
Proving Invariants of Functional Programs?

Zoltán Horv́ath, Taḿas Kozsik, Ḿat́e Tejfel

Eötvös Loŕand University
Department of General Computer Science

{hz,kto,matej}@inf.elte.hu

Abstract. In a pure functional language like Clean the values of the functional
variables are constants; variables of functional programs do not change in time.
Hence it seems that temporality has no meaning in functional programs. However,
in certain cases (e.g. in interactive or distributed programs, or in ones that use IO)
we would like to consider a series of values computed from each other as different
states of the same “abstract object”. For this abstract object we can already prove
temporal properties. In this paper we present the concept of object abstraction
and show how to interpret and prove temporal properties of functional programs.

1 Introduction

When proving correctness of (sequential or parallel) imperative programs, one can
make use of several temporal logical operators. Some well-known such operators are
e.g. “nexttime”, “sometimes”, “always” and “invariant”. All these operators can be ex-
pressed based on the “weakest precondition” operator [6,7]. However, temporal logical
operators are less frequently used when reasoning about functional programs (among
the few exceptions are e.g. [5,8,9,10]). This paper aims to answer the question how to
interpret and prove temporal properties of functional programs.

The temporal logical operators describe how the values of the program variables
(the so-called program state) vary in time. For example, the weakest precondition of a
program statement with respect to a postcondition holds for a state “a” if and only if
the statement starting from “a” always terminates in a state for which the postcondition
holds. The weakest precondition of a statement is possible to compute in an automated
way: one has to rewrite the postcondition according to the substitution rules defined by
the statement. We will show some examples of how this is done in section 3.1.

A propertyP is an invariant with respect to a program ifP holds initially and all
the atomic statements of the program preserveP. Note that the second part of this
requirement can be expressed with the weakest precondition operator: for all atomic
statements, the weakest precondition of the statement with respect toP must follow
from P. This ensures that if we execute an atomic statement in a state whereP holds
(and hence the weakest precondition of the statement with respect toP also holds), the
statement will again terminate in a state for whichP holds. We will formalize this in the
following way. (The weakest precondition operator is denoted bywp, while a program
and its atomic statements are denoted bySands, respectively.)

∀s∈ S: P⇒ wp(s,P)
? Supported by OTKA T037742

Invariants can manifest in many ways: we can talk about loop invariants (where the
atomic statement is a loop body), type invariants (where the atomic statements are the
primitive operations of a type), and invariants are an important concept in many par-
allel programming methodologies as well (see e.g. [4]). We believe that invariants are
popular because they provide a very natural concept and a very useful abstraction for
specifying and proving properties of programs. This paper focuses on invariant prop-
erties, hence we omit the description of the other afore-mentioned temporal logical
operators.

When proving correctness of functional programs, the practicability of temporal
operators is not obvious. In a pure functional programming language a variable is a
value, like in mathematics, and not an “object” that can change its value in time, viz.
during program execution. Due to referential transparency, reasoning about functional
programs can be accomplished with a fairly simple mathematical machinery, using,
for example, classical logic and induction (see e.g. [11]). This fact is one of the basic
advantages of functional programs over imperative ones.

In our opinion, however, in certain cases it is natural to express our knowledge about
the behaviour of a functional program (or, we had better say, our knowledge about the
values the program computes) in terms of temporal logical operators. Moreover, in the
case of parallel or distributed functional programs, temporal properties are exactly as
useful as they are in the case of imperative programs. For example, those invariants
which are preserved by all components of a distributed or parallel program, are also
preserved by the compound program.

According to our approach, certain values computed during the evaluation of a func-
tional program can be regarded as successive values of the same “abstract object”. This
corresponds directly to the view which certain object-oriented functional languages
hold.

We have chosen Clean [13], a lazy, pure functional language for our research. An
important factor in our choice was that a theorem prover, Sparkle [11] is already built
in the integrated development environment of Clean. Sparkle supports reasoning about
Clean programs almost directly. We would like to extend the first-order logic used by
Sparkle with temporal operators, thus making semi-automated reasoning about parallel,
interactive or distributed Clean programs easier.

The “uniqueness type system” of Clean [2] makes destructive updates possible with-
out violating referential transparency. The uniqueness type system guarantees that cer-
tain values are only used once in the program (they are unique), hence they can be
destructively updated when computing other values. This technique is used to define
I/O in Clean, furthermore it greatly increases the efficiency of Clean programs. It is in-
teresting to see that in many cases, an abstract object of our approach corresponds to a
set of unique values: values that were computed from each other by destructive updates.
Hence the abstract view of objects often—but not always—coincides with the memory
layout of the implementation.

The rest of the paper is organized in the following way. In Section 2 we introduce
our approach through a simplistic example. Then in Section 3 we present a formal
method for the calculation of weakest preconditions and for the proof of invariant prop-
erties. Next, in Section 4, we give a more realistic example of object abstraction, and

show a simple invariant property of an abstract object. Section 5 presents the proof of a
more interesting invariant property. Finally, in section 6, we draw the conclusions and
define future work.

2 Object abstraction

In Clean the uniqueness type system makes destructive updates possible without violat-
ing referential transparency. Not only the efficiency of Clean programs can be increased
by destructive updates, but also the I/O system of Clean is defined in terms of a “unique
environment”. (The other well-known technique to define pure functional I/O is the
monadic approach, applied in the language Haskell [12].) The Object I/O library [1]
is a standard API for Clean. Programs written with the Object I/O library are reac-
tive. They create a unique state space (referred to as “process state” and “local state”
in Object I/O terminology), and define initialization and state transition functions. The
library supportsinteractive processes, which can be created and closed dynamically.
Each interactive process may consist of an arbitrary number ofinteractive objects. To
characterize the behavior of I/O processes we can use a temporal logic-based notation
[4,7]. We have researched this issue in [8,9].

This paper investigates a more general approach to formulating and proving tempo-
ral properties of functional programs. In this approach we can also reason about Clean
programs that do not use unique values or interactive Object I/O processes. Not only the
call-back functions of Object I/O will be state transition functions: the programmer can
demarcate state transitions explicitly in a more flexible way. Different values computed
by a functional program and stored in variables (in the functional sense of variables)
can be regarded as different states of the same object. State transitions will thus be the
pieces of functional code that compute such a value from another one.

Our first example, though it might seem oversimplified, illustrates well our concept
of object abstraction. Suppose we want to sort (in ascending order) a list containing
five numbers. We will make use of the functionbubble. This function searches for two
elements in a list that are in wrong order. If it can find such two elements, it swaps
them and returns the resulting list, otherwise it returns the original list. Obviously, it is
sufficient to invokebubble 25 times to sort five numbers.

sort_5 list = bubble (bubble (bubble (... (bubble list)...)))

We can write the same program in Clean using so-called let-before expressions.
Both of the following function definitions are legal in Clean and have the same meaning.
The one on the right uses the same name,list, to all 24 variables. In this case the usual
static nested scoping rules apply. (The line “# list = bubble list” introduces a
nested scope with a freshlist variable, thus hiding the variable with the same name
appearing on the right-hand side.)

sort_5 list sort_5 list
ls1 = bubble list # list = bubble list
ls2 = bubble ls1 # list = bubble list
ls3 = bubble ls2 # list = bubble list

... ...
ls23 = bubble ls22 # list = bubble list
= bubble ls23 = bubble list

An important property of thebubble function is that the list it returns is a permu-
tation of the list it receives. If we regard the list values computed insort_5 as the
successive states of the same abstract object, and considerbubble an atomic operation,
we can formulate an invariant, a temporal property ofsort_5. If we denote our abstract
list object with list , then the invariant can be written as:

list ∈ perm(list).

Herelist denotes the argument ofsort_5.
Consider now the second definition ofsort_5, the one that contains the variables

ls1, ls2, ls3, etc. Our approach should allow us to declare that the abstract objectlist
is made up of the valueslist, ls1, ls2, ..., ls23 andbubble ls23. Furthermore, it
should allow us to declare thatbubble is considered atomic and that each invocation of
bubble in sort_5 is a state transition.

2.1 The object abstraction operator

We introduce an operator which maps functional values to our semantic domain, the
state space. This “object abstraction” operator will be used to refer to the abstract object
to which a value belongs. In our sorting examplelist will refer to the same abstract

object as e.g.ls1 . This can be expressed by the equation

list = ls1 .

(Hence the object abstraction operator will define an equivalence relation over the val-
ues appearing in a functional program.) Moreover, the successive values of the same
abstract object will define an abstract time structure denoted by the partial ordering<t .

list <t ls1 <t ls2 <t . . . <t ls23<t (bubble ls23)

If more than one object is present in a certain piece of code, then the states are
compositions of the individual states of the objects. In such cases two or more objects
can be involved in an atomic state transition over this compound state space.

Since evaluation is lazy in Clean, the partial ordering<t determines a branching
time structure over the state space. Fortunately, we do not have to refer explicitly to the
<t relation, because we use temporal logical operators instead.

2.2 Identification of state transitions

It would be useful to assign symbolic names to pieces of code which correspond to
atomic state transitions. We introduce an infix binary operator for labeling, which does
not have any influence on computation: the operator “.:” simply drops its first argu-
ment, the label. For example, we can label a state transition"b" in the following way:

list = "b" .: (bubble list)

This let before definition determines the value oflist on the left-hand side depend-
ing on the value oflist on the right-hand side. The twolist-s are different from each
other, thelist on the left-hand side hides (within its scope) thelist on the right hand
side. We may consider the twolist-s (two different functional entities) belonging to
the same abstract objectlist . According to this object abstraction thelist on the
left-hand side represents a descendant of the value oflist on the right-hand side. The
let-before definition labeled by"b" represents an atomic state transition.

3 Formal calculations

In this section we explain how to calculate the weakest precondition of an atomic action
with respect to a postcondition, and how to prove invariant properties of programs.
Consider the following piece of code, which increases a value by one modulo 5.

v = "f" .: (if (v<5) (inc v) 0)

Let our state space consist of a single component, the state represented by objectv .
Both values denoted byv are associated with this object. Moreover, we assume that the
state transition labeled with"f" is atomic.

3.1 Formal calculation of weakest precondition

Let us consider the following postconditionR:

R(v) = (0≤ v < 5).

We are interested in characterizing all states from where the atomic state transition
"f" terminates in a state for whichRholds, i.e. we would like to determine the weakest
precondition of"f" with respect toR.

If v≥ 5, then the newv value will be equal to 0, hence the new value of the abstract
object v will be 0. If v < 5, then the newv is calculated by incrementing the oldv,
hence the state ofv is changed tov +1. The postcondition holds for the new value,
if the weakest precondition calculated below holds for the original state. This example
illustrates the general method that we can use to calculate the weakest precondition: in
the postcondition we should substitute the old value of the object with its new value.

wp(f ,R) =
(v < 5 → 0≤ inc(v) < 5) ∧ (v ≥ 5 → 0≤ 0 < 5)

The new value used in the substitution is the right-hand side of the definition of the
function which function is applied on the old value of the abstract object. This way the
calculation of the weakest precondition is a simple rewriting step, which fits very well
into the world of functional computations.

3.2 Proving invariants

Proving that a propertyP is an invariant requires two things. First, one has to check
whether the initial values of the objects satisfyP. Next, one has to calculate the weakest
precondition for all atomic state transitions: for each such atomic state transition one
has to compute the substitution ofP using the corresponding state transition function.
Then one should prove that all thesewp-s hold, ifP holds.

Now we show how to prove that the atomic step"f" preserves the truth ofR, i.e.
R⇒ wp(f ,R). We have to prove by hand or by a proof assistant (e.g. Sparkle) the
following theorem:

0≤ v < 5 ⇒
(v < 5 → 0≤ inc(v) < 5) ∧ (v ≥ 5 → 0≤ 0 < 5).

To complete the proof we have to apply the definition ofinc—which is a rewriting step
again—and then use the well-known deduction rules of classical logic.

4 A more realistic example

Consider now a more complex example. The analyzed Clean function will be a binary
search. It takes an array of elements of type “a” (where “a” is a type variable expressing
polymorphism) and a value of type “a”. It returns eitherNothing, if the given value
could not be found in the array, or(Just h), if the given value was found at position
h in the array. The array is unique (denoted by the* symbol in the type specification
of the function), that’s whybin_search also returns a new unique reference to it. The
implementation of unique arrays is very similar to objects in imperative languages,
in the sense that the new array is stored in the same memory location where the old
array was stored. This is possible because uniqueness guarantees that there are no more
references to the old array.

bin_search :: *{a} a -> (Maybe Int, *{a}) | Ord, Eq a
bin_search arr e

(s, arr) = usize arr
= find_it arr 0 (s-1)
where find_it arr u v

| u > v
= (Nothing, arr)

| otherwise
h = (u+v)/2
(arr_h, arr) = uselect arr h
| arr_h == e

= (Just h, arr)
| otherwise

(u,v) = if (arr_h<e) (h+1,v) (u,h-1)
= find_it arr u v

Functionsusize anduselect are from the standard library. They can be used to re-
trieve the size and an element of a unique array, respectively.

Now let us applybin_search on an arrayarr and an elemente.

(h,arr1) = bin_search arr e

Note that the binary search algorithm requires as precondition that its first argument is
a sorted array. We will denote it with the following formula:

sorted(arr)

We introduce the abstract objectarr from valuesarr andarr1, wherearr <t

arr1. First we would like to prove a trivial invariant property of this object, namely that
bin_search does not change the unique array.

P(arr) = (arr = arr), P∈ inv

We will not considerbin_search an atomic state transition, hence we will dive into
its definition. We identify one more state of thearr object, namely whenarr has
the valuearr returned byusize. Now the second state transition ofarr changes this
second occurrence ofarr to arr1 by applyingfind_it. The two state transitions are
the following:

(s,arr) = usize arr
(h,arr1) = find_it arr 0 (s-1)

In order to prove thatP is an invariant ofbin_search, we will prove that it is also an
invariant offind_it. Again, we will not consider the second state transition atomic,
hence we will dive into the definition offind_it. Sincefind_it is defined as an alter-
native construct with two branches, we will replace our second state transition with two
other state transitions: one corresponding to theu> v case, the other one corresponding
to theotherwise (that is the¬(u > v)) case. This latter can be further refined, until
we obtain the following six state transitions ofarr , which we will not intend to fur-
ther refine. (Irrelevant results of state transitions are replaced with the joker character
underscore.)

s1: (_,arr) = usize arr
s2: if u > v, then(_,arr1) = (Nothing, arr)
s3: if ¬(u > v), then(_,arr1) = uselect arr h
s4: if ¬(u > v)∧arr h = e, then(_,arr1) = (Just h, arr)
s5: if ¬(u > v)∧¬(arr h = e), then(_,arr1) = find_it arr u v

(Notice that the variablesu andv in the predicate and in the formal arguments of
find_it represent two different values with the same name.)

Note that the last state transition is the recursive application offind_it and therefore
can be cut. We will consider the remaining 4 state transitions atomic. To prove that
(arr = arr) is an invariant ofbin_search andfind_it with respect to the atomic-
ity level described above, we show that all these atomic state transitions preserve this
property and that this property holds for the initial value ofarr . The first part is fairly

simple:s2 ands4 apply the identity function on the array, whiles1 ands3 applyusize
anduselect, which again do not change the value of the abstract object. (For this lat-
ter we must formulate axioms about these two standard library functions.) Finally, we
should prove that the initial value ofarr , namelyarr satisfies(arr = arr), which is
obvious, since this requires thatarr should be equal to itself.

5 A more interesting invariant property of binary search

If we want to prove the partial correctness ofbin_search—namely thate does not ap-
pear inarr, if “ bin_search e arr” returnsNothing, and thate can be found inarr
at positionh, if “ bin_search e arr” returns “Just h”—we can make use of some
further invariants of our program. We can identify new abstract objects and express our
assumptions about them in terms of invariants. New abstract objects and new invariants
describing their behaviour are introduced usually when we dive into a function invoca-
tion. In our example this happens at the point wherefind_it is applied inbin_search.

Hence we extend the state space withu and v : these objects specify the interval
wherefind_it looks for the valuee in arr . We are about to formulate invariants
expressing thate cannot be found inarr at a position outside the interval[u .. v].

First of all let us describe more precisely the object abstraction foru and v .
Their initial values are 0 ands−1, respectively, according to the application offind_it
within bin_search. (Note that the valuescomes fromusize arr , thus it is the length
of the array.) Furthermore, all occurrences of the second argument offind_it corre-
spond to the u object, and all occurrences of the third argument offind_it corre-
spond to the v object.

The extension of the state space—and the introduction of new abstract objects—is
often followed by the refinement of the time structure<t . For example, inbin_search
we can cut the state transitions5 (previously considered atomic) into two steps. The two
new state transitions replacings5 will be considered atomic steps from now on. They
are the following:

s5a: if ¬(u > v)∧¬(arr h = e), then
(u,v) = if (arr_h<e) (h+1,v) (u,h-1)

s5b: if ¬(u > v)∧¬(arr h = e), then(_,arr1) = find_it arr u v

Our refined invariant,P′ will be the conjunction of four parts. The first part is the
originalP, which states that the initial value of the array object is preserved. The second
part specifies that the array remains sorted. The third part states that the interval identi-
fied by u and v is either empty or part of the domain of the array. Finally, the fourth
part claims that the element we are looking for is not outside the[u , v] interval. The
free variablesx, y andi in the following formulas are implicitly universally quantified.

P′(arr , u , v) =
P(arr) ∧ P0(arr) ∧ P1(arr , u , v) ∧ P2(arr , u , v)

where

P0(arr) = sorted(arr)

P1(arr , u , v) =((
(x,y) = usize arr

)
∧

(
u ≤ v

))
→ 0≤ u ∧ v < x

P2(arr , u , v) =((
(x,y) = uselectarr i

)
∧

(
i < u ∨ i > v

))
→ ¬(x = e)

To prove thatP′ is an invariant offind_itwe have to check whether the initial values of
the objects satisfyP′, and we have to show thatP′ guarantees the weakest precondition
of P′ for all the atomic actionss2, s3, s4, s5a ands5b of find_it. Note thats1 need
not be considered, since this state transition is outside offind_it, and hence the scope
of P′. However, we still have to prove for this state transition (and also for the others,
s2, s3, s4, s5a ands5b) the relevant, weaker invariantP∧P0, because this invariant will
be used as a precondition during the proof of “(P′ ∈ invf ind it)”. We omit the proof for
“(P∧P0 ∈ invbin search)” here, since it is fairly simple; we will focus onfind_it and
P′.

The preconditionQ for find_it is the following:P∧P0∧ u = 0∧ v = s−1.
This should guaranteeP′, that isQ⇒P∧P0∧P1∧P2. The interesting part is thatQ⇒P1

andQ⇒ P2. If we rewriteP1 andP2 according to the equalities found inQ, we obtain
the following formulas:

P1(arr,0,s−1) =((
(x,y) = usize arr

)
∧

(
0≤ s−1

))
→ 0≤ 0∧s−1 < x

P2(arr,0,s−1) =((
(x,y) = uselect arr i

)
∧

(
i < 0∨ i > s−1

))
→ ¬(x = e)

The first formula is valid, because the value ofx appearing in the formula must be equal
to s, the size ofarr obtained ins1. (Here we have to use the definition of the functional
variables, namely(s,_) = usize arr.) The second formula is also valid, since the
left-hand side of the implication cannot hold. (The standard library functionuselect
is undefined when applied to an arrayarr and an indexi outside of the domain of
arr. This can be expressed by the following axiom:(p,q) = usize r → (x,y) =
uselect q i → 0≤ i < p.)

Now let us prove thatP′ ⇒ wp(f ,P′) for all state transitions “f” froms2, s3, s4, s5a

ands5b. If we have already provedP∧P0 ⇒ wp(f ,P∧P0), as mentioned earlier, then
we only need to show thatP′ ⇒ wp(f ,P1∧P2). (This is a nice property of refined in-
variants.) The proofs fors2, s3 ands4 are trivial, hence we omit these cases. Moreover,

s5b is a recursive application offind_it, therefore this case can be cut. Hence we fo-
cus on the single interesting part:P′ ⇒ wp(s5a,P1∧P2). According to the well-known
conjunctivity property ofwp, we can perform the proof separately for the weakest pre-
condition ofP1 and for that ofP2. Furthermore, sinces5a contains anif construct, the
proofs for the two branches of theif can be separately given. Hence we obtain four
goals to prove. Here we give the ones forP1; the other two are similar, just replaceP1

with P2. By calculation of the weakest precondition we get:

P′(arr , u , v)∧¬(u > v)∧¬(arr h = e)∧ (arr h < e)⇒
P1(arr ,h+1, v)

P′(arr , u , v)∧¬(u > v)∧¬(arr h = e)∧¬(arr h < e)⇒
P1(arr , u ,h−1).

As an illustration, we present the proof for the first goal forP1. First let us expand the
formulaP1(arr ,h+ 1, v), which we have obtained after the substitution ofu by
h+1:

P1(arr ,h+1, v) =((
(x,y) = usize arr

)
∧

(
h+1≤ v

))
→ 0≤ h+1∧ v < x.

Notice that the only non-trivial part of the proof is to show that under the appropriate
hypotheses 0≤ h+1. Remember that the functional variableh denotes(u + v)/2,
where the symbol/ is the division operator on integer numbers (e.g. 3/2= b3

2c= 1 and
(−3)/2 = d−3

2 e = −1). Hence the proof can be easily accomplished by applying the
following three lemmas onu and v :⌈

x+y
2

⌉
+1≤ y ⇒

⌊
x+y

2

⌋
+1≤ y ⇒ x≤

⌊
x+y

2

⌋
+1 ⇒ x≤

⌈
x+y

2

⌉
+1

The proof of the second goal forP1 is symmetrical to this proof. Finally, the proofs
of the two goals forP2 make use of the hypothesisP0(arr), which formulates that
arr is sorted. These proofs are left to the reader as an exercise.

6 Conclusions and future work

In this paper we have presented a method that allows the definition and proof of tempo-
ral properties (namely invariants) in pure functional languages. We have introduced the
concept of object abstraction by contracting functional (that is mathematical) variables,
which represent static values, into objects with dynamic (temporal) behaviour. Accord-
ing to this concept we could define an abstract time structure in programs, representing
the computational dependencies of values (object states) on other values (other object
states). We have also introduced the notion of state transitions. We have illustrated how

invariants over a set of atomic state transitions can be computed and how this process
can be automatized.

Our approach defines an alternative semantics of Clean programs. According to
this alternative semantics, some evaluation steps correspond to state transitions over an
abstract state space. The abstract state space is created by the object abstraction, where
series of pure functional values are associated to an abstract objects. The evaluation
order is non-deterministic in case of lazy evaluation, so the transition steps determine a
branching time structure over the elements of the state space.

The mapping of values to objects and the labeling of state transitions can be per-
formed by using annotations and/or supported by an appropriate user interface inte-
grated into the proof assistant. Furthermore, objects and state transitions can be ex-
tracted from a functional program written in an appropriate style in an automated way.

Our model is straightforward to extend to a full temporal logic. We can prove all
temporal properties which are based on the ”nexttime” operation, i.e. on the calculation
of the weakest precondition [4,7]. We intend to prove general safety properties (un-
less), and progress properties (leads-to, ensures) for Clean programs in the future. This
methodology could be supported by an extension to Sparkle [11], the theorem prover
tool for Clean, to make reasoning about temporal properties of interactive, parallel or
distributed Clean programs possible.

References

1. Achten, P., Plasmeijer, R.: Interactive Objects in Clean.Proceedings of Implementation of
Functional Languages, 9th International Workshop, IFL’97(K. Hammond et al (eds)), St. An-
drews, Scotland, UK, September 1997, LNCS 1467, pp. 304–321.

2. Barendsen, E., Smetsers, S.: Uniqueness typing for functional languages with graph rewriting
semantics.Mathematical Structures in Comp. Sci.6, pp. 579–612. 1996.

3. Butterfield, A., Dowse, M., Strong, G.: Proving Make Correct: IO Proofs in Haskell and
Clean.Proceedings of Implementation of Functional Programming Languages, Madrid, 2002.
pp. 330–339.

4. Chandy, K. M., Misra, J.:Parallel program design: a foundation. Addison-Wesley, 1989.
5. Dam, M., Fredlund, L., Gurov, D.: Toward Parametric Verification of Open Distributed Sys-

tems.Compositionality: The Significant Difference(H. Langmaack, A. Pnueli, W.-P. De Roever
(eds)), Springer-Verlag 1998.

6. Dijkstra, E. W.:A Discipline of Programming. Prentice-Hall Inc., Englewood Cliffs (N.Y.),
1976.

7. Horv́ath Z.: The Formal Specification of a Problem Solved by a Parallel Program—a Re-
lational Model.Annales Uni. Sci. Bp. de R. Eötvös Nom. Sectio Computatorica, Tom. XVII.
(1998) pp. 173–191.

8. Horv́ath Z., Achten, P., Kozsik T., Plasmeijer, R.: Proving the Temporal Properties of the
Unique World.Proceedings of the Sixth Symposium on Programming Languages and Software
Tools, Tallin, Estonia, August 1999. pp. 113–125.

9. Horv́ath Z., Achten, P., Kozsik T., Plasmeijer, R.: Verification of the Temporal Properties of
Dynamic Clean Processes.Proceedings of Implementation of Functional Languages, IFL’99,
Lochem, The Netherlands, Sept. 7–10, 1999. pp. 203–218.

10. Kozsik T., van Arkel, D., Plasmeijer, R.: Subtyping with Strengthening Type Invariants.
Proceedings of the 12th International Workshop on Implementation of Functional Languages

(M. Mohnen, P. Koopman (eds)), Aachener Informatik-Berichte, Aachen, Germany, September
2000. pp. 315–330.

11. de Mol, M., van Eekelen, M., Plasmeijer, R.: Theorem Proving for Functional Programmers,
Sparkle: A Functional Theorem Prover, Springer Verlag, LNCS 2312, p. 55 ff., 2001.

12. Peyton Jones, S., Hughes, J., et al.Report on the Programming Language Haskell 98, A
Non-strict, Purely Functional Language, February 1999.

13. Plasmeijer, R., van Eekelen, M.:Concurrent Clean Version 2.0 Language Report, 2001.
http://www.cs.kun.nl/˜clean/Manuals/manuals.html

	 Proving Invariants of Functional Programs

