NXg . X UR X X

whereX are arbitrary terms; and a "canonical” trivial solution :



16 CHAPTER 2. BREAKABILITY IN A\-CALCULUS

()\X]_ X XN Nk).(l) .. '.(i—l) Utii.(wl) .. .I(n)
Of course there might be other solutionsndrguments in individual cases, but in general
not (as inAX.x; (mxX) for example).

As the Examples ip 2.1].3 show, this proposition cannot be strengthened but it gives rise
to a refined categorization of solvable terms.

2.2 Breakable terms

Definition 2.2.1. (Breakable terms)

A closed termVl having head normal formix; . .. x,.x N is breakableiff m(M)=n—-1and
unbreakable otherwise. A general term is breakable iff it has a closure which is breakable,
otherwise it is unbreakable. The set of breakable terms is denot&d by

Remark 2.2.2. on the definition

i) Inthe light of Remark 2.1.13, another way to put this is as follows: a term is break-
able if and only if it has a "less-than-trivial* solution (one consisting of less argu-
ments than there are top-most abstractions in the term).

i) Note that all breakable terms are solvable.

iii) Note that due to Propositiqn 2.1mM(M) does not depend on the particular head nor-
mal form. From Proposition 2.7.4 it also follows thaMf= N thenM is breakable
if and only if N is breakable.

iv) From iii) and the fact that breakability is non-trivial, it follows by Rice’s theorem
(Theorenj 1.2.70) that breakability is undecidable.

Example 2.2.3. Breakability of the standard combinators

) I,SF,BeB

i) K,DeS\B

i) UleB < n=k
iv) mgB

Let us look at two other simple, but warning examples.

Example 2.2.4.
i) Axzx(x2) € B
i) Axzx(zx) ¢ B

Proof
i) (Axzx(x2))(1) =Azl(1z2) =Azz=1
ii)
AXzX(zX) € B <—
IP:AzZP(zP) =1 =
IPYQ: P(QP) = Q=
(P(IP) =1 and Px= P(KxP) = Kx) =
| =P(IP) =K (IP) =KP

which is a contradiction, becausgK) = 2 (see Example 2.1.3). O

Proposition 2.2.5. In all of the following cases we allow, but notN to be empty:
i) AXzzis breakable

i)  AXzzN is unbreakable
i)  AXzyN is unbreakable if # z ¢ FV (N)
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Proof
Cases i) and iii) are trivial, ii) follows from Lemnja 2.1]11. O

Corollary 2.2.6. Every fixed-point combinatof is unbreakable.

Proof

In the next Lemma we will show that every fixed point combinator reduces to a form
A f.fY* which proves our claim using Proposition 2]2.5 ii).

O

Lemma2.2.7.VF e N:YF=F(YF) =Y — Af.fY*

Proof

Y is solvable, in facin(Y) = 1 as seen in Examgle 2.1.3, so itis of the fofra: Ax ... Xn.yY1... Y.
We see, that in the above equation evenholds. Moreover K n < 2 by Proposition
2.1.12.

First we show, thah = 1 andy = x;.

We know byCR thatYF andF (YF) have a common reduit. TakeF of order zeros for
example), that i¥ 4 Ax.F’. ThenF(YF) - X = X =FX/, and soYF — FX’, which

is — being F of order zero — hereditarily an application term.

Now supposer = 2. Then sincelF — Axp...., which is hereditarily an abstraction term,
we would have byCR that it has a reduct which is an application term, which is a contra-
diction.

Son=1andY — Ax1.yY:...Yk. Suppose now, that x;. ThenYF =yY;...Y, =F(YF)

and again byCR we have a contradiction.

This proves, tha¥ — Af.fY;...Yk. By a similar argument we will now show thiat= 1.

We have tha¥ F =FY]...Y, = F(YF) for all F. Now assuming th& is of order zero, so

it cannot "eat" any of its arguments, we get that in every reduct of the secondtbask
arguments while in every reduct of the third term it has one. TheDl®yve get thak = 1.

O

We can further generalize this result as follows.

Theorem 2.2.8. VY fixed point combinator Y — A f.fX(Y(®)) where k is an arbitrary
natural number.

Proof

We have seen bR and the solvability ofY thatY — A f.fY*. Now denotey* by Y,
Observing tha¥ ¥ [f := F] = YF implies thatY® is solvable (takés = KI) and repeat-
ing the above argument usi®R we can prover ¥ — fY(K+D) andy D [f .= F] = YF
again, hence we can prove the claim by induction for ekeryN. O

Corollary 2.2.9.
All fixed point combinators have the same infinite Bbhnﬁrﬁetermined by the following
recursive formula:

BT(Y) = Af.f(BT(Y))

This means that all fixed point combinators can be consistently identified (see also
[Bar84] theorem 19.3.4), because the Bohm tree model ([Bar84] section 18.3) is one such
model in which they are represented by the same object.

1 Note thatBD(B(BD)B) has the same Bhm tree but is not a fixed point combinator[(see [Sta93])



18 CHAPTER 2. BREAKABILITY IN A\-CALCULUS

In the remark following Definitiof 2.2]1, we noted that equal (Beonvertible) terms
are either both breakable or both unbreakable. We have just proven that all fixed point
combinators are unbreakable, while our efforts have lead to proving that they all share the
same Bohm tree (Corollafy 2.2.6 gnd 2]2.9). A simple consequence of Proposition 18.3.4
of [Bar84] is that in general the following connection holds:

Proposition 2.2.10. Let M, N be arbitrary terms. Then
BT(M)=BT(N) = (M€ B < Ne€ B).

Proof
BT(M) = BT(N) implies by Proposition 18.3.4 df [BarB4] that

BT((AXM)Py...R) = BT(M)-BT(Py)-...-BT(R) = BT((AXN)Py...R)
for everyx andP, hence

AXM)P =22z «—

BT((AXM)P) =BT(Az2) =\zz <
BT((AXN)P) =BT(\z2) =A\zz <
(AXN)P=\zz

and fromBT(M) = BT(N) we also know that any head normal formdwfandN have the
same leading abstractions, and the result follows by definition. O

2.2.1 Breakability and the term formation rules

With respect to substitution, application and abstraction, the following closure properties
are known to hold for solvable and unsolvable terms:

M[x:= P] is solvable = M is solvable
M is unsolvable = VN € A : MN is unsolvable
M is solvable <= VX:Ax.Mis solvable

Below we will investigate the relationship between breakability and the term formation
rules obtaining similar results.

Proposition 2.2.11. M[x := P] is breakable=- M is breakable

Proof
The casec ¢ FV (M) is void, otherwise use Propositipn 2]1.7. O

Examining the behavior of breakability in connection with application, we find the
following discouraging examples.

Example 2.2.12. (Breakability and application)

| breakable, | breakable Il =1 breakable

AxzxKzbreakable, | breakable (AxzxKz)l =AzKz= K unbreakable
F breakable, K unbreakable FK =1 breakable

| breakable, K unbreakable IK =K unbreakable

K unbreakable, | breakable Kl = F breakable

KK unbreakable, | breakable KKI =K unbreakable

D unbreakable, K unbreakable DK = KK unbreakable
All terms in the above examples are closed. For the last case we only have an example with
an open term:

(Ax.y) unbreakable, munbreakable (Ax.y)m=y breakable

Conjectrure 2.2.13. For all M, N closed unbreakable terms MN is unbreakable as well.
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Remark 2.2.14. If it were the case, as | conjecture, that the &&tof closed unbreakable
terms is closed under application, thé would be a set of terms closed under term
formation rules (see Propositipn 2.2.17). One could then ask to find a sufficiently simple
or better yet a minimal generator set faf under the term formation rules. Of courgg

and hence all of its generator sets are not even recursively enumerable.

As hinted by the definition breakability is in some sense all about "keeping the inner-
most abstraction” when solving a term. This is expressed by the next three propositions.

Proposition 2.2.15.LetM = yM; ... M.
Then for any permutatiofis,...,in) of {1,...,n}:
AX1...%z.M is breakable<= Ax;, ...x,zM is breakable.

Proof

Since permutations can be inverted, it is sufficient to prove only one direction of implica-
tion, e.g. =".

Let us first note thakx; ...x,z.M is closed<=- Ax;, ...%,zM is closed. According to this

we consider two cases:

Let us assume first thax; ...x,zM is closed. Then by Definitioh 2.2.1 it is breakable

iff there are termaNy, ..., N, such that(Ax;...x,zM)N;...N, = 1. But now (assuming
by the variable convention, that,..., X, & FV(Nz...Nn)) (AX; ... %, zM)N;, ... N;, =
(AXy... %nZM)N1...Np =1, i.e. (AX;; ... %,z M) is breakable as well.

If the two terms are not closed, then by definition they are breakable iff they have a break-
able closure. So Ietyx ...x,zM be a breakable closure ak; ...Xx,zM. Then using the

first case we conclude thayx;, ...x,zM and thus\x;, ...x,zM is breakable as well.

O

Remark 2.2.16. The inner-most variablemust not move, otherwise the proposition would
not hold. For exampleK = Axy.x is unbreakable whil& = Ayx.x is breakable.

Proposition 2.2.17. For any termM € A :
M is breakable<= Ax.M is breakable

Proof

By Definition[2.2.1 and Propositign 2.1.5. O

In case of abstraction terms the condition thlabe closed can be dropped.

Proposition 2.2.18. For any termM € A :
Ay.M is breakable<—=- Axy.M is breakable

Proof

AYM € B «— (by definition)
JU:AUyM e AN B — (by Proposition 2.2.17)
J0: AxtyM e AN B «— (by Proposition 2.2.15)
J0: AixyM e AN B «— (by definition)
AxyM € B.

[

2.2.2 Breaking out the inner-most variable

Solvable terms in general have a head normal %N where bottk andN can be empty.
We have seen that in cagés not empty, the breakability of the term depends only on the
inner-most abstractiokx,.yN. This observation leads to the following definition.
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Definition 2.2.19.

We say that a term in hifX.yN is in application head normal form (ahnf) iff X is empty,
i.e. there are no initial abstractions, i.e. it is of the fori

An application term in ahnyN is breakable for (the variable) ziff AzyN is breakable.
We denote the set of ahnf terms breakablezfioy B,.

Example 2.2.20.

Xy is breakable foy but not forx nor any other variable

X(yX) is not breakable for any variable (Exam.2.4 proves thig)for
xyzis breakable foy andz only

Using this new notation, we can summarize our results in the following theorem.
Theorem 2.2.21.

1. An abstraction term M (in head normal form)
M=MzyN e B «—
AzyN € B «—
e B = .
IP: (yN)[y:=P] — z (where{y} = FV(yN) — {z})

2. An application term M (in head normal form)
M=yNeB —
JzeVar:yN e B, <
JzeVar:A\zyN € B

The examples ifi 2.2.4 illustrate that breakability is not a trivial notion at all. For ex-
ample to "break” the termixzx(xx2)x, we have to find an appropriate teiy such that
(AXZX(xx2X)X = AZX(XX2X = Azz i.e. X(XX2X =z This is very similar to the so
called Bohm-out technique used by Bohm to prove the separability of normal forms. The
Bohm-out technique is described in detail in [B&r84] section 10.3, here we will mention
only one result (Proposition 10.3.7 in_[Bar84]) informally: an instance of any subtree of
the Bohm tree of a term can be obtained by an appropriate solving transformation (i.e. by
a sequence of substitutions and applications of variables). When "breaking" a term we
have to do something similar, for example to break the texmx(xx2x we have to sort
of "B6hm out" the one occurrence mfappearing in the body of the term, but using more
restricted transformations.

In the sequel we are going to look at some more examples, but first we make a few
simple observations. The following definition is taken from [Bar84] 10.3.5.

Definition 2.2.22. A hnf M = AX.yN is calledhead original if y ¢ FV (N).

The advantage of a hnf being head original is that we can freely substitute any term
in its head variable, that is without consequences on any of its other subterms. This is
expressed by the following proposition.

Proposition 2.2.23.1f an ahnfM = yN; ... N, is head original andi : N; € B,, thenM € B,.
This proposition follows from the next stronger statement.
Proposition 2.2.24.LetM =yN; ... Ny. If Ji : (N; € B, Ay € FV(N)), thenM € B,.

Note that forM = yN; ... N, to be breakable fazit is not necessary nor sufficient that
Ji : N, € B;. In fact, the above proposition can be strengthen as follows:

Proposition 2.2.25.LetM = yN; ... Np. If Ji : (Ni=AXN/ AN/ € B,Ay € FV(N))), then
M € $Z'
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Proof

LetFV(N))\ {z,X} = {uy,...,u} andFV(N;...Np) \FV(N/) = {v1,...,v }. Then by as-
sumption, there are term¥ U (we can also assume that they are closed) such\fiat=
Ul[R:=X]= (N [H::Q])X =2z LetVy,..., Vi be arbitrary terms and = Awi ... W W X1 ... X
ThenM([U:=U][V:=V]ly:=Y]=YN...N_(Nj[i:=U])N', ;...N) = (N[t:=U])X = z,
and soM € B,. O

Head originality is of course a very strong condition. To break terms which are not head
original, we need more sophisticated techniques. Let us see some more intricate examples.

Example 2.2.26.
) VA€ AP AXZXA(X2), AXZX(X2) (XA), AXZX(XX2) A € B
i) AXzX(xX)(zX),AXzX(22),AXZX(XX)(22),AXZX(XZD) & B

Proof
i) In the following [,] denotes pairing, i.dU,V] =Af.fUV
LetX = Av.[U,V], andU = U3. Then
(AXZXA(X2))X = AzXA (X2) = Az [U, AU, Z =
Az[U,ZUA = AzUUZA = Azz
Let X = Av.[U,v], andU = ApqgrrF. Then
(Axzx(x2) (xA))X = Az X(X2)(X4A) = Az X[U,Z[U,4)] =
Az U, U, Z|[UA] = Az|U,A'JUU,Z = AzUUA'[U,Z] = Azz
LetX = AuvulU,v], andU = U3. Then
(AXZX(XX2A)X = AzZX (X XA = AzX(X[U,Z)A = AzX[U,Z[U,A] =
Az|U,Z[U,[U,A]] = Az[U,[U,A|JUz=AzUU[U,Az=Azz
ii)

AXZX(XX)(zX) € B <—

IPYQ: P(PP)(QP) = Q =

| = P(PP)(IP) = P(PP)(KPP) = KP, contradiction

AXzX(z2 € B <=
IPYQ: P(QQ) = Q=
I =P(Il) =P(KI (KI')) =KI, contradiction

AXZX(XX)(22 € B «—
IPYQ: P(PP)(QQ) = Q =
I =P(PP)(Il ) = P(PP)(KI (KI')) =KI, contradiction

Example 2.2.27.x(x2Z0\) ¢ B,

Proof

Suppose thaM = x(xzA) is breakable foz by [x := X]. ThenX is solvable, i.e.X has
a hnfAu; ... us.vN, which has to be head closed, meanimg 0. It is easy to see, that if
n>1thenM[x:= X] = Au;...u,.M’ # z We have proved that = Au.uN. Now substitut-
ing it into M we getM[x:= X] = (Au.uN)((Au.uN)z2') = ((Au.uN)zA" )N = zZNA'N # z by
LemmdZ.1.7]1, contradiction. O

2.2.3 Towards generalizing breakability

So far we have been examining breakability through syntactical properties of terms. But
breakability is no less a semantical notion as solvability. As suggested by the previous
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examples, there is a correspondence between the breakability of a given ahnf for a given
variable and a particular instance of a class of problems. Another way to look at breakabil-
ity is the following:

M(=yN) € B, —

P (X =|P|): AMzM)P =1 <=
WP:Az(MX:=P))) =1 —

IM* instance of M (AzM*)z2=2 «—

JAzM* instance ofAzM : (AzM*)z=27 <=

JIAzM* instance ofAzM : z is a fixed point oAzZM*

There are different ways of generalizing this, giving the following classes of problems
(belowM* always denotes an instanceMf i.e. M* = M[x := N] for somex andN):

e givenQfind anM s.t. MQ=Q
(trivial: takeM = I; also note that iM is closedMQ = Q thenvQ* : MQ* = Q*)

e givenQfindanM s.t. MP=P <— JQ* =P
e givenQ andM find an instanc&* s.t. M*Q =Q
e givenQ andM find M* st M*P =P <— 3Q*=P

Note that as viewed above, breakability is a special case of the last problem class, with
Q=z

We are not going to address these problems in this paper, just mentioned them as inter-
esting questions for the curious mind.
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3.1 Summary

In this paper we have looked at one possible refinement of solvabiliycalculus arriving
at the notion of breakability.

e We have proven basic results in connection with the term formation rules similar to
those known for solvability.

e We have presented several examples to illustrate the difficulties of "breaking" a term.

e We showed that no universal method exists to break every breakable term, as break-
ability is undecidable.

e The major open question remaining: is there a syntactic equivalent of breakability
similar to Wadsworth theorem equating solvable terms and terms having a head nor-
mal form? In other words is there recursive enumeration of breakable terms similar
to head reduction? This question is still to be answered.
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