
Prototype Environment for Refactoring Clean
Programs ∗

Extended abstract

Roźalia Szab́o-Nacsa, Ṕeter Divíanszky, Zolt́an Horv́ath
Department of Software Technology and Methodology,

Eötvös Loŕand University, Hungary
e-mail:{nacsa,divip,hz}@inf.elte.hu

Abstract

We present here the prototype of an interactive environment where one can incre-
mentally carry out programmer-guided meaning-preserving program transformations
in functional languages. We discuss an alternative approach to the problems of storing
and extracting the syntactic and also the static semantic information in order to be flex-
ible enough to perform the desired transformations. In our approach the program to be
redesigned is stored in a relational database.

Several transformation case studies will help us to demonstrate how this database
can be used to transform programs, check the preconditions and make compensation
steps to ensure correct transformations.

We also show an interactive environment which will help the programmer to choose
the appropriate refactoring step and its parameters. During redesign process the pro-
grammer is faced with one of the selected “views” extracted from the database.

Different transformations can be carried out on different views, depending on which
view is preferable for the programmer and/or which view is more suitable for the given
transformation.

Categories and Subject Descriptors:D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.6 [Software Engineering]: Programming Environments; D.3.2
[Programming Languages]: Language Classifications -Applicative (functional) lan-
guages;

Key Words and Phrases:Clean, Haskell, program transformation, refactoring, language-
aware programming environments, semantic editors

∗Full technical paper will be published in Proceedings of ICAI 2004. Supported by the Hungarian National
Science Research Grant (OTKA), Grant Nr. T037742 and by the Bolyai Research Scholarship.

1



1 INTRODUCTION 2

1 Introduction

We are going to develop such an interactive environment, where one can incrementally
carry out programmer-guided meaning-preserving program transformations in functional
languages. We discuss an alternative approach to the problems of extracting and storing the
syntactic and also the static semantic information in order to be flexible enough to perform
the desired transformations. In our approach the program to be redesigned is planed to be
stored in a set of related abstract syntax- and semantic-ware tables (relational database).

During redesign process the programmer is faced with one of the selected “views”,
extracted from this database. Essentially different views represent different abstraction
levels. As far as the database stores all program related information, it allows easy access to
accurate different type of semantic related information including static semantics, program
properties, proof of properties, etc. Next to the traditional source code view programmer is
served with different other views: view of “module hierarchy”, view of “list of functions”,
process diagram, properties of functions etc. Functional language dialects (Clean, Haskell)
can be seen as several views as well.

Different transformations can be carried out on different views, depending on which
view is preferable for the programmer and/or which view is more suitable for the given
transformation. One can perform the transformation highlighting some parts of the view
and using the controls connected to the view. To ensure correct transformations, precondi-
tion of transformations will be checked with the help of the database tables. In some cases
when the precondition does not hold, we will interactively offer compensation transfor-
mations to make it true letting the programmer to accept or refuse it. The modification is
immediately recorded into the database, so the programmer can go on with the redesigned
program.

In the future the function properties also can be stored and checked using the infor-
mation stored in the database. It seems to be a natural tool for version management as
well.

We believe that storing the program related syntactic and semantic information into a
relational database results a simpler code in implementation of our transformation environ-
ment, and makes it easier to extend it’s services.

2 Refactoring in Few Words

Refactoring is a programming technique for improving the design of a program without
changing its behaviour. In other words, you clean up your code but do not change what it
does. Refactoring may precede a program modification or extension, preparing the program
for the modification, or may be used after finishing the work in order to bring the program
into a nicer shape. The transformations of refactoring can be used for optimisation too. In
these case the programmer writes a basic implementation (“specification”) of the code, and
improve its performance by refactoring steps.

Refactoring is carried out incrementally, in small steps, making small changes at once.
After each step we must be sure, that the behavioural semantic of the code, at least from
the “black box” point of view has not changed.

Refactoring is a particular sort of program transformation: renaming, unfolding, add/remove/split
arguments, delete/add definition, etc. Consider a very simple refactoring: rename function.
If you are going to make a “true refactoring”, ie. behaviour-preserving transformations it
is not enough to make a single name change, but you have to check if it can be accepted
throughout all of your program, analysing bindings, calls, module and name space.

Refactoring is a well known technique within the object-oriented programming and
software engineering communities, but it is not afloat within the functional programming
one.



3 DATABASE REPRESENTATION OF PROGRAMS 3

3 Database Representation of Programs

3.1 Overview

How can we store a program in a relational database? Our approach is the following: We
translate the different program representations which can be found in an ordinary compiler
into relations and store these relations in database tables.

One part of this representation is a straightforward translation of the syntax tree into
relations. The identifiers are identified not by their name (a string) but by an id.

Other database tables contains information about structure, types, properties and all
type of information which may be useful during the transformation of the program.

The main advantages of this approach are:

Identification We can directly identify the fragments of the code like modules, functions,
scopes, expressions and data structures by their ids. This is useful for interactive
views. One solution for connecting the views and the database would be to store
some positions related to the views in the database. Instead of this we will store the
database ids in the views, so we can add a new view without changing the database.

Easy AccessGiven an id of an expression, we can easily reach not only its components
but also its parent. (We can’t do this in the syntax tree)

Arbitrary graph can be represented in a database — there is no difference between
accessing a component from an expression and accessing the definition of a function
from one of its application.

Clearer Representation The different aspects of the program — comments, names, syn-
tactic polimorphism, structure, etc. — are separated clearly in different groups of
tables, unlike in the syntax tree. Later on the program transformations can be classi-
fied by the property: which table groups will it modify.

Easier Compilation The executable can be generated easier from the database — the pars-
ing phase and the connection between names and definitions vanish. The compiler
also can use the transformations offered by our environment.

Communication between projectsConcurrent refactoring of projects becomes possible
because all of the projects will be in the same database.

A project will be not identified as set of modules but as a start function. In the other
point of view, we will have only one big project and we have to maintain only this
project. It will contain all of our old and new programs and they will always up to
date.

Communication between programmersThere is possibility for a central database.

Usage of Database SystemsWe should not bother with data storage problems; the database
system which we use will solve these problems.

Flexible Treatment of Data With this mixed representation we will retrieve all type of
information easily. On the other side the complexity of the system will grow. We
would like solve this by a two level database, see section 3.1.

And the disadvantages are:

Indirect Access of data We can only reach the data through function calls so we can not
benefit from the existence of patterns if we implement our functions in a functional
language.

Execution Time Retrieving data from a database is slower than reaching data by memory
pointers. However, searching in a tree data structure may be even slower.



4 RELATED ONGOING WORKS 4

Project
Files

Executable

Source
Code

Controls
Other
View

Controls

Parser Compiler Pretty
Printer

Transformations
Pretty
Printer

GUI

Auxiliary
Functions

Constraint Database

Phisical Database

Theorem Prover

Figure 1: System Architecture

4 Related Ongoing Works

Beside refactoring, we would like to support two additional research projects concerning
Clean.

At first we would like to integrate the functional theorem prover Sparkle [6] in our
GUI. This could happen by storing properties of functions beside their types in the database
and adding new views and controls for these properties and the.sec files of the Sparkle
theorem prover.

The second related project is the introduction of abstract objects in Clean [7]. We can
help to create the abstract objects in a suitable view and store its structure in the database.
An other view would show these objects in a form (Core [6]) which can be processed by
the Sparkle theorem prover.

References

[1] Li, H., Reinke, C., Thompson, S.:Tool Support for Refactoring Functional Programs, Haskell
Workshop: Proceedings of the ACM SIGPLAN workshop on Haskell, Uppsala, Sweden, Pages:
27–38, 2003.

[2] Fóthi, Á., Horváth, Z., Nýeky-Gaizler, J.:A Relational Model of Transformation in Program-
ming, Proceedings of the 3rd International Conference on Applied Informatics, Eger-Noszvaj,
Hungary, Aug. 26-28, 1997. 335-349.

[3] Plasmeijer, R., Eekelen, M.:Concurren Clean Language Report, Technical Report CSI-R9816,
Computing Science Institute, University of Nijmegen, 1998.

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.:Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.

[5] Martin Fowler’s refactoring site, www.refactoring.com



REFERENCES 5

[6] de Mol, M., van Eekelen, m., Plasmeijer, R.:SPARKLE: A Functional Theorem Prover, Inter-
national Workshop on the Implementation of Functional Languages, IFL 2001, Selected Papers,
Springer-Verlag, LNCS 2312, pages 55-71.

[7] Horváth, Z., Kozsik, T., Tejfel, M.:Verifying invariants of abstract functional objects — a case
study6th International Conference on Applied Informatics, Eger, Hungary January 27-31, 2004.

[8] Divi ánszky P., Szab́o-Nacsa R., Horv́ath Z.:A Framework for Refactoring Clean Programs.6th
International Conference on Applied Informatics, Eger, Hungary, January 27-31 2004.

[9] Szab́o-Nacsa R., Divíanszky P., Horv́ath Z.: Prototype Environment for Refactoring Clean pro-
grams.CSCS 2004, The Fourth Conference of PhD Students in Computer Science Szeged, Hun-
gary, July 1-4, 2004.


	Introduction
	Refactoring in Few Words
	Database Representation of Programs
	Overview

	Related Ongoing Works

