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Abstract

We present here an interactive environment where one can incrementally carry out
programmer-guided safe (meaning-preserving) program transformations in functional
languages. We discuss an alternative approach to the problems of storing and extracting
the syntactic and also the static semantic information in order to be flexible enough to
perform the desired transformations. In our approach the program to be redesigned is
stored in a relational database.

A transformation case study will help us to demonstrate how this database can be
used to transform programs, check the preconditions and make compensation steps to
ensure correct transformations.

We also show an interactive environment which will help the programmer to choose
the appropriate refactoring step and its parameters. During redesign process the pro-
grammer is faced with one most appropriate “view” extracted from the database.

Different transformations can be carried out on different views, depending on
which view is preferable for the programmer and/or which view is more suitable for
the given transformation.

Categories and Subject Descriptors:D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.6 [Software Engineering]: Programming Environments; D.3.2
[Programming Languages]: Language ClassificatioAgplicative (functional) lan-
guages
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