Clean-CORBA Interface for Parallel Functional
Programming on Clusters™

Zoltan Honath, Zolén Varga, Vikbria Zk

Department of General Computer Science
University of EOtvos Lo@and, Budapest
e-mail: hz@inf.elte.hu, Zoltan.2.Varga@nokia.com, zsv@inf.elte.hu

Abstract. The presented Clean-CORBA interface opens the way for developing
parallel and distributed applications consisting of components written in a func-
tional programming language, Clean. The interface defines a language mapping
from the IDL language used by CORBA to Clean. It contains an IDL-to-Clean
compiler which generates the necessary stub and skeleton routines from the IDL
files. The interface is a general tool for connecting functional Clean programs and
programs written in any language using a CORBA interface via the network.

We focus on a specific application of this tool in this paper, we build a software
architecture for programming clusters using the functional programming lan-
guage Clean. We design and implement an abstract communication layer based
on CORBA server objects. Using this architecture we can build up applications
consisting components written in several programming languages, some compo-
nents written in pure functional style in Clean, while other components written in
an object-oriented language like Java or C#.

Based on this software architecture the field of skeletal programming is studied,
which suits very well with the functional programming. A skeleton for pipeline
computing is chosen as an example to present the main features of this approach.

1 Introduction

One of the easiest way to provide powerful infrastructure for parallel and distributed
computing is to build a cluster and interconnect clusters via the internet into a Grid.

Less work was done yet for adapting functional programming languages to the pos-
sibilities offered by clusters [5,13]. Our intention is to test and to verify how a functional
programming language fits into the parallel programming framework offered by clus-
ters [8.5].

Functional programming is very suitable for expressing parallelism. Composition
of functions is an associative operation, so evaluation of functional programs can be
done in parallel or distributed way. So functional programs are inherently parallel but
the evaluation in parallel of an expression is not always worthwhile.

There are several elements of functional programming languages which support to
control parallel and distributed evaluationl[9[11,7], and communication. These solu-
tions are different in efficiency and in power of expressiveness and require different

* Supported by the Hungarian National Science Research Grant (OTKA), Grant No. T037742
and by IKTA 89/2002 (JiniGrid)

hardware and software infrastructure. Evaluation strategies|[12,6] may be applied in
parallel computations separating dynamic evaluation issues from static requirements.
The Haskell language has several dialects with parallel features: CGpH [8],_pH [10],
Eden [4], Distributed Haskell with Ports|[7]. A skeleton is a parameterised algorithmic
scheme. Skeletons in functional languages are higher order functions parameterised by
functions, types and evaluation strategies. Evaluation strategies are appropriate tools in
order to control the evaluation degree, the dynamic behaviour and the parallelism. A
higher degree of abstraction level expressing parallelism can be achieved by parameter-
ising skeletons with evaluation strategies. There were several studies regarding skele-
tons [3,12] from the apparently very simple but very useful skeletamap, to the

more complex skeletons like the parallel elementwise processing [6].

Functional programs can also be developed and tested on cluster systems. The first
study was the comparison of the GpH and the Eden languages regarding their perfor-
mances[B]. The GpH and Eden comparison was done on a Beowulf cluster, however the
Clean functional language and applications consisting of both functional and imperative
components up to now has not been tested for parallelism on a cluster system.

Language elements of Concurrent Clean are describéd_in [9,11]. In the present im-
plementation a Clean-CORBA interface [13] is used as an infrastructure for parallel
communication. The interface implements a language mapping from Clean to IDL. The
present work examines the way of expressing parallel computations using the Clean
lazy functional programming language on a cluster. Our Clean-CORBA interface uses
the MICO CORBA implementation and allows to write CORBA clients and servers in
the lazy functional programming language Clean.

We have chosen an implementation of the skeleton of pipeline computation as an
example in this paper to present the main features of our approach.

Section 2 describes the Clean-CORBA interface. The mapping from the CORBA
IDL to the Clean functional language is described according to the language elements.

The third section presents an implementation of asynchronous communication chan-
nel, which can be used for connecting Clean programs and other programs in a a cluster
environment.

The pipeline skeleton is very suitable for the computation of functions which can
be built by the composition of small components, for the detailed specification of the
problem see the fourth section.

The last section (section 5) concludes.

2 Clean-CORBA interface

2.1 Overview of the interface

To access CORBA from a programming language a language mapping for the partic-
ular language is needed. This mapping should contain the following elements: an IDL
module mapping to the specific language, the simple and composed types of IDL asso-
ciation with the types of the language, the projections of the definitions and operations
of the IDL interface, the implementation of services offered by the CORBA server and
of the pseudo-objects of the CORBA into the language.

The identifiers of the IDL are the same in Clean, the names of the modules are
included in the identifiers. The different integer types are associated witththype
of Clean, in the same way the real types are projected intedhe type of the Clean
language. The most interesting is thgeCode, which gives us information about the
IDL types during runtime. The most complex implementation is for the typeand
for the union. The enumeration type corresponds to the algebraic type in Clean. The
structures are connected with records, constants are functions without parameters, the
sequences and arrays are lists. The operations are associated with functions, CORBA
objects with records. For communication through TCP ports and for IP identification
the services of MICO Binder are used.

2.2 Mapping of identifiers

A CORBA identifier is mapped to the Clean identifier with the same name. Identifiers
within modules are mapped to the fully qualified name with thesymbols replaced
with _ symbols, thus:

foo -> foo
CORBA :: Object -> CORBA_Object
2.3 Mapping of types

Basic types. The mapping for basic types is as follows:

short -> Int long -> Int ushort -> Int
ulong -> Int float -> Real double -> Real
char -> Char octet -> Int boolean -> Boolean

string -> String

Other types {ong long, fixed etc.) are not supported. The limited range of the
Int type may present problems if large integer values are exchanged between clients
and servers.

Enumerated types. IDL Enums are mapped to simple algebraic types. For example
enum Color { Red, Green, Blue }; mapsto

:: Color = Red | Green | Blue

Structures. IDL Structures are mapped to Clean records. The field names remain the
same. For example:

struct Foo {
short ml;
long m2;};

maps to

i1 Foo = {
ml :: Int,
m2 :: Int

If the structure contains an 'anonymous’ field (likequence <long> m3), then
the IDL compiler will create a new Clean type (in this case__n3), and this will be
the type of the corresponding field in the Clean record. Recursive structures and unions
are supported too.

Unions. IDL unions map to Clean algebraic data types, with one data constructor for
each legal discriminator value. For example:

union Glorp switch (short) {

case 0: short ml;

case 1: char m2;

default: string m3; }i
maps to

:: Glorp = Glorp_0 Int
| Glorp_1l Char
| Glorp__default Int String

This mapping can’t handle discriminators of typghar’. Thus type char’ is not
currently supported as a discriminator type. An alternative mapping would be

:: Glorp=Glorp_ml Int | Glorp_m2 Chat | Glorp__default Int String.

Sequences and Arrays.IDL sequences map to Clean lists. For example:
typedef sequence<long> LongList; maps toLonglList :== [Int].
2.4 Mapping of constants

IDL constants are mapped to Clean constants. For example:

const long THE_ANSWER = 42;
const double PI = 3.14159;

maps to

THE_ANSWER :: Int
THE_ANSWER = 42
PI :: Real

PI = 3.14159

2.5 Interfaces

IDL Interfaces map to abstract Clean types, which contain the object reference in their
hidden parts. Each interface type has a corresponding nil function which re-

turns a NIL object reference of the given type. Conversions between interface types
are supported througtT>__narrow and<T>__widen functions generated by the IDL
compiler.

2.6 Operations

Each IDL operation maps to a Clean function which performs the CORBA call. As an
example we present here thecount interface:

interface Account {
void deposit (in long amount);
void withdraw(in long amount);
long balance();

i

the following functions are generated:

Account_deposit :: Account CORBA_Long *World

-> ((ResultOrException CORBA_Void CORBAException), *World)
Account_withdraw :: Account CORBA_Long *World

-> ((ResultOrException CORBA_Void CORBAException), *World)
Account_balance :: Account “*World

-> ((ResultOrException CORBA_Long CORBAException), *World)

The first argument of each function is the receiver CORBA object. Since these
functions have side effects, they both take and return a unigued argument. The
ResultOrException type is similar to theither type:

:: Either a b = First a | Second b

If the IDL operation hasut or inout arguments, the functions return them, too:

Account_balance2 :: Account *World
->(((ResultOrException (CORBA_Void,CORBA_Long) CORBAException),
*World))

For each IDL attribute, the IDL compiler will generate both a getter and a setter
function. The corresponding Clean code is:

Account__get_balance3 :: Account *World

-> ((ResultOrException CORBA_Long CORBAException), *World)
Account__set_balance3 :: Account CORBA_Long *World

-> ((ResultOrException CORBA_Void CORBAException), *World)

2.7 The TypeCode and Any types
These types are mapped to algebraic types. Their definition is itotte. . dc1 file.

Dynamic Invocation Interface. The DIl is supported through the following function:

CORBA_invoke :: CORBA_Object String [CORBAArg] TypeCode [TypeCode]
*World -> (Any, CORBAException, [CORBAArg], *World)

The meaning of the arguments:
- The first argument is the target CORBA object.
- The second argument is the name of the operation.
- The third argument is a list of the arguments.
- The fourth argument is the return type of the operation.
- The fifth argument contains the typecodes of IDL exceptions, which can be raised by
the operation.
- The sixth argument is the old World.
The result is a tuple with the following parts:
- the return value of the operation,
- the exception raised by the operation, if any (the returned value is NoException, if
there is no exception),
- the value of theut andinout arguments,
- the new World.

2.8 Server side mapping

The server side mapping uses a simplified version of the Object 10 framework [1]. The
IDL compiler generates servant types for each IDL interface. A servant is a record type
with one field for each IDL operation in the interface. The programmer must create
an instance of this servant type, and register it with the system before it can answer
CORBA requests.

2.9 The implementation

As said earlier, this package consists of a CORBA-CLEAN interface library, and an
IDL-TO-CLEAN compiler. The interface library consists of three layers:

1. The lowest layer is a collection of C functions giving access to CORBA function-
ality.

2. The middle layer simply consists of Clean wrapper functions around the C func-
tions in the previous layer.

3. The third layer contains the high level interface described in the previous sections.

The implementation uses CORBA DIl and DSI for communication, similarly to the
MICO-TCL interface software TclMico.

The IDL compiler works by first uploading the contents of the IDL file into a
CORBA Interface Repository daemon, then reading this data using normal CORBA
calls into an intermediate representation, and finally generating Clean code.

3 The implementation of a channel object

Many problems can be viewed as networks of message-communicating processes, there-
fore it is very useful to implement them efficiently.

To interconnect processes or distributed programs we need to implement channels
with communication primitives. We have implemented operations for asynchronous
message passing using CORBA server objects. We store the messages in the local state
of the server.

The program has to import théhnannel interface, which defines the channel oper-
ations. The program also has to import the Clean standard environment andtithe
package. These are the basic modules for our Clean-CORBA interface.

The initialisation of the CORBA system uses #o®BA_ORB_init function, which
returns aCORBA_ORB Object.CORBA_Server_run initialises the CORBA server.

In our model the channel initialises the ORB and starts a CORBA event handler. By
theserverInit we create a servant, which will be registered by the ORBverInit
transforms the general object reference into the desired type. The event handler system
will assure that the requests of the clients are passed to the servant objects.

Start w
(orb,_,w) = CORBA_ORB_init args w
= CORBA_Server_run orb Void ServerInit w
where
ServerInit ps w
(obj, ps, w) = Channel_ servant_open ps servant w
#ow
= WriteIORToFile (CORBA_Server_get_orb ps) obj "channel.ior" w
= (ps, W)
servant = { Channel__servant |
1s = h,
impl_send = my_send,
impl_receive = my_receive,
impl_empty = my_empty,
impl_full = my_full

}
my_send (ls, ps) what w
= ((ls ++ [what], ps), Result Void , w)
my_receive ([x:xs], ps) w
(xs, ps), Result x, w)
s
(

(
my_empty (ls, ps) w
= ((ls, ps), Result (empty ls), w)
my_full (ls, ps) w
= ((ls, ps), Result (full 1s), w)
Channel__servant_open registers the servant at the 10 system. The servant de-
fines the operations of the channel. These operations are state transition functions,

which modifies the local state of the channet) Theh is the sequence containing

the elements of the channel. The functign send is the implementation of the channel
operationsend and adds to the sequence an element sent by the clientyTheceive
function implements the channel functiesceive and sends to the client one data from
the sequence. The functiay_empty is true if the sequence is empty angd full is
true if the sequence is full.

4 The pipeline skeleton

The pipeline skeleton is a special type of process network usually applied for calculating
a composite function. The processes are organised linearly. A processes running on a
pipeline element calculates a component function and sends intermediate results to its
immediate successor. The data input is processed at the beginning of the pipeline.

We consider a simple description of the pipeline problem [2].

Let D =< dp,ds,...,dw > be a sequence of data, whévie> N, and letF =<
fo, f1,..., fn > be a sequence of functions.

Let fi(x) denotef;(f_1(... fo(X)...)); we assume that!(x) is defined for alli,
0<i<NandallxinD.

We compute the sequené® (D), wherefN(D) =< fN(dp),..., fN(dw) >.

The pipeline problem is implemented in the following form: the Clean programs are
Corba-clients and calculate the components of

The computation can be parameterised by the component funftamd by the
type of its argument (skeleton). The send and receive functions are implemented by the
abstract channel CORBA server, the object presented in the previous section.

For sending data on the channel we have the following function:

sendf x obj w
(Result 1, w) = Channel_full obj w
|1 = sendf x obj w
= Channel_send obj (f x) w

The function checks if the sequence of data is full. In case is full will try again, in
case it is not full will send the data to the server object. For receiving data we have the
following function:

receivef obj w
(Result 1, w) = Channel_empty obj w
| 1 = receivef obj w
= Channel_receive obj w

The function verifies if the sequence is empty. If it is empty then will try again,
otherwise receives a data from the server.
xai+1

n .
As an example we compusin(x) ~ iZo(fl)' * T For this we use the following

data structured = (xx: Rs: Re: {1,:1},h : R). The functionsin(x) ~ sinyo...0
sing(x), where
sing(x) = (X?,x, —1,X)

sin(d) = (dxx d.s+d.exd.hx @&y, dex (—1),d.h+ 88 y)

sit(d) = d.s+d.exd.hs 02
The following lemma can be proved:
i . ¥2i+1 it

fi(x) = fi 0...0 fO(X) = (X27 2 (_1>J * @i (_1)i+17 (2|+1)])

foralli=0,...,.n—1.
According to the lemma the pipeline skeleton will produce a correct result.

5 Conclusions

The implemented Clean-CORBA interface was presented by a pipeline problem. The
interface allows us to use the Clean lazy functional language on a cluster. The server-
client communication interface is assured by the CORBA stubs instantiation and it is
converted to Clean code. The operation of the interface can be describeddn file

using the CORBA IDL language then thiel2clean transforms it into Clean program.

The novelty of this CORBA-Clean interface consists in the connection of a functional
language with CORBA. This interface opens us the possibility of implementing a wide
range of parallel programming problems in a functional language in a cluster environ-
ment.

References

1. Achten, P., Wierich, M.A Tutorial to the Clean Object I/O LibraryJniversity of Nijmegen,
2000, http://www.cs.kun.nl/"clean.

. Chandy, K. M., Misra, JParallel Program DesignAddison-Wesley, 1989.

3. Cole, M.: Algorithmic Skeletons, In: Hammond, K., Michaelson, G. (ed®efsearch Direc-
tions in Parallel Functional Programmingp. 289-303, Springer-Verlag, 1999.

4. Gahn, L.A,, Pareja, C., P, R.: Functional Skeletons Generate Process Topologies in Eden,
In: Int. Symp. on Programming Languages, Implementations Logics and Programs PLILP’96
Aachen, Germany, LNCS, Vol. 1140, pp. 289-303, Springer-Verlag, 1996.

5. Honath Z., Herngk Z., Kozsik T., Tejfel M., Ulbert A.: A Data Intensive Application on
a Cluster - Parallel Elementwise Processing, In: Kacsuk P., Kran#nD., Neneth Zs.,
Volkert J. (eds.)Distributed and Parallel System - Cluster and Grid Computing, Proc. of
4th Austrian-Hungarian Workshop on Distributed and Parallel Systdthsver Academic
Publishers, The Kluwer International Series in Engineering and Computer Science, Vol. 706,
pp. 46-53, Linz, Austria, September 29-October 2, 2002.

6. Honath Z., Z$k V., Serrarens, P., Plasmeijer, R.: Parallel Elementwise Processable Functions
in Concurrent Clean, to appear@omputers & Mathematics with Applicatigrislsevier.

7. Huch, F., Norbisrath, U.: Distributed Programming in Haskell with Pémglementation of
Functional Programming Languages, 12th International Workshop, IFL28@@hen, Ger-
many, September 4-7, 2000, LNCS, Vol. 2011, pp. 107-121, Springer 2001, http://www-
i2.informatik.rwth-aachen.de/hutch/distributedHaskell.

8. Loidl, H.W.,, Klusik, U., Hammond, K., Loogen, R., Trinder, P.W.: GpH and Eden: Comparing
Two Parallel Functional Languages on a Beowulf Cluster, In: Gilmore, S. (&ajds in
Functional Programming\Vol. 2, pp. 39-52, Intellect, 2001.

N

9. Kesseler, M.H.G.The Implementation of Functional Languages on Parallel Machines with
Distributed MemoryPhD Thesis, Catholic University of Nijmegen, 1996.

10. Rishiyur S. Nikhil, Arvind:Implicit Parallel Programming in priMorgan Kaufmann, 2001.

11. Serrarens, P.RCommunication Issues in Distributed Functional ComputiRgD Thesis,
Catholic University of Nijmegen, 2001.

12. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.J.: Algorithm + Strategy = Paral-
lelism, Journal of Functional Programming/ol. 8, No. 1, pp. 23-60, 1998.

13. Varga Z..Clean-CORBA InterfaceMaster thesis, University of @&vos Lo@and, Budapest,
2000. (Supervisor: Hoath Z.)

	Clean-CORBA Interface for Parallel Functional Programming on Clusters

