Acta Cyberneticd 4 (1999) 1-.

An Environment for Safe Refactoring Clean
Programs*

Rozalia Szatb-Nacsd, Péeter Divianszky?, Zoltan Horvath?

1 Department of Software Technology and Methodology,
Eo6tvos Lorand University, Hungary
e-mail: nacsa@inf.elte.hu

2 Department of Programming Languages and Compilers,
Ebdtvds Lorand University, Hungary
e-mail:divip@aszt.inf.elte.hu, hz@inf.elte.hu

Abstract

We present here an interactive environment where one can incrementally carry out
programmer-guided safe (meaning-preserving) program transformations in functional
languages. We discuss an alternative approach to the problems of storing and extracting
the syntactic and also the static semantic information in order to be flexible enough to
perform the desired transformations. In our approach the program to be redesigned is
stored in a relational database.

A transformation case study will help us to demonstrate how this database can be
used to transform programs, check the preconditions and make compensation steps to
ensure correct transformations.

We also show an interactive environment which will help the programmer to choose
the appropriate refactoring step and its parameters. During redesign process the pro-
grammer is faced with one most appropriate “view” extracted from the database.

Different transformations can be carried out on different views, depending on
which view is preferable for the programmer and/or which view is more suitable for
the given transformation.

Categories and Subject Descriptors:D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.6 [Software Engineering]: Programming Environments; D.3.2
[Programming Languages]: Language ClassificatioAgplicative (functional) lan-
guages

Key Words and Phrases: Clean, Haskell, program transformation, refactoring,
language-aware programming environments, semantic editors

*Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr. T037742 and by the Bolyai
Research Scholarship.



Szabo-Nacsa R., Divianszky, P, Horvdth, Z.

References

(1]

(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]

Li, H., Reinke, C., Thompson, STool Support for Refactoring Functional Prograntsaskell
Workshop: Proceedings of the ACM SIGPLAN workshop on Haskell, Uppsala, Sweden, Pages:
27-38, 2003.

Fothi, A., Horvath, Z., Nyeky-Gaizler, J.:A Relational Model of Transformation in Program-
ming, Proceedings of the 3rd International Conference on Applied Informatics, Eger-Noszvaj,
Hungary, Aug. 26-28, 1997. 335-349.

Plasmeijer, R., Eekelen, MConcurrent Clean Language Repgofechnical Report CSI-R9816,
Computing Science Institute, University of Nijmegen, 1998.

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, Befactoring: Improving the Design of
Existing CodeAddison-Wesley, 1999.

Martin Fowler's refactoring sitewww.refactoring.com

de Mol, M., van Eekelen, M., Plasmeijer, RSPARKLE: A Functional Theorem Proyénter-
national Workshop on the Implementation of Functional Languages, IFL 2001, Selected Papers,
Springer-Verlag, LNCS 2312, pages 55-71.

Horvath, Z., Kozsik, T., Tejfel, M.Merifying invariants of abstract functional objects — a case
study6th International Conference on Applied Informatics, Eger, Hungary January 27-31, 2004.
Horvath, Z., Kozsik, T., Tejfel, M.Extending Sparkle Core Language with Object Abstraction
The Fourth Conference of PhD Students in Computer Science, Szeged, Hungary July 1-4, 2004.
Divianszky, P., SzabNacsa, R., Horath, Z.: Prototype Environment for Refactoring Clean
Programs6th International Conference on Applied Informatics, Eger, Hungary January 27-31,
2004.



