
6th International Conference on Applied Informatics

Eger, Hungary, January 27–31, 2004.

Type Systems and the Program Verification∗

Zolt án Cs̈ornyei

Department of Programming Languages and Compilers,
Eötvös Loŕand University, Hungary

e-mail: csz@inf.elte.hu

Abstract

The famous slogan by Robin Milner said that ”well-typed programs do not go wrong”.
This slogan essentially asserts the soundness of the type system of the programming language.
This is the question whether the type system prevents us from writing meaningful and error-
free programs.

The proof generation capabilities of proof construction systems based on type theory.
The ground of the theory is the typedλ-calculus. The higher-order type system of higher-
order subtyping, known asFω

≤ , has been used as a core calculus for typed languages [1, 4].
There are practical type inference mechanisms that are applicable to any explicitly typed
polymorphic language [5]. The most commonly used methods are the Hindley-Milner system
for polymorphic type inference and the Milner-Mycroft algorithm for polymorphic recursion.

The Curry-Howard isomorphism is a correspondence between type systems and the in-
tuitionistic logic: ”types are formulas, and expressions are proofs”. Types correspond to
formulas and the termE of typeT correspond to a proof of the formulaT whereE is a repre-
sentation, or encoding, of the proof. For instance, minimal propositional logic corresponds to
simply typedλ-calculus, first-order logic corresponds to dependent types, second-order logic
corresponds to polymorphic types [6].

Program verification deals with the question whether a triple{Pre}P{Post} is consis-
tent. This can be formally defined as∀s.(Pre⇒ wp(P,Post)). Type systems allow to express
program properties which are automatically verified.

Techniques for formally specifying, understanding and verifying program behavior are
available, but the program proving is very expensive. Type systems for program languages
are well studied, and there are efforts to refine type systems to allow rich classes of program
properties to be expressed and to combine ideas of type theories, verification and interpreta-
tion [2, 3].

Categories and Subject Descriptors:D.2.4 [Software Engineering]: Software/Program Ver-
ification - Formal methods; F.4.1 [Mathematical Logic and Formal Languages]: Mathemat-
ical logic - Lambda calculus and related systems; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical logic -Proof theory;

Key Words and Phrases:λ-calculus,Fω
≤ , proof theory, type system, verification

∗Supported by the Hungarian National Science Research Grant (OTKA), Grant Nr. T037742.

1



Z. Csörnyei: Type Systems and the Program Verification 2

References

[1] Csörnyei, Z.:Type Systems, Lecture Notes (2003), http://people.inf.elte.hu/csz (In Hungarian)
[2] Dunfield, J., Pfenning, F.: Tridirectional Typechecking, inPOPL’04, January 14-16, 2004, Venice,

Italy
[3] Harper, R., Pfenning, F.: Type Refinements, Project Description, 2001.

http://www-2.cs.cmu.edu/1triple/triple.pdf
[4] Pierce, B.C.:Types and Programming Languages, The MIT Press, 2002.
[5] Schwartzbach, M.I.: Polymorphic Type InferenceBRICS Lecture Series, LS-95-3 (1995)
[6] Sørensen, M.H.B., Urzyczyn, P.:Lectures on Curry-Howard Isomorphism, Lecture Notes, University

of Copenhagen, University of Warsaw (1999).


