
Functional Programs on Clusters?

Vikt ória Zśok, Zoltán Horv́ath, Zolt́an Varga

Department of General Computer Science
University of Ëotvös Loŕand, Budapest

e-mail: hz@inf.elte.hu, Zoltan.2.Varga@nokia.com, zsv@inf.elte.hu

Abstract. The implemented Clean-CORBA and Haskell-CORBA interfaces open
a way for developing parallel and distributed applications on clusters consist-
ing of components written in functional programming languages, like Clean and
Haskell.
We focus on a specific application of this tool in this paper. We design and im-
plement an abstract communication layer based on CORBA server objects. Using
this layer we can build up computations in form of distributed process-networks
consisting of components written in several programming languages, some com-
ponents written in functional style in Clean, while other components written in
an object-oriented language like Java or C++.
The speed-up of computations is investigated using a simple example.

1 Introduction

One of the easiest way to provide powerful infrastructure for parallel and distributed
computing is to build a cluster and interconnect clusters via the internet into a Grid.

Functional programming is very suitable for expressing parallelism. Composition
of functions is an associative operation, so evaluation of functional programs can be
done in parallel or distributed way. So functional programs are inherently parallel but
the evaluation in parallel of an expression is not always worthwhile.

There are several elements in the functional programming language Clean which
support to control parallel and distributed evaluation and communication [11,1,13].
Also the Haskell language has several dialects with parallel features: GpH [9], pH [10],
Eden [4], Distributed Haskell with Ports [8]. These solutions are different in efficiency
and in power of expressiveness and require different hardware and software infrastruc-
ture.

A higher degree of abstraction level expressing parallelism can be achieved by pa-
rameterizing computational skeletons with evaluation strategies. Evaluation strategies
[12,6] may be applied in parallel computations separating dynamic evaluation issues
from static requirements. Evaluation strategies are appropriate tools in order to con-
trol the evaluation order and degree, the dynamic behaviour and the parallelism [12].
A skeleton is a parameterized algorithmic scheme. Skeletons in functional languages
are higher order functions parameterized by functions, types and evaluation strategies.

? Position paper. Technical paper to appear in Proceedings of SPLST’03 [7]. Supported by
the Hungarian National Science Research Grant (OTKA), Grant No. T037742 and by IKTA
89/2002 (JiniGrid).

There were several studies regarding skeletons [3,12] from the apparently very sim-
ple but very useful skeletonparmap, to the more complex skeletons like the parallel
elementwise processing [6].

Functional programs can also be developed and tested on cluster systems. The first
study was the comparison of the GpH and the Eden languages regarding their perfor-
mances [9]. The GpH and Eden comparison was done on a Beowulf cluster. A Haskell
version of parallel elementwise processing implemented on a cluster was presented in
[5].

Our intention is to test and to verify how the Clean functional programming lan-
guage fits into the parallel programming framework offered by clusters. We use an
architecture, which allows to build up applications consisting components written in
several programming languages, some components written in pure functional style for
example in Clean, while other components written in an object-oriented language.

A Clean-CORBA interface [13] is used as an infrastructure for parallel communi-
cation. The interface implements a language mapping from Clean to IDL. Our Clean-
CORBA interface uses the MICO CORBA implementation and allows to write CORBA
clients and servers in the lazy functional programming language Clean.

We designed and implemented an abstract communication layer based on this soft-
ware architecture. The distributed computation is built up from components imple-
mented in form of CORBA clients. These components communicate via channels which
are CORBA server objects. The channel object is written in two variants, in Clean and
in C++. The clients may be written in any language with CORBA interface.

We have chosen an implementation of a pipeline computation as an example in this
paper to present the main features of our approach. We implemented the clients of this
example in functional style, in Clean. We measured the performance of the application
on a cluster consisting of 16 processors.

Section 2 describes the Clean-CORBA interface. The mapping from the CORBA
IDL to the Clean functional language is described according to the language elements.

The third section presents an implementation of asynchronous communication chan-
nel, which can be used for connecting Clean programs and other programs in a cluster
environment.

The pipeline skeleton is very suitable for the computation of functions which can
be built by the composition of small components, for the detailed description of the
problem see the fourth section.

The last section (section 5) concludes.

2 Clean-CORBA interface

To access CORBA from a programming language a language mapping for the partic-
ular language is needed. This mapping should contain the following elements: an IDL
module mapping to the specific language, the simple and composed types of IDL asso-
ciation with the types of the language, the projections of the definitions and operations
of the IDL interface, the implementation of services offered by the CORBA server and
of the pseudo-objects of the CORBA into the language.

In Clean-CORBA interface the operations are associated with functions, CORBA
objects with Clean records. For communication through TCP ports and for IP identi-
fication the services of MICO Binder are used. Interfaces are generated differently for
clients and for servers.

The identifiers of the IDL are the same in Clean, the names of the modules are
included in the identifiers. IDL constants are mapped to Clean constants.

The different integer types are associated with theInt type of Clean, in the same
way the real types are projected into theReal type of the Clean language.

Enumeration types are mapped to Clean algebraic types.
IDL Structures are mapped to Clean records. The field names remain the same.

If the structure contains an ‘anonymous’ field (likesequence <long> m3), then the
IDL compiler will create a new Clean type (in this caseFoo__m3), and this will be the
type of the corresponding field in the Clean record. Recursive structures and unions are
supported too. IDL unions map to Clean algebraic data types, with one data constructor
for each legal discriminator value. IDL sequences map to Clean lists.

The most interesting is the mapping ofTypeCode, which gives us information about
the IDL types during runtime.

IDL Interfaces map to abstract Clean types, which contain the object reference in
their hidden parts. Each interface type has a corresponding<T>__nil function which
returns a NIL object reference of the given type. Conversions between interface types
are supported through<T>__narrow and<T>__widen functions generated by the IDL
compiler.

Each IDL operation maps to a Clean function which performs the CORBA call
(for examples see [13,7]). The first argument of each function is the receiver CORBA
object. Since these functions have side effects, they both take and return a uniqueWorld
argument which represents the environment of a Clean program. The operation my fail,
so the result belongs to the algebraic typeResultOrException, which is an union type.
If the IDL operation hasout or inout arguments, the functions return them, too. For
example:

Account_balance2 :: Account *World
->(((ResultOrException (CORBA_Void,CORBA_Long) CORBAException),

*World))

For each IDL attribute, the IDL compiler will generate both a getter and a setter
function.

The Dynamic Invocation Interface (DII) is supported through the following func-
tion:

CORBA_invoke :: CORBA_Object String [CORBAArg] TypeCode [TypeCode]
*World -> (Any, CORBAException, [CORBAArg], *World)

The meaning of the arguments: target CORBA object, the name of the operation,
a list of the arguments, return type of the operation, typecodes of IDL exceptions, the
unique environment: the world.

The result is a tuple with the following parts: the return value of the operation, the
exception raised by the operation, if any, the value of theout andinout arguments, the
new World.

The server side mapping uses a simplified version of the Object IO framework [1].
The IDL compiler generates servant types for each IDL interface. A servant is a record
type with one field for each IDL operation in the interface. The programmer must create
an instance of this servant type, and register it with the system before it can answer
CORBA requests.

The implementation consists of a CORBA-CLEAN interface library, and an IDL-
TO-CLEAN compiler. The interface library consists of three layers:

1. The lowest layer is a collection of C functions giving access to CORBA function-
ality.

2. The middle layer simply consists of Clean wrapper functions around the C func-
tions in the previous layer.

3. The third layer contains the high level interface described above.

The implementation uses CORBA DII and DSI for communication, similarly to the
MICO-TCL interface software TclMico.

The IDL compiler works by first uploading the contents of the IDL file into a
CORBA Interface Repository daemon, then reading this data using normal CORBA
calls into an intermediate representation, and finally generating Clean code.

For detailed description end examples of the mapping see [13,7].

3 The implementation of a channel object

Many problems can be viewed as networks of message-communicating processes, there-
fore it is very useful to implement an abstract channel object for asynchronous message
passing.

To interconnect processes or distributed programs we can implement communica-
tion primitives for asynchronous message passing using CORBA server objects. We
store the messages in the local state of the server.

The program has to import thechannel interface, which defines the channel oper-
ations. The program also has to import the Clean standard environment and theCorba
package. These are the basic modules for our Clean-CORBA interface.

The initialization of the CORBA system uses theCORBA_ORB_init function, which
returns aCORBA_ORB object.CORBA_Server_run initializes the CORBA server.

In our model the channel initializes the ORB and starts a CORBA event handler. By
theServerInit we create a servant, which will be registered by the ORB.ServerInit
transforms the general object reference into the desired type. The event handler system
will assure that the requests of the clients are passed to the servant objects.

Start w
(orb,_,w) = CORBA_ORB_init args w
= CORBA_Server_run orb Void ServerInit w

where

ServerInit ps w
(obj, ps, w) = Channel__servant_open ps servant w
w

= WriteIORToFile (CORBA_Server_get_orb ps) obj "channel.ior" w
= (ps, w)
servant = { Channel__servant |

ls = messages,
impl_send = my_send,
impl_receive = my_receive,
}

my_send (ls, ps) what w
= ((ls ++ [what], ps), Result Void , w)

my_receive ([x:xs], ps) w
= ((xs, ps), Result x, w)

Channel__servant_open registers the servant at the IO system. The servant de-
fines the operations of the channel. These operations are state transition functions,
which modifies the local state of the channel (ls). Themessages is the sequence con-
taining the elements of the channel. The functionmy_send is the implementation of the
channel operationsend and adds to the sequence an element sent by the client. The
my_receive function implements the channel functionreceive and sends to the client
one data from the sequence.

4 The pipeline skeleton

The pipeline skeleton is a special type of process network usually applied for calculating
a composite function. The processes are organized linearly. A processes running on a
pipeline element calculates a component function and sends intermediate results to its
immediate successor. The data input is processed at the beginning of the pipeline.

We consider a simple description of the pipeline problem [2].
Let D =� d0,d1, . . . ,dM � be a sequence of data, whereM � N, and letF =�

f0, f1, . . . , fN � be a sequence of functions.
Let f i(x) denote fi(fi−1(. . . f0(x) . . .)); we assume thatf i(x) is defined for alli,

0≤ i ≤ N and allx in D.
We compute the sequencef N(D), where f N(D) =� f N(d0), . . . , f N(dM)�.
The pipeline problem is implemented in the following form: the Clean programs are

Corba-clients and calculate the components ofF .
The computation can be parameterized by the component functionfi and by the

type of its argument (skeleton). The send and receive functions are implemented by the
abstract channel CORBA server, the object presented in the previous section.

For sending data on the channel we have the following function:

sendf x obj w
(Result l, w) = Channel_full obj w
| l = sendf x obj w
= Channel_send obj (f x) w

The function checks if the sequence of data is full. In case is full will try again, in
case it is not full will send the data to the server object. For receiving data we have the
following function:

receivef obj w
(Result l, w) = Channel_empty obj w
| l = receivef obj w
= Channel_receive obj w

The function verifies if the sequence is empty. If it is empty then will try again,
otherwise receives a data from the server.

As an example we computesin(x)≈
n
∑

i=0
(−1)i ∗ x2i+1

(2i+1)! . For this we use the following

data structure:d = (xx : Real,s : Real,e : {1.0,−1.0},h : Real). The functionsin(x) ≈
sinn◦ . . .◦sin0(x), where

sin0(x) = (x2,x,−1.0,x)

sini(d) = (d.xx,d.s+d.e∗d.h∗ d.xx
(2i)∗(2i+1) ,d.e∗ (−1),d.h∗ d.xx

(2i)∗(2i+1))

sinn(d) = d.s+d.e∗d.h∗ d.xx
(2n)∗(2n+1)

The following lemma can be proved:

f i(x) = fi ◦ . . .◦ f0(x) = (x2,
i

∑
j=0

(−1) j ∗ x2 j+1

(2 j+1)! ,(−1)i+1, x2i+1

(2i+1)!)

for all i = 0, . . . ,n−1.
According to the lemma the pipeline skeleton will produce a correct result.
The evaluation order of Clean programs is lazy, so the evaluation of some expres-

sions may be postponed by the run-time system. In case of distributed applications the
order of evaluation may be important in several cases, so for some expressions a strict
evaluation should be enforced. Functions returning the value of the system clock has to
be evaluated strictly for example.

5 Performance measurement

The cost of the communication via the CORBA server objects is relatively high com-
pared to the cost of this simple computation. If we slow down the computationsini

functions simulating a most complex computation (we apply a weighted function), then
we can observe even a small speedup (see figure 1).

Fig. 1.Speedup with different number of input data

6 Conclusions

The presented Clean-CORBA interface and the abstract communication layer on top of
it is applicable for implementing computations in form of distributed process-networks.
The application may consist of components written in several programming languages.
We presented a simple pipeline computation written in the pure functional language
Clean. We observed a small speed-up of this computation on a 16 processor cluster.

References

1. Achten, P., Wierich, M.:A Tutorial to the Clean Object I/O Library, University of Nijmegen,
2000. http://www.cs.kun.nl/˜ clean

2. Chandy, K. M., Misra, J.:Parallel Program Design, Addison-Wesley, 1989.
3. Cole, M.: Algorithmic Skeletons, In: Hammond, K., Michaelson, G., eds.,Research Direc-

tions in Parallel Functional Programming, pp. 289-303, Springer-Verlag, 1999.
4. Gaĺan, L.A., Pareja, C., Peña, R.: Functional Skeletons Generate Process Topologies in Eden,

In: Int. Symp. on Programming Languages, Implementations Logics and Programs PLILP’96,
Aachen, Germany, LNCS, Vol. 1140, pp. 289-303, Springer-Verlag, 1996.

5. Horv́ath Z., Hernýak Z., Kozsik T., Tejfel M., Ulbert A.: A Data Intensive Application on
a Cluster - Parallel Elementwise Processing, In: Kacsuk P., Kranzlmüller D., Neḿeth Zs.,
Volkert J. (eds.):Distributed and Parallel System - Cluster and Grid Computing, Proc. of
4th Austrian-Hungarian Workshop on Distributed and Parallel Systems, Kluwer Academic
Publishers, The Kluwer International Series in Engineering and Computer Science, Vol. 706,
pp. 46-53, Linz, Austria, September 29-October 2, 2002.

6. Horv́ath Z., Zśok V., Serrarens, P., Plasmeijer, R.: Parallel Elementwise Processable Functions
in Concurrent Clean, to appear inComputers & Mathematics with Applications, Elsevier.

7. Horv́ath Z., Varga Z., Zśok V.: Clean-CORBA Interface for Parallel Functional Programming
on Clusters. To appear in: Proceedings of SPLST’03.

8. Huch, F., Norbisrath, U.: Distributed Programming in Haskell with Ports,Implementation of
Functional Programming Languages, 12th International Workshop, IFL2000, Aachen, Ger-
many, September 4-7, 2000, LNCS, Vol. 2011, pp. 107-121, Springer 2001, http://www-
i2.informatik.rwth-aachen.de/hutch/distributedHaskell.

9. Loidl, H.W., Klusik, U., Hammond, K., Loogen, R., Trinder, P.W.: GpH and Eden: Compar-
ing Two Parallel Functional Languages on a Beowulf Cluster in Gilmore, S. (ed.):Trends in
Functional Programming, Vol. 2, pp. 39-52, Intellect, 2001.

10. Rishiyur S. Nikhil, Arvind:Implicit Parallel Programming in pH, Morgan Kaufmann, 2001.
11. Serrarens, P.R.:Communication Issues in Distributed Functional Computing, PhD Thesis,

Catholic University of Nijmegen, 2001.
12. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.J.: Algorithm + Strategy = Paral-

lelism.Journal of Functional Programming, Vol. 8, No. 1, pp. 23-60, 1998.
13. Varga Z.: Clean-CORBA Interface, Master thesis, University of Eötvös Loŕand, Budapest,

2000. (Supervisor: Horv́ath Z.)

	Functional Programs on Clusters

