
1

An Environment for Safe Refactoring Clean
Programs∗

Rozália Szab́o-Nacsa1, Péter Diviánszky2, Zoltán Horváth2

1 Department of Software Technology and Methodology,
Eötvös Loŕand University, Hungary

e-mail: nacsa@inf.elte.hu

2 Department of Programming Languages and Compilers,
Eötvös Loŕand University, Hungary

e-mail:divip@aszt.inf.elte.hu, hz@inf.elte.hu

Acta Cybernetica14 (1999) 1-.

Abstract

We present here an interactive environment where one can incrementally carry out
programmer-guided safe (meaning-preserving) program transformations in functional
languages. We discuss an alternative approach to the problems of storing and extracting
the syntactic and also the static semantic information in order to be flexible enough to
perform the desired transformations. In our approach the program to be redesigned is
stored in a relational database.

A transformation case study will help us to demonstrate how this database can be
used to transform programs, check the preconditions and make compensation steps to
ensure correct transformations.

We also show an interactive environment which will help the programmer to choose
the appropriate refactoring step and its parameters. During redesign process the pro-
grammer is faced with one most appropriate “view” extracted from the database.

Different transformations can be carried out on different views, depending on
which view is preferable for the programmer and/or which view is more suitable for
the given transformation.

Categories and Subject Descriptors:D.2.3 [Software Engineering]: Coding Tools
and Techniques; D.2.6 [Software Engineering]: Programming Environments; D.3.2
[Programming Languages]: Language Classifications -Applicative (functional) lan-
guages;

Key Words and Phrases: Clean, Haskell, program transformation, refactoring,
language-aware programming environments, semantic editors

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr. T037742 and by the Bolyai
Research Scholarship.



2 Szabó-Nacsa R., Diviánszky, P., Horváth, Z.

References

[1] Li, H., Reinke, C., Thompson, S.:Tool Support for Refactoring Functional Programs, Haskell
Workshop: Proceedings of the ACM SIGPLAN workshop on Haskell, Uppsala, Sweden, Pages:
27–38, 2003.

[2] Fóthi, Á., Horváth, Z., Nýeky-Gaizler, J.:A Relational Model of Transformation in Program-
ming, Proceedings of the 3rd International Conference on Applied Informatics, Eger-Noszvaj,
Hungary, Aug. 26-28, 1997. 335-349.

[3] Plasmeijer, R., Eekelen, M.:Concurrent Clean Language Report, Technical Report CSI-R9816,
Computing Science Institute, University of Nijmegen, 1998.

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.:Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.

[5] Martin Fowler’s refactoring site, www.refactoring.com
[6] de Mol, M., van Eekelen, M., Plasmeijer, R.:SPARKLE: A Functional Theorem Prover, Inter-

national Workshop on the Implementation of Functional Languages, IFL 2001, Selected Papers,
Springer-Verlag, LNCS 2312, pages 55-71.

[7] Horváth, Z., Kozsik, T., Tejfel, M.:Verifying invariants of abstract functional objects — a case
study6th International Conference on Applied Informatics, Eger, Hungary January 27–31, 2004.

[8] Horváth, Z., Kozsik, T., Tejfel, M.:Extending Sparkle Core Language with Object Abstraction
The Fourth Conference of PhD Students in Computer Science, Szeged, Hungary July 1–4, 2004.

[9] Divi ánszky, P., Szab́o-Nacsa, R., Horv́ath, Z.: Prototype Environment for Refactoring Clean
Programs6th International Conference on Applied Informatics, Eger, Hungary January 27–31,
2004.


